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CONSTRUCTIVE DESCRIPTION OF MONOGENIC FUNCTIONS
IN A HARMONIC ALGEBRA OF THE THIRD RANK

S. A. Plaksa  and  V. S. Shpakovskii UDC 517.96

By using analytic functions of a complex variable, we give a constructive description of mono-
genic functions that take values in a commutative harmonic algebra of the third rank over the
field of complex numbers.  We establish an isomorphism between algebras of monogenic func-
tions in the case of transition from one harmonic basis to another. 

The efficiency of methods of the theory of analytic functions of a complex variable in the investigation of
plane potential fields inspires mathematicians to develop analogous methods for space fields.  These methods
can be based on mappings of Banach algebras. 

In [1 – 3], commutative associative Banach algebras were constructed such that twice Gâteaux differentiable
functions with values in these algebras have components satisfying the three-dimensional Laplace equation. 

Let  A  be a commutative associative Banach algebra (over the field of real numbers  R  or the field of com-

plex numbers  C )  with basis  { }ek k
n
=1,  3  ≤  n  ≤  ∞.  If the basis elements  e1 , e2 ,  and  e3   satisfy the condition

e e e1
2

2
2

3
2+ +   =  0, (1)

then, by virtue of the equality 
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Φ Φ Φ
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2
2

3
2 ,

every twice Gâteaux differentiable function  Φ( )ζ   of a variable  ζ  = xe ye ze1 2 3+ + ,  x, y, z ∈  R,  with values

in the algebra  A  satisfies the three-dimensional Laplace equation 

Δ Φ3   =  0,

i.e., it is a monogenic potential [3, p. 30]. 
Following [1–3], we call a triple of vectors  e1 , e2 , e3   satisfying relation (1) a harmonic triple, and an

algebra  A  that contains a harmonic triple a harmonic algebra. 

In [1–3], all harmonic bases in third-rank algebras over the field  C   were described and it was proved that

harmonic three-dimensional algebras over the field  R  do not exist.  Some four-dimensional harmonic algebras

over the field  R  were constructed in [4].  An infinite-dimensional harmonic algebra over the field  R  was con-
structed in [3, 5]. 
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In the present paper, we consider the harmonic algebra  A3   [2, 3], whose basis (note that it is not har-
monic) consists of the identity  1  of the algebra and of elements  ρ1   and  ρ2  that satisfy the multiplication rules 

ρ1
2   =  ρ2 ,      ρ ρ1 2   =  ρ2

2   =  0. (2)

By virtue of the fact that, similarly to complex potentials of plane fields, monogenic potentials form a func-
tional algebra in the domain of definition, the algebra  A3   contains a collection of monogenic potentials no less

than the set of holomorphic functions in the algebra  C,  and there is a no lesser collection of tools for their con-
struction.  In Theorem 1.7 in [3], monogenic potentials were explicitly constructed in the form of principal ex-
tensions of holomorphic functions of a complex variable to the algebra  A3 . 

In what follows, we give a constructive description of all monogenic potentials in the algebra  A3   using
analytic functions of a complex variable.  We also establish an isomorphism between the algebras of monogenic

potentials  Φ( )ζ   of a variable  ζ  =  xe ye ze1 2 3+ + ,  x, y, z ∈  R,  under the variation in the harmonic basis

{ }, ,e e e1 2 3   in the algebra  A3 . 

1.  Constructive Description of Monogenic Functions in the Algebra  A3

It was shown in Theorem 1.6 in [3] that harmonic bases in the algebra  A3   are the bases  { }, ,e e e1 2 3

whose decompositions in the basis  { }, ,1 1 2ρ ρ   have the form 

e1   =  1,

e2   =  n n n1 2 1 3 2+ +ρ ρ , (3)

e3   =  m m m1 2 1 3 2+ +ρ ρ ,

where  nk   and  mk ,  k  =  1, 2, 3,  are complex numbers that satisfy the system of equations 

1 1
2

1
2+ +n m   =  0,

n n m m1 2 1 2+   =  0,

(4)

n m n n m m2
2

2
2

1 3 1 32+ + +( )   =  0,

n m n m2 3 3 2−   ≠  0,

and at least one number in each of the pairs  ( , )n n1 2   and  ( , )m m1 2   is different from zero.  Moreover, multiply-
ing the elements of harmonic bases of the form (3) by arbitrary invertible elements of the algebra, one can obtain
all harmonic bases in the algebra  A3   [3, p. 29]. 

In the algebra  A3 ,  we consider the linear span  E3  : =  ζ = + + ∈{ }xe ye ze x y z1 2 3 : , , R   generated by the

vectors  e1   =  1,  e2 ,  and  e3 .  We associate a subset  S  of the three-dimensional space  R3   with the set 

Sζ   =  ζ = + + ∈{ }xe ye ze x y z S1 2 3 : ( , , )      in   E3 .
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A continuous function  Φ Ω: ζ → A3   is called monogenic in a domain  Ωζ ⊂ E3   if  Φ  is Gâteaux dif-

ferentiable at every point of this domain, i.e., if, for every  ζ ζ∈Ω ,  there exists an element  ′Φ ( )ζ   of the alge-

bra  A3   such that 

lim ( )) ( )
ε

ζ ε ζ ε
→ +

−+ −( )
0 0

1Φ Φh   =  h ′Φ ( )ζ       ∀ ∈h E3 .

The element  ′Φ ( )ζ   is called the Gâteaux derivative of the function  Φ  at the point  ζ. 

Necessary and sufficient conditions for the monogeneity of a function  Φ  (Cauchy – Riemann conditions)
were established in Theorem 1.3 in [3].  We write these conditions here in a compact form: 

∂
∂
Φ
y

  =  
∂
∂
Φ
x

e2 ,      
∂
∂
Φ
z

  =  
∂
∂
Φ
x

e3 . (5)

The monogeneity of a complex-valued function  F( )ξ   of a complex variable  ξ  is understood as its holo-

morphy in the case where  ξ  =  τ η+ i   or antiholomorphy in the case where  ξ  =  τ η− i ,  τ, η ∈ R. 

Let  f  be a linear continuous functional defined on  A3   whose kernel is the maximal ideal 

I  : =  λ ρ λ ρ λ λ1 1 2 2 1 2+ ∈{ }: , C

and let  f ( )1   =  1.  It is known [6, p. 147] that  f  is also a multiplicative functional, i.e., the equality  f ab( )   =

f a f b( ) ( )   holds for all  a, b ∈ A3 . 
It follows from the decomposition of the resolvent (see [3, p. 30]) 
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1
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∀ ∈ ≠ + +t t x n y m zC : 1 1

that the points  ( , , )x y z ∈R3   corresponding to the noninvertible elements  ζ   =  xe ye ze1 2 3+ +   of the algebra

A3  form the straight line 

L :      
x y n z m

y n z m

+ + =

+ =

⎧
⎨
⎪

⎩⎪

Re Re ,

Im Im

1 1

1 1

0

0

in the three-dimensional space  R3. 

A domain  Ω ⊂ R3   is called convex in the direction of the straight line  L  if it contains each segment that
connects two points of it and is parallel to the straight line  L. 
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Lemma 1.  Let a domain  Ω ⊂ R3   be convex in the direction of the straight line  L   and let  Φ:
Ωζ → A3  be a monogenic function in the domain  Ωζ .  If points  ζ ζ ζ1 2, ∈Ω   are such that  ζ ζ ζ2 1− ∈L ,

then 

Φ Φ( ) ( )ζ ζ1 2−   ∈  I. (6)

Proof.  Let  ( , , )x y z1 1 1   and  ( , , )x y z2 2 2   be points of the domain  Ω  such that the segment that connects
them is parallel to the straight line  L. 

In the domain  Ω,  we construct two surfaces with common edge, namely a surface  Q  that contains the

point  ( , , )x y z1 1 1   and a surface  Σ  that contains the point  ( , , )x y z2 2 2 ,  such that the restrictions of the func-
tional  f  to the corresponding subsets  Qζ   and  Σζ   of the domain  Ωζ   are bijections of these subsets to the

same domain  G  of the complex plane, and, moreover, at every point  ζ ζ0 ∈Q   (or  ζ ζ0 ∈Σ ),  one has 

lim ( )( ) ( )
ε

ζ ε ζ ζ ζ ε
→ +

−+ − −( )
0 0

0 0 0
1Φ Φ   =  ′ −Φ ( )( )ζ ζ ζ0 0 (7)

for all  ζ ζ∈Q   such that  ζ ε ζ ζ ζ0 0+ − ∈( ) Q   for any  ε ∈( , )0 1   (or, respectively, for all  ζ ζ∈Σ   such that

ζ ε ζ ζ ζ0 0+ − ∈( ) Σ   for any  ε ∈( , )0 1 ).
As the surface  Q  in the domain  Ω,  we take a fixed equilateral triangle with vertices  A1,  A2 ,  and  A3

centered at the point  ( , , )x y z1 1 1   the plane of which is perpendicular to the straight line  L.  We now continue

the construction of the surface  Σ. 

Consider the triangle with vertices  ′A1 ,  ′A2 ,  and  ′A3   centered at the point  ( , , )x y z2 2 2 ,  lying in the do-

main  Ω,  and such that its sides  ′ ′A A1 2 ,  ′ ′A A2 3 ,  and  ′ ′A A1 3   are parallel to the segments  A A1 2 ,  A A2 3 ,  and

A A1 3 ,  respectively, and have smaller lengths than the sides of the triangle  A A A1 2 3 .  Since the domain  Ω  is

convex in the direction of the straight line  L,  we conclude that the prism with vertices  ′ ′ ′ ′′ ′′A A A A A1 2 3 1 2, , , , ,  and

′′A3   such that the points  ′′A1 ,  ′′A2 ,  and  ′′A3   lie in the plane of the triangle  A A A1 2 3   and its edges  ′ ′′A Am m ,  m  =

1 3, ,  are parallel to the straight line  L  is completely contained in  Ω. 

We now fix a triangle with vertices  B1 ,  B2 ,  and  B3   such that the point  Bm   lies on the segment  ′ ′′A Am m

for  m  =  1 3,   and the truncated pyramid with vertices  A A A B B1 2 3 1 2, , , , ,  and  B3   and lateral edges  A Bm m ,

m  =  1 3, ,  is completely contained in the domain  Ω. 

Finally, in the plane of the triangle  ′ ′ ′A A A1 2 3 ,  we fix a triangle  T  with vertices  C1,  C2 ,  and  C3   such

that its sides  C C1 2 ,  C C2 3 ,  and  C C1 3   are parallel to the segments  ′ ′A A1 2 ,  ′ ′A A2 3 ,  and  ′ ′A A1 3 ,  respectively,

and have smaller lengths than the sides of the triangle  ′ ′ ′A A A1 2 3 .  By construction, the truncated pyramid with

vertices  B B B C C1 2 3 1 2, , , , ,  and  C3   and lateral edges  B Cm m ,  m  =  1 3, ,  is completely contained in the do-

main  Ω. 

Let  Σ  denote the surface formed by the triangle  T  and the lateral surfaces of the truncated pyramids
A A A B B B1 2 3 1 2 3   and  B B B C C C1 2 3 1 2 3 . 

Since the surfaces  Q  and  Σ  have a common edge, the sets  Qζ   and  Σζ   are mapped by the functional  f

onto the same domain  G  of the complex plane.  In the domain  G,  we define two complex-valued functions

H1   and  H2   such that, for every  ξ ∈G ,  one has 
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H1( )ξ   =  f ( ( ))Φ ζ ,      where    ξ ζ= f ( )     and    ζ ζ∈Q ,

H2( )ξ   =  f ( ( ))Φ ζ ,      where    ξ ζ= f ( )     and    ζ ζ∈Σ .

Let us show that  H1   and  H2   are functions of the complex variable  ξ  monogenic in  G .  Note that,
acting by the functional  f  on equality (7) and using the linearity, continuity, and multiplicativity of the func-
tional, we get 

lim ( )( ( )) ( ( ))
ε

ζ ε ζ ζ ξ ε
→ +

−+ − −( )
0 0

0 0
1f fΦ Φ   =  f f f( ( ))( ( ) ( ))′ −Φ ζ ζ ζ0 0 .

This implies that the functions  H1   and  H2   have derivatives at the point  f G( )ζ0 ∈   in all directions, and,
furthermore, these derivatives are equal for each of the functions  H1   and  H2 .  Therefore, according to The-
orem 21 in [7], the functions  H1   and  H2   are monogenic in the domain  G. 

According to the definition of the functions  H1   and  H2 ,  we have  H H1 2( ) ( )ξ ξ≡   on the boundary of
the domain  G .  By virtue of the monogeneity of the functions  H1   and  H2   in the domain  G,  the identity

H H1 2( ) ( )ξ ξ≡   holds everywhere in  G .  Consequently, for  ζ1 1 1 1 2 1 3:= + +x e y e z e   and  ζ2 2 1:= +x e
y e z e2 2 2 3+ ,  one has 

f ( ( ) ( ))Φ Φζ ζ2 1−   =  f f( ( )) ( ( ))Φ Φζ ζ2 1−   =  0,

i.e.,  Φ Φ( ) ( )ζ ζ2 1−   belongs to the kernel  I  of the functional  f. 
The lemma is proved. 

Note that the condition of the convexity of the domain  Ω  in the direction of the straight line  L  in Lem-

ma 1 is essential.  In what follows, we construct an example of a domain  Ω  that is not convex in the direction of
the straight line  L  and a monogenic function  Φ Ω: ζ → A3   for which relation (6) does not hold for some

ζ ζ ζ1 2, ∈Ω   such that  ζ ζ ζ2 1− ∈L . 

Let  D  denote the domain in  C  onto which the domain  Ωζ   is mapped by the functional  f.  Consider the

linear operator  A  that associates every monogenic function  Φ Ω: ζ → A3   with a function  F D: → C   ac-

cording to the relation  F f( ) ( ( )):ξ ζ= Φ ,  where  ζ  =  xe ye ze1 2 3+ +   and  ξ  :=  f ( )ζ   =  x n y m z+ +1 1 .  It

follows from Lemma 1 that the value of  F ( )ξ   is independent of the choice of a point  ζ  for which  f ( )ζ   =  ξ. 
By analogy with Theorem 2.4 in [3], we prove the following statement: 

Theorem 1.  Let a domain  Ω  be convex in the direction of the straight line  L.  Then every function
Φ Ω: ζ → A3   monogenic in the domain  Ωζ   can be represented in the form 

Φ( )ζ   =  
1

2
1

0π
ζ ζ

ζ
i

A t t dt( ) ( )( )( )Φ Φ
Γ

− +−∫       ∀ ∈ζ ζΩ , (8)

where  Γζ   is a closed Jordan rectifiable curve that lies in the domain  D   and encloses the point  f ( )ζ ,

and  Φ Ω0 : ζ → I   is a certain function monogenic in the domain  Ωζ   and taking values in the ideal  I. 
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Note that the complex number  ξ  =  f ( )ζ   is the spectrum of the element  ζ  of the algebra  A3 ,  and the

integral in equality (8) is the principal extension of the monogenic function  F ( )ξ   =  ( )( )AΦ ξ   of the complex

variable  ξ  to the domain  Ωζ . 

It follows from Theorem 1 that the algebra of functions monogenic in the domain  Ωζ   can be decomposed

into the direct sum of the algebra of principal extensions of monogenic functions of a complex variable in  Ωζ

and the algebra of functions monogenic in  Ωζ   and taking values in the ideal  I. 

The principal extension of a function of a complex variable  F D: → C   to the domain  Πζ   : =  { :ζ ∈E3

f D( ) }ζ ∈   was constructed in explicit form in Theorem 1.7 in [3];  the decomposition of this extension in the

basis  { }, ,1 1 2ρ ρ   has the form 

1

2
1

π
ζ

ζ
i

F t t dt( )( )− −∫
Γ

  =  F x n y m z( )+ +1 1   +  ( ) ( )n y m z F x n y m z2 2 1 1 1+ ′ + + ρ

+  ( ) ( )
( )

(n y m z F x n y m z
n y m z

F x n y3 3 1 1
2 2

2

1
2

+ ′ + + +
+ ′′ + ++

⎛

⎝⎜
⎞

⎠⎟
m z1 2) ρ (9)

∀ = + + ∈ζ ζxe ye ze1 2 3 Π .

It is obvious that a domain  Π  of the space  R3   congruent to the domain  Πζ   is an infinite cylinder whose gen-

eratrices are parallel to the straight line  L. 
In the theorem below, all monogenic functions defined in the domain  Ωζ   and taking values in the ideal  I

are described with the use of monogenic functions of the corresponding complex variable. 

Theorem 2.  Let a domain  Ω  be convex in the direction of the straight line  L.  Then every monogenic
function  Φ Ω0 : ζ → I   that takes values in the maximal ideal  I  can be represented in the form 

Φ0( )ζ   =  F F n y m z F1 1 2 2 2 1 2( ) ( ) ( )( )ξ ρ ξ ξ ρ+ + + ′( ) (10)

∀ = + + ∈ζ ζxe ye ze1 2 3 Ω ,

where  F1  and  F2   are arbitrary functions monogenic in the domain  D  and  ξ  =  x n y m z+ +1 1 . 

Proof.  Since  Φ0  takes values in the maximal ideal, we have 

Φ0( )ζ   =  V x y z V x y z1 1 2 2( , , ) ( , , )ρ ρ+ , (11)

where  Vk : Ω→ C   for  k  =  1, 2.  The function  Φ0( )ζ   satisfies the conditions of monogeneity (5) for
Φ Φ= 0 .  Substituting relations (3) and (11) into these conditions and taking into account the uniqueness of the

decomposition of elements of the algebra  A3   in the basis  { }, ,1 1 2ρ ρ ,  we obtain the following system of
equations for the determination of the functions  V1   and  V2 : 
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∂
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∂
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(12)
∂
∂
V

z
1   =  m

V

x
1

1∂
∂

,

∂
∂
V

z
2   =  m

V

x
m

V

x
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1
1

2∂
∂

+
∂
∂
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Using the first and the third equation of system (12), we determine the function  V1 .  For this purpose, we
first separate the real and the imaginary part of the expression 

ξ  =  ( Re Re ) ( Im Im )x y n z m i y n z m+ + + +1 1 1 1   = :  τ η+ i (13)

and note that the indicated equations yield 

∂
∂
V

n1
1η

Im   =  i
V

n
∂
∂

1
1τ

Im ,      
∂
∂
V

m1
1η

Im   =  i
V

m
∂
∂

1
1τ

Im . (14)

It follows from the first equation of system (14) that at least one of the numbers  Im n1   and  Im m1  is not
equal to zero.  Using (14), we get 

∂
∂
V1

η
  =  i

V∂
∂

1

τ
. (15)

We prove that  V x y z1 1 1 1( , , )   =  V x y z1 2 2 2( , , )   for points  ( , , )x y z1 1 1 , ( , , )x y z2 2 2 ∈Ω   such that the seg-

ment that connects these points is parallel to the straight line  L.  To this end, we consider the domain  G  in  C
and the surfaces  Q  and  Σ  in  Ω  defined in the proof of Lemma 1 and introduce two complex-valued functions
H1   and  H2   in  G  as follows: 

H1( )ξ   =  V x y z1( , , )       for    ( , , )x y z Q∈ ,

H2( )ξ   =  V x y z1( , , )       for    ( , , )x y z ∈Σ ,

where the correspondence between the points  ( , , )x y z   and  ξ ∈G   is described by relation (13). 
By virtue of equality (15) and Theorem 6 in [8], the functions  H1   and  H2   are monogenic in the do-

main  G.  Further, the identity  H H1 2( ) ( )ξ ξ≡   in  G   is proved in the same way as in the proof of Lemma 1.
Therefore, the equality  V x y z1 1 1 1( , , )   =  V x y z1 2 2 2( , , )   is proved. 

Thus, a function  V1   of the form  V x y z F1 1( , , ) : ( )= ξ ,  where  F1( )ξ   is an arbitrary function monogenic in
the domain  D,  is a general solution of the system 
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∂
∂
V

y
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V

x
1

1∂
∂

,

(16)
∂
∂
V

z
1   =  m

V

x
1

1∂
∂

,

which consists of the first and the third equation of system (12). 
Using the second and the fourth equation of system (12), we obtain the following system of equations for

the determination of the function  V x y z2( , , ) : 

∂
∂

− ∂
∂

V

y
n

V

x
2

1
2   =  n

F

x
2

1∂
∂

,

(17)
∂
∂

−
∂
∂

V

z
m

V

x
2

1
2   =  m

F

x
2

1∂
∂

.

A particular solution of this system is the function 

v2( , , )x y z   : =  ( ) ( )n y m z F2 2 1+ ′ ξ .

Indeed, substituting  v2   into the first equation of system (17), we obtain 

n F n y
F

y
m z

F

y
2 1 2

1
2

1′ +
∂ ′

∂
+

∂ ′

∂
( )

( ) ( )
ξ

ξ ξ
  =  n

F

x
n n y

F

x
n m z

F

x
2

1
1 2

1
1 2

1∂
∂

+
∂ ′

∂
+

∂ ′

∂
( ) ( ) ( )ξ ξ ξ

,

which is true by virtue of the identities 

′F1( )ξ   ≡  
∂
∂

F

x
1( )ξ

,      
∂
∂

F

y
1( )ξ

  ≡  n
F

x
1

1∂
∂
( )ξ

.

By analogy, we establish that the function  v2   satisfies the second equation of system (17). 
Therefore, the general solution of system (17) is represented as the sum of its particular solution and the

general solution of the corresponding homogenous system [analogous to system (16)] 

V x y z2( , , )   =  F n y m z F2 2 2 1( ) ( )( )ξ ξ+ + ′ ,

where  F2   is an arbitrary function monogenic in the domain  D. 
The theorem is proved. 

By virtue of (8) and (10), in the case where the domain  Ω  is convex in the direction of the straight line  L
all monogenic functions  Φ Ω: ζ → A3   can be constructed with the use of arbitrary three complex-valued mon-

ogenic functions  F ( )ξ ,  F1( )ξ ,  and  F2( )ξ   of a complex variable  ξ ∈D   as follows: 
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Φ( )ζ   =  
1

2
1

1 1 1 1π
ζ ρ

ζ
i

F t t dt F x n y m z( )( ) ( )− + + +−∫
Γ

+  ρ2 2 1 1 2 2 1 1 1F x n y m z n y m z F x n y m z( ) ( ) ( )+ + + + ′ + +( ) (18)

∀ = + + ∈ζ ζxe ye ze1 2 3 Ω ;

moreover, the decomposition (9) of the principal extension of the function  F  in the basis  { }, ,1 1 2ρ ρ   is also
true. 

Theorem 3.  Let a domain  Ω   be convex in the direction of the straight line  L  and let a function

Φ Ω: ζ → A3   be monogenic in the domain  Ωζ .  Then  Φ  can be extended to a function monogenic in the

domain  Πζ . 

The statement of the theorem follows directly from equality (18), whose right-hand side is a monogenic
function in the domain  Πζ . 

Let us construct an example of a domain  Ω  that is not convex in the direction of the straight line  L  and a
monogenic function  Φ Ω: ζ → A3   for which relation (6) does not hold for some  ζ ζ ζ1 2, ∈Ω   such that

ζ ζ ζ2 1− ∈L . 

Consider the harmonic basis 

e1   =  1,

e2   =  i i+ 1

2
2ρ , (19)

e3   =  − −ρ ρ1 2
3

2
i

[i.e., we have  n1   =  i,  n2   =  i /2 ,  n3   =  m1  =  0,  m2   =  – 1,  and  m3   = – 3 2i /   in decompositions (3)];
furthermore, the straight line  L  coincides with the axis  Oz . 

Consider the domain  Ωζ   that is the union of the following three sets: 

Ωζ
( )1   : =  xe ye ze E x iy z x iy1 2 3 3 2 0 2 4+ + ∈ + < < < − < + <: , , arg ( )/π 33 2π /{ } ,

Ωζ
( )2   : =  xe ye ze E x iy z x iy1 2 3 3 2 2 4 2 3+ + ∈ + < ≤ ≤ < + <: , , arg ( )/π ππ /2{ } ,

Ωζ
( )3   : =  xe ye ze E x iy z x iy1 2 3 3 2 4 6 2 9+ + ∈ + < < < < + <: , , arg ( )/π ππ / 4{ } .

It is clear that a domain  Ω  of the space  R3   that is congruent to it is not convex in the direction of the straight
line  L. 
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In the domain  ξ ξ π ξ π∈ < − < <{ }C : , arg/ /2 4 3 2   of the complex plane, we consider the holomor-

phic branch  H i1( ) : ln argξ ξ ξ= +   of the analytic function  Ln ξ  for which  H1 1( )   =   0;  in the domain

{ ∈ <ξ ξC : 2 , π ξ π/ /arg2 9 4< < } ,  we consider the holomorphic branch  H2( )ξ  : = ln argξ ξ+ i   of the

function  Ln ξ  for which  H2 1( )   =  2πi . 

We construct the principal extension  Φ1   of the function  H1   to the set  Ω Ωζ ζ
( ) ( )1 2∪   and the principal

extension  Φ2   of the function  H2   to the set  Ω Ωζ ζ
( ) ( )2 3∪   by using relations of the form (9): 

Φ1( )ζ   =  H x iy
z iy

x iy

iz

x iy

z iy
1 1

22

2

3

2

2
( )

( ) ( )

( )
+ −

−
+

−
+

+
−

ρ
88 2 2

( )x iy+

⎛

⎝⎜
⎞

⎠⎟
ρ ,

Φ2( )ζ   =  H x iy
z iy

x iy

iz

x iy

z iy
2 1

22

2

3

2

2
( )

( ) ( )

( )
+ −

−
+

−
+

+
−

ρ
88 2 2

( )x iy+

⎛

⎝⎜
⎞

⎠⎟
ρ ,

where  ζ  =  xe ye ze1 2 3+ + . 

Since  Φ1( )ζ   ≡  Φ2( )ζ   on the set  Ωζ
( )2 ,  the function 

Φ( )ζ   =  
Φ Ω Ω

Φ Ω

1
1 2

2
3

( )

( )

for ,

for

( ) ( )

( )

ζ ζ

ζ ζ

ζ ζ

ζ

∈

∈

∪⎧⎧
⎨
⎪

⎩⎪

is monogenic in the domain  Ωζ .  Moreover, for  ζ1   =  e e1 3+   and  ζ2   =  e e1 35+ ,  we have  ζ ζ ζ2 1− ∈L ,  but

Φ Φ( ) ( )ζ ζ2 1−   =  2 4 12 2 31 2π ρ ρi i− − +( )   ∉  I,

i.e., relation (6) is not true. 
The statement below is true for monogenic functions in an arbitrary domain  Ωζ . 

Theorem 4.  Let a function  Φ Ω: ζ → A3   be monogenic in the domain  Ωζ .  Then the Gâteaux deriv-

atives of all orders of the function  Φ  are monogenic functions in the domain  Ωζ . 

Proof.  Since a ball  �  centered at an arbitrary point  ( , , )x y z0 0 0 ∈Ω   and completely contained in the

domain  Ω  is a convex domain in the direction of the straight line  L,  we conclude that equality (8) is true in the

neighborhood  �ζ   of the point  ζ0  = x e0 1 + y e0 2 + z e0 3 ,  and the integral in this equality has Gâteaux deriva-

tives of all orders in  �ζ .  Furthermore, the function  Φ0   admits representation (10) in  �ζ ,  by virtue of which

the function  Φ0   is infinitely differentiable with respect to the variables   x,  y,  and  z .  Therefore, the Gâteaux
derivative  ′Φ0   satisfies conditions of the form (5) in  �ζ ,  i.e., it is a monogenic function.  By analogy, we es-

tablish that the Gâteaux derivatives of all orders of the function  Φ0   are monogenic functions in  �ζ . 

The theorem is proved. 
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By virtue of Theorem 4, every function  Φ Ω: ζ → A3   monogenic in the domain  Ωζ   is a monogenic po-

tential in this domain. 

2.  On Isomorphism of Algebras of Monogenic Functions in Different Harmonic Bases

Let  M( ),E3 Ωζ   denote the algebra of functions monogenic in the domain  Ωζ ⊂ E3   and taking values in

the algebra  A3 . 

Parallel with a harmonic basis  { }, ,e e e1 2 3 ,  we consider another harmonic basis  { }, ,� � �e e e1 2 3 .  Let 

�E3    : =   � � � � � � � � � �ζ = + + ∈{ }xe ye ze x y z1 2 3 : , , R

denote the linear span generated by the vectors  �e1 ,  �e2 ,  and  �e3   and let  � �Ωζ   denote a domain in  �E3 . 

We now indicate the correspondence between the domains  Ωζ   and  � �Ωζ   in the case of transition from the

basis  { }, ,e e e1 2 3   to the basis  { }, ,� � �e e e1 2 3   for which the algebras of monogenic functions  M( ),E3 Ωζ   and

M( ),� � �E3 Ωζ   are isomorphic. 

Consider several auxiliary statements. 

Lemma 2.  Suppose that the harmonic bases  { }, ,e e e1 2 3   and  { }, ,� � �e e e1 2 3   are related to one another
as follows: 

�e1   =  e1   =  1,

�e2   =  α α ρ ρ1 1 2 2 21 1 22 2e e r r+ + + , (20)

�e3   =  β β ρ ρ1 1 2 2 3 31 1 32 2e e e r r+ + + + ,

where  α α β β1 2 1 2, , , ∈R ,  α2   ≠   0,  and   r r r r21 22 31 32, , , ∈C .  If a function  Φ Ω: ζ → A3   is mono-

genic in the domain  Ωζ ,  then the function 

� �Φ( )ζ   =  Φ Φ( ) ( ) ( )ζ ζ ρ+ ′ +( r y r z21 31 1� �   +  ( ) ( ) ( )r y r z r y r z22 32 2 21 31
2

2
1

2
� � � �+ ) + ′′ +ρ ζ ρΦ (21)

is monogenic in the domain  � �Ωζ   such that the coordinates of the corresponding points  �ζ  = � � � �xe ye1 2+ +

�� � �ze3 ∈Ωζ   and  ζ  =  xe1 +  ye ze2 3+ ∈Ωζ   are connected by the following relations: 

x  =  � � �x y z+ +α β1 1 ,

y  =  α β2 2� �y z+ , (22)

z  =  �z .
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Proof.  Let us show that function (21) satisfies the necessary and sufficient conditions of monogeneity: 

∂
∂

�

�
Φ
y

  =  
∂
∂

�

�
�

Φ
x

e2 ,      
∂
∂

�

�
Φ
z

  =  
∂
∂

�

�
�

Φ
x

e3 . (23)

Relations (22) yield the operator equalities 

∂
∂�x

  =  
∂
∂x

,

∂
∂�y

  =  α α1 2
∂
∂

+
∂
∂x y

,

∂
∂�z

  =  β β1 2
∂
∂

+
∂
∂

+
∂
∂x y z

.

Taking these equalities into account, we obtain the following expressions for the partial derivatives of function
(21): 

∂
∂

�

�
Φ
x

  =  
∂
∂

+
∂ ′
∂

+ + +( )Φ Φ
x x

r y r z r y r z( ) ( )21 31 1 22 32 2� � � �ρ ρ ++
∂ ′′
∂

+
1

2
21 31

2
2

Φ
x

r y r z( )� � ρ ,

∂
∂

�

�
Φ
y

  =  α α α α1 2 1 2 21
∂
∂

+ ∂
∂

+ ∂ ′
∂

+ ∂ ′
∂

⎛
⎝⎜

⎞
⎠⎟

+Φ Φ Φ Φ
x y x y

r y r( � 331 1�z)ρ(

+  ( ) ( )r y r z
x

r r22 32 2 21 1 22 2� �+ ) + ∂
∂

+ρ ρ ρ
Φ

+  
1

2
1 2 21 31

2
2α α ρ

∂ ′′
∂

+
∂ ′′
∂

⎛
⎝⎜

⎞
⎠⎟

+ +
∂Φ Φ

x y
r y r z( )� �

22

2 21 31 21 2
Φ

∂
+

x
r y r z r( )� � ρ ,

∂
∂

�

�
Φ
z

  =  β β ρ ρ1 2 31 1 32 2
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
Φ Φ Φ Φ
x y z x

r r( )

+  β β ρ1 2 21 31 1
∂ ′
∂

+
∂ ′
∂

+
∂ ′
∂

⎛
⎝⎜

⎞
⎠⎟

+ +
Φ Φ Φ
x y z

r y r z( )� � (( )r y r z22 32 2� �+( )ρ

+  
1

2
1 2 21 31β β
∂ ′′
∂

+
∂ ′′
∂

+
∂ ′′
∂

⎛
⎝⎜

⎞
⎠⎟

+
Φ Φ Φ
x y z

r y r( � �zz
x

r y r z r) ( )2
2

2

2 21 31 31 2ρ ρ+
∂
∂

+
Φ

� � .

Substituting the obtained expressions for the partial derivatives of function (21) and expressions (20) for the
elements  �e2   and  �e3   in equalities (23) and taking into account the rules of multiplication (2) and conditions
(5), we establish that conditions (23) are satisfied. 

The lemma is proved.
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Lemma 3.  Suppose that harmonic bases  { }, ,e e e1 2 3   and  { }, ,� � �e e e1 2 3   are connected by relations (20)

and a function  � � �Φ Ω: ζ → A3   is monogenic in the domain  � �Ωζ .  Then there exists a unique function  Φ( )ζ

monogenic in the domain  Ωζ   that satisfies equality (21), where the coordinates of the corresponding points

�ζ   =  � � � � � � � �xe ye ze1 2 3+ + ∈Ωζ   and  ζ  =  xe1 +  ye ze2 3+ ∈Ωζ   are connected by relations (22). 

Proof.  Consider the function 

Φ( )ζ   =  � � � � � �Φ Φ( ) ( ) ( )ζ ζ ρ− ′ +( r y r z21 31 1   +  ( ) ( )( )r y r z r y r z22 32 2 21 31
2

2
1

2
� � � � � �+ ) + ′′ +ρ ζ ρΦ . (24)

The monogeneity of this function is proved by analogy with the proof of the monogeneity of function (21). 
Let us show that function (24) satisfies relation (21).  To this end, we multiply both sides of equality (24)

by  ρ2 .  This yields 

ρ ζ2
� �Φ( )   =  ρ ζ2Φ( ) ,

whence 

ρ ζ2
� �′Φ ( )   =  ρ ζ2 ′Φ ( ) ,      ρ ζ2

� �′′Φ ( )   =  ρ ζ2 ′′Φ ( ) . (25)

By analogy, multiplying both sides of equality (24) by  ρ1 ,  we get 

ρ ζ1Φ( )   =  ρ ζ ρ ζ1 2 21 31
� � � � � �Φ Φ( ) ( ) ( )− ′ +r y r z   =  ρ ζ ρ ζ1 2 21 31

� � � �Φ Φ( ) ( ) ( )− ′ +r y r z ,

which yields 

ρ ζ1
� �′Φ ( )   =  ρ ζ ρ ζ1 2 21 31′ + ′′ +Φ Φ( ) ( ) ( )r y r z� � . (26)

Substituting (25) and (26) in equality (24), we obtain relation (21). 
We now prove the uniqueness of a monogenic function  Φ Ω: ζ → A3   that satisfies equality (21).  For this

purpose, it suffices to show that the function  �Φ ≡ 0   in  � �Ωζ   is associated only with the function  Φ ≡ 0   in

Ωζ .  Indeed, for  �Φ ≡ 0 ,  equality (21) takes the form 

Φ Φ( ) ( ) ( )ζ ζ ρ+ ′ +r y r z21 31 1� �   +  ′ + + ′′ +Φ Φ( ) ( )( ) ( )ζ ρ ζr y r z r y r z22 32 2 21 31
21

2
� � � � ρρ2   ≡  0. (27)

Multiplying both sides of identity (27) by  ρ2   and taking into account the rules of multiplication (2), we obtain

Φ( )ζ ρ2 0≡ .  This identity yields 

′Φ ( )ζ ρ2   ≡  0,      ′′Φ ( )ζ ρ2   ≡  0. (28)
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Similarly, multiplying both sides of identity (27) by  ρ1   we get 

Φ Φ( ) ( ) ( )ζ ρ ζ ρ1 21 31 2+ ′ +r y r z� �   ≡  0.

With regard for the first relation in (28), this relation yields the identity  Φ( )ζ ρ1   ≡  0.  Therefore, 

′Φ ( )ζ ρ1   ≡  0. (29)

Finally, using relations (27) – (29), we obtain the identity  Φ ≡ 0 . 
The lemma is proved. 

Now let  { }, ,e e e1 2 3   be the harmonic basis whose elements are defined by equalities (19) and let

{ }, ,� � �e e e1 2 3   be an arbitrary harmonic basis in  A3 . 

The elements of the basis  { }, ,� � �e e e1 2 3   can be represented in the form 

�e1   =  ae�1
1( ) ,      �e2   =  ae�2

1( ) ,      �e3   =  ae�3
1( ) , (30)

where  a  is an invertible element of the algebra  A3 ,  and the elements of the basis  { }( ) ( ) ( ), ,� � �e e e1
1

2
1

3
1   admit de-

compositions of the form (3) in the basis  { }, ,1 1 2ρ ρ ,  in which, by virtue of the equality  1 1
2

1
2+ +n m   =  0,  it

may be assumed without loss of generality that  Im n1   ≠  0.  Then the elements of the basis  { }( ) ( ) ( ), ,� � �e e e1
1

2
1

3
1   can

also be represented in the form 

�e1
1( )   =  e1 ,

�e2
1( )   =  α α ρ ρ1 1 2 2 21 1 22 2e e r r+ + + ,

�e3
1( )   =  β β ρ ρ1 1 2 2 3 31 1 32 2e e e r r+ + + + .

Here and in what follows, 

α1 1: Re= n ,         α2 1: Im= n ,      β1 1: Re= m ,      β2 1: Im= m ,

r n21 2:= ,      r n i n22 3 1
1

2
: Im= − ,

r m31 2 1:= + ,      r m i i m32 3 1
3

2

1

2
: Im= + − .

Theorem 5.  Let  { }, ,e e e1 2 3   be the harmonic basis whose elements are defined by equalities (19) and

let  { }, ,� � �e e e1 2 3   be an arbitrary harmonic basis in  A3   whose elements are represented in the form (30).
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Let  Ωζ   be an arbitrary domain in  E3   and let  � �Ωζ   be a domain in  �E3   such that the coordinates of the

corresponding points  �ζ   =  � � � � � � � �xe ye ze1 2 3+ + ∈Ωζ   and   ζ   =   xe1 +  ye ze2 3+ ∈Ωζ   are connected by rela-

tions (22).  Then the algebras  M( ),E3 Ωζ   a n d   M( ),� � �E3 Ωζ   are isomorphic, and, moreover, the corre-

spondence between the functions  Φ ∈ M( ),E3 Ωζ   and  � � � �Φ Ω∈M( ),E3 ζ   is given by equality (21). 

Proof.  We define a domain  � �Ωζ( )
( )

1
1   in 

�E3
1( )   : =  � � � � � � � � � �ζ( ) ( ) ( ) ( ) : , ,1

1
1

2
1

3
1= + + ∈xe ye ze x y z R{{ }

so that the coordinates of its points  �ζ( )1   are connected with the coordinates of the corresponding points  ζ ζ∈Ω

by relations (22).  We associate every function  Φ Ω∈M( ),E3 ζ   with a function  �Φ( )1 ∈ M( )( ) ( ), ( )
� �

�E3
1 1

1Ω
ζ

  by a

relation of the form (21).  By virtue of Lemmas 2 and 3, this correspondence between the algebras  M( ),E3 Ωζ

and  M( )( ) ( ), ( )
� �

�E3
1 1

1Ω
ζ

  is bijective.  Furthermore, it follows from the equality 

� � � �Φ Φ1
1 1

2
1 1( ) ( ) ( ) ( )( ) ( )ζ ζ   =  Φ Φ1 2( ) ( )ζ ζ   +  Φ Φ Φ Φ1 2 2 1 21 31 1( ) ( ) ( ) ( ) ( ) (ζ ζ ζ ζ ρ′ + ′( ) + +r y r z r� � 222 32 2� �y r z+( ))ρ

+  
1

2
21 2 1 2 1 2′′ + ′ ′ + ′′( )Φ Φ Φ Φ Φ Φ( ) ( ) ( ) ( ) ( ) ( )ζ ζ ζ ζ ζ ζ (( )r y r z21 31

2
2� �+ ρ

that the product of functions  �Φ1
1( ) , � � �

�Φ Ω2
1

3
1 1

1
( ) ( ) ( )( ), ( )∈M E

ζ
  corresponds to the product of functions  Φ Φ1 2, ∈

M( ),E3 Ωζ ,  i.e., the algebras  M( ),E3 Ωζ   and  M( )( ) ( ), ( )
� �

�E3
1 1

1Ω
ζ

  are isomorphic. 

Finally, an isomorphism between the algebras  M( )( ) ( ), ( )
� �E3

1 1
1Ω

ζ
  and  M( ),� � �E3 Ωζ   is established by using

the equality 

� �Φ( )ζ   : =  � �Φ( ) ( )( )1 1ζ ,

where  �ζ   =  � � � � � � � �xe ye ze1 2 3+ + ∈Ωζ   and  �ζ( )1   =  � � � � � � �
�xe ye ze1

1
2
1

3
1 1

1
( ) ( ) ( ) ( )

( )+ + ∈Ω
ζ

.  The monogeneity of the function

�Φ   in the domain  � �Ωζ   is an obvious corollary of monogeneity conditions of the form (5) for the function  �Φ( )1

and the invertibility of an element  a ∈A3 . 
The theorem is proved. 

In view of Theorem 5, it is obvious that, in the subsequent investigation, it suffices to consider monogenic

functions  Φ Ω∈M( ),E3 ζ ,  where the linear span  E3   is generated by the harmonic basis whose elements are

defined by equalities (19). 
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