Ruzinazar Beshimov, Rustam Juraev (National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan)

On weakly density for linearly ordered topological spaces

In the work it is proved that the weakly density of linearly ordered topological spaces is equal to its hereditary weakly density.

Let X be a set linearly ordered with the relation < and containing at least two elements. For $a, b \in X$, satisfying the relation a < b, assume $(a, b) = \{x \in X : a < x < b\}$, $(a, \rightarrow) = \{x \in X : a < x\}$. Such sets will be named intervals in X. The family B of all intervals in the linearly ordered set X generates the base of topology in X. A linearly ordered space is the space, the topology of that is induced by some linear ordering [1].

For a cardinal function φ , $h\varphi$ denotes the cardinal function, the value of that on the space X is equal to $\sup \varphi(Y)$ where supreme is taken by the all subspaces Y of X, i.e. $h\varphi(X) = \sup \{\varphi(Y) : Y \subset X\}$.

A set $A \subset X$ is called everywhere dense in X if [A] = X. The density of the space X is defined as the least cardinal number of the form |A| where A is an everywhere dense subset of X. This cardinal number is denoted as d(X). If $d(X) \leq \aleph_0$, then we say that the space is separable [1].

We say that the weakly density [2] of a topological space X is equal to $\tau \geq \aleph_0$ if τ is the least cardinal number such that there exists in X a π -base decomposable on τ centered systems of open sets, i.e. $B = \bigcup \{B_\alpha : \alpha \in A\}$ is the π -base where B_α is a centered system of open sets for any $\alpha \in A$, $|A| = \tau$.

The weakly density of a topological space A is denoted as wd(X). If $wd(X) = \aleph_0$, then X is called weakly separable [3].

Theorem 1. [4] Let X be a linearly ordered topological space. Then d(X) = hd(X). In the present report we prove the following statements.

Theorem 2. Let X be a linearly ordered topological space. Then d(X) = wd(X). **Theorem 3.** Let X be a linearly ordered topological space. Then wd(X) = hwd(X). **Corollary.** Let X be a linearly ordered topological space. Then hd(X) = hwd(X).

References

- [1] Engelking R. General Topology. Moscow: Mir, 1986. 752 p.
- [2] Beshimov R.B. Some cardinal properties of topological spaces connected with weakly density // Methods of Functional Analysis and Topology. 2004. No. 3 (10), 17-22.
- [3] Beshimov R.B. A note on separable spaces // Mathematica Moravica. 2002. (6), 9-19.
- [4] Skula L. Dedicna *m*-separabilita usporadaneho prstoru. // Casopis Pest. Mat. Fys. 90 (1965), 451 - 454.