Mikhail Feller (Ukrainian research institute of mechanical woodworking, Kiev, Ukriane) Iryna Kovtun (National university of life and environmental sciences of Ukraine, Kiev, Ukrinae)

The boundary problems for one class nonlinear parabolic equation with Lévy laplacian

Let H be a real separable Hilbert space and F(x) be a scalar function on H. The Lévy Laplacian is defined by the formula $\Delta_L F(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (F''(x) f_k, f_k)_H$, where $\{f_k\}_1^\infty$ is an orthonormal basis in H.

In this report we construct a solution of boundary problem and initial-boundary value problem in a fundamental domain $\Omega \bigcup \Gamma$

$$\frac{\partial U(t,x)}{\partial t} = f(t,\Delta_L U(t,x)) \quad \text{in} \quad \Omega, \quad U(0,x) = U_0(x), \quad U(t,x) = G(t,x) \quad \text{on} \quad \Gamma,$$

where $f(t,\varsigma)$ is a function on \mathbb{R}^2 . Note that in the book M.N.Feller [1] we have constructed a solution of the Cauchy problem for this equation.

[1] M.N.Feller. The Lévy Laplacian. — Cambridge: Cambridge University Press, 2005.