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2D and 3D Schrodinger operators with point interactions

Schrödinger operators with point interactions have been intensively studied in the three
last decades (see [1, 2, 3, 4, 5, 9]). In the present talk we are dealing with two- and three-
dimensional Schrödinger operators with point interactions.

Starting from fundamental paper [5], operator associated with differential expression

l := −∆ +
m∑

j=1

λjδ(· − xj), λj ∈ R, m ∈ N. (1)

in L2(R3) is being treated in the framework of extension theory.
Namely, minimal Schrödinger operator Hmin = −∆ with the domain

dom(Hmin) :=
{
f ∈ W 2

2 (Rv,Cn) : f(xj) = 0, j ∈ {1, .., m}}, v = 2, 3 (2)

is considered. Note that Hmin is closed symmetric operator with equal deficiency indices
n±(Hmin) = nm, and operator associated with (1) is treated as a certain self-adjoint
extension of Hmin.

In the recent years, the concept of boundary triplets and corresponding Weyl functions
(see [7, 8]) was invoked for investigation of symmetric operators. In [4, 6, 9], bound-
ary triplet approach was applied to the investigation of several-dimensional Schrödinger
operators with point interactions. In [6, 9], two- and three-dimensional Schrödinger oper-
ators with one point interaction were studied. Arlinskii and Tsekanovskii, in [4], obtained
parametrization of all nonnegative self-adjoint extension of ”three-dimensional” Hmin with
arbitrary finite m.

In the present talk, some results from [6] are generalized to the case of m point inter-
actions. Namely, we obtain boundary triplet Π for H∗

min, we also find corresponding Weyl
function and γ-field for Π. Moreover, we obtain a description of symmetric, self-adjoint
and nonnegative self-adjoint extensions of the initial minimal symmetric operator Hmin,
and characterize their spectra.
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