Aleksey Ber (National University of Uzbekistan)

About derivations in algebras of measurable operators

Let M be an von Neumann algebra, let LS(M) be the *-algebra of all locally measurable operators affiliated with to M and let S(M) be the *-algebra of all measurable operators affiliated with to M. Let τ be a semi-finite normal faithful trace on M and $S(M, \tau)$ be the *-algebra of all τ -measurable operators affiliated with to M ([1]).

Let A be an algebra. The linear operator δ on A is called *derivation* if $\delta(ab) = \delta(a)b + a\delta(b)$ for any $a, b \in A$. The derivation δ is called *inner* if $\delta(x) = [d, x] = dx - xd$ when $d \in A$.

Theorem 1. Let A be an absolutely solid *-subalgebra in LS(M) (that is if $x \in LS(M)$ and $y \in A$ are such that $|x| \leq |y|$, then $x \in A$) and let $M \subseteq A$. And let $d \in LS(M)$ be such that $[d, x] = dx - xd \in A$ for any $x \in A$. Then derivation $\delta(x) = [d, x]$ is inner on A. **Corollary.** All spatial derivations on algebras S(M) and $S(M, \tau)$ are inner.

Theorem 2. Let M be a properly infinite von Neumann algebra and let A be a \ast -subalgebra in LS(M), $M \subseteq A$. Then any derivation δ on A is *Z*-linear (that is $\delta(z) = 0$ for any $z \in Z(A)$, when Z(A) is the center of A).

[1] Muratov M.A., Chilin V.I. Algebras of measurable and locally measurable operators. – Kyiv, Pratsi In-ty matematiki NAN Ukraini. 2007. V. 69. – 390 p.(Russian).