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Abstract. We establish sufficient conditions for the existence of the limiting values
of a certain analog of the Cauchy type integral taking values in a three-dimensional
harmonic algebra with two-dimensional radical.

1 Introduction

Let Γ be a closed Jordan rectifiable curve in the complex plane C. By D+ and D− we
denote, respectively, the interior and the exterior domains bounded by the curve Γ.

N. Davydov [1] established sufficient conditions for the existence of limiting values
of the Cauchy type integral

1

2πi

∫
Γ

g(t)

t− ξ
dt, ξ ∈ C \ Γ, (1.1)

on Γ from the domains D+ and D−. This result stimulated development of the theory
of Cauchy type integral on curves which are not piecewise-smooth.

In particular, using the mentioned result of the paper [1], the following result was
proved (see [3]): if the curve Γ satisfies the condition (see [13])

θ(ε) := sup
ξ∈Γ

θξ(ε) = O(ε), ε→ 0 (1.2)

(here θξ(ε) := m {t ∈ Γ : |t − ξ| 6 ε}, where m denotes the linear Lebesgue measure
on Γ), and the modulus of continuity

ωg(ε) := sup
t1,t2∈Γ,|t1−t2|6ε

|g(t1)− g(t2)|

of a function g : Γ → C satisfies the Dini condition
1∫

0

ωg(η)

η
dη <∞, (1.3)
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then integral (1.1) has the limiting values in every point of Γ from the domains D+

and D−.
Condition (1.2) means that the measure of a part of the curve Γ in every disk

centered at a point of the curve is commensurable with the radius of the disk.
In this paper we consider a certain analogue of Cauchy type integral taking values

in a three-dimensional harmonic algebra with two-dimensional radical and study the
question about the existence of its limiting values on the boundary of the domain of
definition.

2 A three-dimensional harmonic algebra with a two-
dimensional radical

Let A3 be a three-dimensional commutative associative Banach algebra with unit 1

over the field of complex numbers C. Let {1, ρ1, ρ2} be a basis of algebra A3 with the
multiplication table: ρ1ρ2 = ρ2

2 = 0, ρ2
1 = ρ2.

A3 is a harmonic algebra, i. e. there exists a harmonic basis {e1, e2, e3} ⊂ A3

satisfying the following conditions (see [5, 6, 8, 9, 10]):

e21 + e22 + e23 = 0, e2j 6= 0 for j = 1, 2, 3. (2.1)

P. Ketchum [5] discovered that every function Φ(ζ) analytic with respect to the
variable ζ := xe1 + ye2 + ze3 with real x, y, z satisfies the equalities(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Φ(ζ) = Φ′′(ζ) (e21 + e22 + e23) = 0 (2.2)

due to equality (2.1). I. Mel’nichenko [8] noticed that functions twice differentiable in
the sense of Gateaux form the largest class of functions Φ satisfying equalities (2.2).

All harmonic bases in A3 are constructed by I. Mel’nichenko in [10].
Consider a harmonic basis

e1 = 1, e2 = i+
1

2
iρ2, e3 = −ρ1 −

√
3

2
iρ2

in A3 and the linear span E3 := {ζ = x+ ye2 + ze3 : x, y, z ∈ R} over the field of real
numbers R, that is generated by the vectors 1, e2, e3. Associate with a domain Ω ⊂ R3

the domain Ωζ := {ζ = x+ ye2 + ze3 : (x, y, z) ∈ Ω} in E3.
The algebra A3 has the unique maximal ideal {λ1ρ1 + λ2ρ2 : λ1, λ2 ∈ C} which is

also radical of A3. Thus, it is obvious that the straight line {ze3 : z ∈ R} is contained
in the radical of algebra A3.

A3 is a Banach algebra with the Euclidean norm

‖a‖ :=
√
|ξ1|2 + |ξ2|2 + |ξ3|2 ,

where a = ξ1 + ξ2e2 + ξ3e3 and ξ1, ξ2, ξ3 ∈ C.
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We say that a continuous function Φ : Ωζ → A3 is monogenic in a domain Ωζ ⊂ E3

if Φ is differentiable in the sense of Gateaux in every point of Ωζ , i. e. if for every
ζ ∈ Ωζ there exists Φ′(ζ) ∈ A3 such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

For monogenic functions Φ : Ωζ → A3 we established basic properties analogous
to the properties of analytic functions of the complex variable: the Cauchy integral
theorem, the Cauchy integral formula, the Morera theorem, the Taylor expansion (see
[14]).

3 On existence of limiting values of a hypercomplex analogue
of the Cauchy type integral on the line of integration

In what follows, t1, t2, x, y, z ∈ R3 and the variables x, y, z with subscripts are real. For
example, x0 and y0 are real, etc.

Let Γζ := {τ = t1 + t2e2 : t1 + it2 ∈ Γ} be the curve congruent to the curve Γ ⊂ C.
Consider the domain Π±

ζ := {ζ = x+ ye2 + ze3 : x+ iy ∈ D±, z ∈ R} in E3. By Σζ we
denote the common boundary of domains Π+

ζ and Π−
ζ .

Consider the integral

Φ(ζ) =
1

2πi

∫
Γζ

ϕ(τ)(τ − ζ)−1dτ (3.1)

with a continuous density ϕ : Γζ → R. Function (3.1) is monogenic in the domains Π+
ζ

and Π−
ζ , but integral (3.1) is not defined for ζ ∈ Σζ .

For a function ϕ : Γζ → R consider the modulus of continuity

ωϕ(ε) := sup
τ1,τ2∈Γζ ,‖τ1−τ2‖6ε

|ϕ(τ1)− ϕ(τ2)|,

and the singular integral∫
Γζ

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)

−1dτ := lim
ε→0

∫
Γζ\Γε

ζ(ζ0)

(
ϕ(τ)− ϕ(ζ0)

)
(τ − ζ0)

−1dτ,

where ζ0 ∈ Γζ and Γεζ(ζ0) := {τ ∈ Γζ : ‖τ − ζ0‖ 6 ε}.
By Φ̂±(ζ0) we denote the limiting value of function (3.1) when ζ tends to ζ0 ∈ Γζ

along a curve γζ ⊂ Π±
ζ for which there exists a constant m < 1 such that the inequality

|z| 6 m‖ζ − ζ0‖ (3.2)

holds for all ζ = x+ ye2 + ze3 ∈ γζ .
We can say that inequality (3.2) means that the curve is not tangential to the

surface Σζ outside of the plane of curve Γζ .
The following theorem presents sufficient conditions for the existence of the limiting

values Φ̂±(ζ0) in points ζ0 ∈ Γζ .
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Theorem 3.1. Let Γ be a closed Jordan rectifiable curve satisfying condition (1.2)
and let the modulus of continuity of a function ϕ : Γζ → R satisfy the condition of
type (1.3). Then integral (3.1) has the limiting values Φ̂±(ζ0) for all ζ0 ∈ Γζ that are
expressed by the formulas:

Φ̂+(ζ0) =
1

2πi

∫
Γζ

(ϕ(τ)− ϕ(ζ0))(τ − ζ0)
−1dτ + ϕ(ζ0)

Φ̂−(ζ0) =
1

2πi

∫
Γζ

(ϕ(τ)− ϕ(ζ0))(τ − ζ0)
−1dτ.

Theorem 3.1 can be proved in a similar way as for the Sokhotski–Plemelj formulas
in the complex plane (see, e. g., [2, 1, 3]).

Note that additional assumptions about the function ϕ are required for the existence
of limiting values of function (3.1) from Π+

ζ or Π−
ζ on the boundary Σζ . We are going

to state and prove such results in the next section.

4 On existence of the limiting values of a hypercomplex ana-
logue of the Cauchy type integral on the boundary of the
domain of definition

Now we consider the question about the existence of limiting values Φ±(ζ0) of Cauchy
type integral (3.1) when ζ ∈ Π±

ζ tends to ζ0 := x0 + y0e2 + z0e3 ∈ Σζ . For the function
ϕ : Γζ → R we define a function g : Γ → R as g(t) := ϕ(τ), where t = t1 + it2 ∈ Γ,
τ = t1 + t2e2.

Lemma 4.1. Suppose that Γ is a closed Jordan rectifiable curve. Suppose also that a
function g : Γ → R and its contour derivative g′ are absolutely continuous on Γ. Then
for all ζ = x+ ye2 + ze3 ∈ Π±

ζ the following equality is true:

1

2πi

∫
Γζ

ϕ(τ)(τ − ζ)−1dτ =
1

2πi

∫
Γ

g(t)

t− ξ
dt− ρ1

z

2πi

∫
Γ

g′(t)

t− ξ
dt+

+ρ2
1

2πi

(
−
√

3

2
iz

∫
Γ

g′(t)

t− ξ
dt+

z2

2

∫
Γ

g′′(t)

t− ξ
dt+

i

2

∫
Γ

(y − t2)g
′(t)

t− ξ
dt

)
, (4.1)

where ξ := x+ iy and t2 := Im t.

Proof. It follows by Lemma 1.1 [10] that

(τ − ζ)−1 =
1

t− ξ
− z

(t− ξ)2
ρ1 +

(
i

2

y − t2 −
√

3z

(t− ξ)2
+

z2

(t− ξ)3

)
ρ2 (4.2)

for all ζ = x+ye2 +ze3 ∈ Π±
ζ and τ = t1 +t2e2 ∈ Γζ , where ξ := x+ iy and t := t1 + it2.
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Taking into account equality (4.2) and the relation

dτ = dt+
i

2
dt2ρ2 , (4.3)

we represent integral (3.1) in the form

Φ(ζ) =
1

2πi

∫
Γ

g(t)

t− ξ
dt− 1

2πi
zρ1

∫
Γ

g(t)

(t− ξ)2
dt+

+
1

2πi

(
−
√

3

2
iz

∫
Γ

g(t)

(t− ξ)2
dt+ z2

∫
Γ

g(t)

(t− ξ)3
dt

)
ρ2+

+
1

2πi

i

2

(∫
Γ

g(t)

t− ξ
dt2 +

∫
Γ

(y − t2)g(t)

(t− ξ)2
dt

)
ρ2. (4.4)

Inasmuch as the function g is absolutely continuous on Γ, the formula of integration
by parts for the Stieltjes integral (see, e. g., [12, p. 27]) is applicable to the last integral
included in equality (4.4). In such a way we obtain∫

Γ

g(t)

t− ξ
dt2 +

∫
Γ

(y − t2)g(t)

(t− ξ)2
dt =

∫
Γ

g(t)dt2
dt

t− ξ
dt+

+

∫
Γ

−g(t)dt2
dt

+ g′(t)(y − t2)

t− ξ
dt =

∫
Γ

g′(t)(y − t2)

t− ξ
dt. (4.5)

Further, substituting expression (4.5) in equality (4.4), we obtain

Φ(ζ) =
1

2πi

∫
Γ

g(t)

t− ξ
dt− z

2πi
ρ1

∫
Γ

g(t)

(t− ξ)2
dt+

+
1

2πi

(
−
√

3

2
iz

∫
Γ

g(t)

(t− ξ)2
dt+ z2

∫
Γ

g(t)

(t− ξ)3
dt+

i

2

∫
Γ

g′(t)(y − t2)

t− ξ
dt

)
ρ2. (4.6)

To complete the proof, in equality (4.6) it is necessary to integrate the second and
the third integrals by parts and to integrate the fourth integral by parts twice.

Theorem 4.1. Suppose that Γ is a closed Jordan rectifiable curve satisfying condition
(1.2). Suppose also that a function g : Γ → R and its contour derivative g′ are absolutely
continuous on Γ and, moreover, the modules of continuity of the functions g, g′ and g′′

satisfy the conditions of type (1.3).Then integral (3.1) has the limiting values Φ+(ζ0)

and Φ−(ζ0) for all ζ0 := x0 + y0e2 + z0e3 ∈ Σζ that are expressed by the formulas:

Φ+(ζ0) = ϕ̃(ζ0) +
1

2πi

∫
Γ′ζ

(
ϕ̃(τ)− ϕ̃(ζ0)

)
(τ − ζ0)

−1dτ, (4.7)
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Φ−(ζ0) =
1

2πi

∫
Γ′ζ

(
ϕ̃(τ)− ϕ̃(ζ0)

)
(τ − ζ0)

−1dτ, (4.8)

where Γ′ζ := {τ = t1 + t2e2 + z0e3 : t1 + t2e2 ∈ Γζ} and

ϕ̃(t1 + t2e2 + z0e3) := g(t)− z0g
′(t)ρ1+

(
z2
0

2
g′′(t)−

√
3

2
iz0g

′(t)

)
ρ2 (4.9)

and t := t1 + it2.

Proof. Passing to the limit in equality (4.1) with Π+
ζ 3 ζ → ζ0 and seeing that ξ →

ξ0 := x0 + iy0, we obtain

Φ+(ζ0) = g(ξ0)− z0ρ1g
′(ξ0)+

(
z2
0

2
g′′(ξ0)−

√
3

2
iz0g

′(ξ0)

)
ρ2+

+
1

2πi

[∫
Γ

g(t)− g(ξ0)

t− ξ0
dt− z0ρ1

∫
Γ

g′(t)− g′(ξ0)

t− ξ0
dt+

+ρ2

(
z2
0

2

∫
Γ

g′′(t)− g′′(ξ0)

t− ξ
dt−

√
3

2
iz0

∫
Γ

g′(t)− g′(ξ0)

t− ξ0
dt

)]
+

+
1

2πi

i

2
ρ2

∫
Γ

(y0 − t2)g
′(t)

t− ξ0
dt. (4.10)

Let us to prove the following equality:∫
Γ

(y0 − t2)g
′(t)

t− ξ0
dt =

∫
Γ

g(t)− g(ξ0)

t− ξ0
dt2 +

∫
Γ

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt. (4.11)

For ε > 0 we consider the point ξ′ε ∈ {t ∈ Γ : |t − ξ0| = ε} that is the first of the
points going after ξ0, and we consider the point ξ′′ε ∈ {t ∈ Γ : |t− ξ0| = ε} that is the
last of the points going before ξ0 with the given orientation of Γ. We consider also the
arc Γε ⊂ Γ with the beginning point ξ′ε and the end point ξ′′ε .

Now, we have

J :=

∫
Γ

g(t)− g(ξ0)

t− ξ0
dt2 +

∫
Γ

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt =

= lim
ε→0

( ∫
Γ\Γε(ζ0)

g(t)− g(ξ0)

t− ξ0
dt2 +

∫
Γ\Γε(ζ0)

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt

)
=

= lim
ε→0

((∫
Γε

−
∫

Γε∩Γε(ζ0)

)
g(t)− g(ξ0)

t− ξ0
dt2+
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+

(∫
Γε

−
∫

Γε∩Γε(ζ0)

)(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt

)
. (4.12)

In equality (4.12) the integrals along the set Γε ∩ Γε(ζ0) tend to 0 with ε → 0

because the functions (y0 − t2)/(t − ξ0) and (g(t) − g(ξ0))/(t − ξ0) are bounded. For
this reason

J = lim
ε→0

( ∫
Γε

g(t)− g(ξ0)

t− ξ0
dt2 +

∫
Γε

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt

)
. (4.13)

Further, integrating the second integral in equality (4.13) by parts, we obtain∫
Γε

g(t)− g(ξ0)

t− ξ0
dt2 +

∫
Γε

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt =

=

∫
Γ\Γε

(
g(t)− g(ξ0)

)
dt2
dt

t− ξ0
dt−

(
g(t)− g(ξ0)

)
(y0 − t2)

t− ξ0

∣∣∣∣∣
t=ξ′′ε

t=ξ′ε

+

+

∫
Γ\Γε

g′(t)(y0 − t2)−
(
g(t)− g(ξ0)

)
dt2
dt

t− ξ0
dt =

= −
(
g(t)− g(ξ0)

)
(y0 − t2)

t− ξ0

∣∣∣∣∣
t=ξ′′ε

t=ξ′ε

+

∫
Γ\Γε

g′(t)(y0 − t2)

t− ξ0
dt. (4.14)

Now, passing to the limit in equality (4.13) when ε → 0 and taking into account
equality (4.14), we obtain equality (4.11).

Thus, it follows from equalities (4.9) and (4.11) that we can rewrite equality (4.10)
in the form

Φ+(ζ0) = ϕ̃(ζ0) +
1

2πi

[∫
Γ

g(t)− g(ξ0)

t− ξ0
dt− z0ρ1

∫
Γ

g′(t)− g′(ξ0)

t− ξ0
dt+

+ρ2

(
z2
0

2

∫
Γ

g′′(t)− g′′(ξ0)

t− ξ
dt−

√
3

2
iz0

∫
Γ

g′(t)− g′(ξ0)

t− ξ0
dt+

+
i

2

∫
Γ

g(t)− g(ξ0)

t− ξ0
dt2 +

i

2

∫
Γ

(
g(t)− g(ξ0)

)
(y0 − t2)

(t− ξ0)2
dt

)]
. (4.15)

Finally, taking into account the equality

(τ − ζ0)
−1dτ =

dt

t− ξ0
+
i

2
ρ2

(
dt2
t− ξ0

+
y0 − t2

(t− ξ0)2
dt

)
∀ τ ∈ Γ′ζ \ {ζ0} (4.16)

that follows from relations (4.2) and (4.3), it is easy to conclude that the right-hand
sides of equalities (4.15) and (4.7) are equal.

Thus, equality (4.7) is proved. Equality (4.8) is proved similarly.
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In the following theorem in comparison with Theorem 4.1, we make an additional
assumption that the curve Γ is quasiconformal (see, e. g., [7]) but the number of
assumptions about the function g is reduced.

Theorem 4.2. Let Γ be a closed rectifiable quasiconformal curve satisfying condi-
tion (1.2) and the function g : Γ → R be twice continuously differentiable on Γ

and, moreover, the modulus of continuity of the function g′′ satisfy the condition
of type (1.3).Then integral (3.1) has the limiting values Φ+(ζ0) and Φ−(ζ0) for all
ζ0 := x0 + y0e2 + z0e3 ∈ Σζ that are expressed by formulas (4.7) and (4.8).

Proof. It follows by Lemma 4 [4] that the function g and its contour derivative g′ are
Lipschitz functions if the quasiconformal curve Γ satisfies condition (1.2) and the mod-
ulus of continuity of the function g′′ satisfies a condition of type (1.3). Consequently,
the functions g and g′ are absolutely continuous on Γ and, moreover, the modules of
continuity of the functions g and g′ satisfy conditions of type (1.3).

Now, to complete the proof, it suffices to apply Theorem 4.1.

Note that integral (3.1) has a discontinuous jump on the surface Σζ in Theorems
4.1 and 4.2, namely

Φ+(ζ0)− Φ−(ζ0) = ϕ̃(ζ0).

The results of this paper have been announced in the preprint [11].
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