Vladimir Dragan (Technical University of Moldova)

A Random Version of Filipov and Bogoliubov Theorems for Hyperbolic Functional Differential Inclusions

Throughout the paper, a, b are two positive real numbers; $Q_{a,b}$ is the rectangle $[0, a] \times [0, b]$ with the Lebesgue σ - algebra.

Denote by (Ω, U, P) a complete probability space, $C^*(Q_{a,b}, R^n)$ the space of all absolutely continuous (in a Carathéodory sense) maps from $Q_{a,b}$ into R^n , $ACC(\Omega \times Q_{a,b}, R^n)$ the space of all measurable maps $w: \Omega \to C^*(Q_{a,b}, R^n)$. Let $\Psi: \Omega \times C^*(Q_{a,b}, R^n) \to cdL^1(Q_{a,b}, R^n)$ be a set-value map with non-empty closed and decomposable values in $L^1(Q_{a,b}, R^n)$.

Theorem. Assume that

1) the multifunction $\omega \to \Psi(\omega, z)$ is $(U, B[L^1])$ - measurable;

2) there exists a measurable map $k : \Omega \to R^+$ such that for every $\omega \in \Omega, u, v \in C^*(Q_{a,b}, R^n)$ and every $(x, y) \in Q_{a,b}$

$$h_{L^{1}(Q_{xy},R^{n})}\left(\Psi\left(\omega,u\right),\Psi\left(\omega,v\right)\right) \leq \int_{0}^{x} \int_{0}^{y} k\left(\omega\right) \left\|u\left(s,r\right)-v\left(s,r\right)\right\| ds dr;$$

3) for any measurable $w : \Omega \to C^*(Q_{a,b}, \mathbb{R}^n)$ there exists a measurable map $\rho : \Omega \to L^1(Q_{a,b}, \mathbb{R}^+)$ such that for every $(x, y) \in Q_{a,b}$

$$d_{L^{1}(Q_{xy},R^{n})} \left[w_{xy} \left(\omega \right), \Psi \left(\omega, w \left(\omega \right) \right) \right] \leq \int_{0}^{x} \int_{0}^{y} \rho \left(\omega \right) \left(s, r \right) ds dr,$$
$$w \left(\omega \right) \left(x, 0 \right) = \alpha \left(\omega \right) \left(x \right), \quad w \left(\omega \right) \left(0, y \right) = \beta \left(\omega \right) \left(y \right), \quad \alpha \left(\omega \right) \left(0 \right) = \beta \left(\omega \right) \left(0 \right),$$
$$\omega \in \Omega, \quad \alpha : \Omega \to AC \left(\left[0, a \right], R^{n} \right), \quad \beta : \Omega \to AC \left(\left[0, b \right], R^{n} \right).$$

Then for every $\beta>0$, there exists a random solution $z:\Omega\to C^*\left(Q_{a,b},R^n\right)$ of the problem

$$z_{xy}(\omega) \in \Psi(\omega, z(\omega)), \ z(\omega)(x, 0) = \alpha(\omega)(x), \ z(\omega)(0, y) = \beta(\omega)(y),$$

such that for every $(\omega, x, y) \in \Omega \times Q_{a,b}$

$$\left\|z\left(\omega\right)\left(x,y\right) - w\left(\omega\right)\left(x,y\right)\right\| \le \int_{0}^{x} \int_{0}^{y} e^{k_{\left(\omega\right)}\left(x-r\right)\left(y-s\right)}\rho\left(\omega\right)\left(s,r\right) dsdr + \beta e^{k_{\left(\omega\right)}xy}$$

If in addition there exists

$$\lim_{\substack{M \to \infty \\ N \to \infty}} \frac{1}{MN} \int_{0}^{M} \int_{0}^{N} \left\{ \int_{\Omega} \Psi(\omega, z) \, dP(\omega) \right\} dx dy = \overline{\Psi}(z) \,,$$

then we can prove a basic Bogoliubov theorem of the method of averaging for inclusion

$$z_{xy} \in \varepsilon^2 \Psi(\omega, z), (x, y) \in Q_{L\varepsilon^{-1}, L\varepsilon^{-1}}.$$