Mykola Dudkin (National Technical University of Ukraine (KPI), Kyiv, Ukraine)

Singularly perturbed normal operators

Let N be a normal operator with the domain D(N) in the separable Hilbert space \mathcal{H} . The normal operator \tilde{N} is called singularly perturbed with respect N iff the set $D \subset \{f \in D(\tilde{N}) \cap D(N), |\tilde{N}f = Nf\}$ is dense in \mathcal{H} . If D(N) = D + R, where $R = N^{-1}(\mathcal{H} \ominus ND)$ is n-dimensional subspace of \mathcal{H} , then the operator \tilde{N} is called singularly perturbed of rank n with respect to the operator N and we denote $\tilde{N} \in \mathcal{P}_s^n(N)$.

Definition. The vector $r \in D(N)$, such that $e^{-i\theta}Nr - e^{i\theta}N^*r = 2i\xi r$ and $Nr \notin D(N)$, is called admissible for the operator N with characteristics θ , $\xi: -\frac{\pi}{2} < \theta \leq \frac{\pi}{2}, \xi \in \mathbf{R}^1$.

Theorem. The set $\mathcal{P}_s^1(N)$ is not empty iff there exists the admissible vector r of the operator N.

If r is admissible vector with characteristics θ , ξ , and τ is an arbitrarily real number then the operator $\tilde{N}_{r,\tau}$, that has the domain

$$D(\tilde{N}_{r,\tau}) = D + \{e^{-i\theta}(\tau + i\xi)r + N^*r\}, \ D = N^{-1}(\mathcal{H} \ominus \{Nr\})$$

$$\tag{1}$$

and acts as follows

$$\tilde{N}_{r,\tau}(f_0 + e^{-i\theta}(\tau + i\xi)r + N^*r) = Nf_0 + e^{-i\theta}(\tau + i\xi)Nr,$$
(2)

belong to the set $\mathcal{P}^1_s(N)$.

Each operator $\tilde{N} \in \mathcal{P}_s^1(N)$ has the description by (1) and (2). Such description gives the bijection of the set $\mathcal{P}_s^1(N)$ and the set of couple $\{R, \tau\}$, where R is the one-dimensional subspace containing admissible vector and τ is the self adjoint operator in R.

The operator $\tilde{N}_{r,\tau}$ has bounded inverse one in \mathcal{H} iff $\tau + i\xi \neq 0$, with this connection $\tilde{N}_{r,\tau}^{-1} = N^{-1} + e^{i\theta}(\tau + i\xi)^{-1}(\cdot, Nr)N^*r$, were we take into account $||Nr|| = ||N^*r|| = 1$.

The investigations are going with Nizhnik L.P. together and are partially supported by SFFR of Ukraine, project N^{\circ} 25.1/021.

- [1] Dudkin M.E., Nizhnik L.P. Singularly perturbed normal operators // submitted to the Functional analysis and applications 2009.
- [2] Dudkin M.E. Singularly perturbed normal operators of rank one and its applications. K., 2008. — 38 p. (Prepr./NAS Ukraine. Institute of mathematics; 2008.3)