Nataly Goloschapova (Institute of Applied Mathematics and Mechanics, NASU, Donetsk, Ukraine)

2D and 3D Schrodinger operators with point interactions

Schrödinger operators with point interactions have been intensively studied in the three last decades (see [1, 2, 3, 4, 5, 9]). In the present talk we are dealing with two- and three-dimensional Schrödinger operators with point interactions.

Starting from fundamental paper [5], operator associated with differential expression

$$l := -\Delta + \sum_{j=1}^{m} \lambda_j \delta(\cdot - x_j), \quad \lambda_j \in \mathbb{R}, \, m \in \mathbb{N}.$$
(1)

in $L^2(\mathbb{R}^3)$ is being treated in the framework of extension theory.

Namely, minimal Schrödinger operator $H_{\min} = -\Delta$ with the domain

$$\operatorname{dom}(H_{\min}) := \left\{ f \in W_2^2(\mathbb{R}^v, \mathbb{C}^n) : f(x_j) = 0, \quad j \in \{1, .., m\} \right\}, \quad v = 2, 3$$
(2)

is considered. Note that H_{\min} is closed symmetric operator with equal deficiency indices $n_{\pm}(H_{\min}) = nm$, and operator associated with (1) is treated as a certain self-adjoint extension of H_{\min} .

In the recent years, the concept of boundary triplets and corresponding Weyl functions (see [7, 8]) was invoked for investigation of symmetric operators. In [4, 6, 9], boundary triplet approach was applied to the investigation of several-dimensional Schrödinger operators with point interactions. In [6, 9], two- and three-dimensional Schrödinger operators with one point interaction were studied. Arlinskii and Tsekanovskii, in [4], obtained parametrization of all nonnegative self-adjoint extension of "three-dimensional" H_{\min} with arbitrary finite m.

In the present talk, some results from [6] are generalized to the case of m point interactions. Namely, we obtain boundary triplet Π for H^*_{\min} , we also find corresponding Weyl function and γ -field for Π . Moreover, we obtain a description of symmetric, self-adjoint and nonnegative self-adjoint extensions of the initial minimal symmetric operator H_{\min} , and characterize their spectra.

- [1] Adamyan V. // Methods Funct.Anal.Topology. 2007. 13, N 2.
- [2] Albeverio S., Gestezy F., Hoegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics. — Berlin-New York: Springer, 1988.
- [3] Albeverio S., Kurasov P. Singular Perturbations of Differential Operators. Cambridge: Cambridge University Press, 1999.
- [4] Arlinskii Yu., Tsekanovskii E. // Integral Equations and Operator Theory. -2005. -51.

- [5] Berezin F.A., Faddeev L.D. // Dokl.Acad.Sci. USSR. —1961. —137.
- [6] Behrndt J., Malamud M., Neidhardt H.// Proc. London Math. Soc. -2008. -97.
- [7] Derkach V.A., Malamud M.M.// J. Funct. Anal. —1991. —95.
- [8] Gorbachuk V.I., Gorbachuk M.L. Boundary Value Problems for Operator Differential Equations. — Dordrecht: Kluwer Academic Publishers Group, 1991.
- [9] Hassi S., Kuzhel S.//J. Funct. Anal. —2009. —256.