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On weakly density for linearly ordered topological spaces

In the work it is proved that the weakly density of linearly ordered topological spaces
is equal to its hereditary weakly density.

Let X be a set linearly ordered with the relation < and containing at least two elements.
For a, b ∈ X, satisfying the relation a < b, assume (a, b) = {x ∈ X : a < x < b},
(a,→) = {x ∈ X : a < x}. Such sets will be named intervals in X. The family B of all
intervals in the linearly ordered set X generates the base of topology in X. A linearly
ordered space is the space, the topology of that is induced by some linear ordering [1].

For a cardinal function ϕ, hϕ denotes the cardinal function, the value of that on the
space X is equal to sup ϕ(Y ) where supreme is taken by the all subspaces Y of X, i.e.
hϕ(X) = sup {ϕ(Y ) : Y ⊂ X} .

A set A ⊂ X is called everywhere dense in X if [A] = X. The density of the space X
is defined as the least cardinal number of the form |A| where A is an everywhere dense
subset of X. This cardinal number is denoted as d(X). If d(X) ≤ ℵ0, then we say that
the space is separable [1].

We say that the weakly density [2] of a topological space X is equal to τ ≥ ℵ0 if τ is the
least cardinal number such that there exists in X a π-base decomposable on τ centered
systems of open sets, i.e. B = ∪{Bα : α ∈ A} is the π-base where Bα is a centered system
of open sets for any α ∈ A, |A| = τ.

The weakly density of a topological space A is denoted as wd(X). If wd(X) = ℵ0, then
X is called weakly separable [3].

Theorem 1. [4] Let X be a linearly ordered topological space. Then d(X) = hd(X).
In the present report we prove the following statements.
Theorem 2. Let X be a linearly ordered topological space. Then d(X) = wd(X).
Theorem 3. Let X be a linearly ordered topological space. Then wd(X) = hwd(X).
Corollary. Let X be a linearly ordered topological space. Then hd(X) = hwd(X).
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