Vasily Chernecky (Department of Higher Mathematics, Odessa State Academy of Refrigeration, Odessa, Ukraine)

Projection Methods for Solution of Fundamental Equation of Risk Theory

Let F(u) be the distribution function of claims $Y_j(=Y) > 0$ with expectation $EY_j = \mu$, K(u) be the distribution of waiting time $T_j(=T) > 0$ with expectation $ET_j = 1/\alpha$, and $c > \alpha\mu$ be the gross premium rate, $j \in \mathbf{N}$. Random variables Y_j and T_j are supposed to be mutually independent. The non-ruin probability of an insurance company, $\varphi(u)$, with initial capital u satisfies the Feller-Lundberg integral equation [1],

$$\varphi(u) - \int_0^\infty dK(v) \int_0^{u+cv} \varphi(u+cv-z) \, dF(z) = 0, \quad u \ge 0, \tag{1}$$

which is the equation of the Wiener-Hopf type. We are interested by the solution $\varphi(u)$ which is a monotone nondecreasing function of u, satisfying the condition

$$\varphi(u) \nearrow 1 \quad \text{when} \quad u \to +\infty.$$
 (2)

Exact integration of the problem (1)-(2) presents difficulties and in the majority of cases may be done only by numerical methods. Using the results of the works [2]-[4], the applicability of the projection methods to the solution of the problem (1)-(2) is justified. Number of illustrative examples are given.

- [1] Grandell J., Aspects of Risk Theory, Springer-Verlag, 1991.
- [2] Gohberg I.C., Levchenko V.I., On the convergence of the projection method for solving the degenerate discrete Wiener-Hopf equation, Mat. Issled., VI, no. 4, 20-36(1971) (Russian).
- [3] Gohberg I.C., Levchenko V.I., On the projection method for the degenerate discrete Wiener-Hopf equation, Mat. Issled., VII, no. 3, 238-253(1971) (Russian).
- [4] Pomp A., Über die Konvergenz des Galerrkischen Verfahrens für Wiener-Hopfsche Integralgleichungen in den Räumen L^p, Math. Nachr. 87, 71-92(1979).