Vitalii Gasanenko (Department of Theory of Random Processes, National Academy of Sciences of Ukraine, Kyiv, Ukraine)

Small deviation of Brownian motion with large drift

Let B(t) be standard Brownian motion, and let f(t), g(t) are smooth functions with $f(0) = 0, g(t) > 0, t \ge 0$. We investigate of exact asymptote the following probability :

 $P_{\lambda} = \mathbf{P}\left(|B(t) + \lambda f(t)| \le \lambda^{-\alpha} g(t), t \in [0, T]\right), \alpha > 0, \lambda \to \infty.$

Various authors have studied this probability for one-sided boundary case. See [1, 2] and the references given there.

Theorem.Let the following conditions hold

- 1. $f \in C^2_{[0,T]}, f(0) = 0.$
- 2. $g \in C^1_{[0,T]}, \min_{t \in [0,T]} g(t) > 0.$
- 3. $\alpha > 1$, T > 0.

Then, at $\lambda \to \infty$ the following presentation takes place

$$P_{\lambda} = 2\pi \frac{1 + exp(-\kappa)}{\kappa^2 + \pi^2} \times$$

$$\times \exp\left\{-\frac{\lambda^2}{2}\int\limits_0^T \dot{f}^2(s)ds - \frac{\lambda^{2\alpha}\pi^2}{8}\int\limits_0^T g^{-2}(s)ds + \lambda^{1-\alpha}\left(g(0)\dot{f}(0) + \int\limits_0^T \dot{g}(s)\dot{f}(s)ds\right)\right\} \times \left(1 + O(\lambda^{-2\alpha})\right)$$

where $\kappa = \lambda^{1-\alpha} 2g(T)\dot{f}(T)$.

- [1] Hashorva E.// Elect. Comm. in Probab. -2005. 10.
- [2] Lifshits M., Shi Z.// Bernouli. 2002. 8, N 6.