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Commutative Algebras of Monogenic Functions associated
with Classic Equations of Mathematical Physics
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Abstract. The idea of an algebraic-analytic approach to equations of mathe-
matical physics means finding commutative Banach algebras such that mono-
genic functions defined on them form an algebra and have components satis-
fying previously given equations with partial derivatives. We obtain construc-
tive descriptions of monogenic functions taking values in commutative alge-
bras associated with the two-dimensional biharmonic equation and the three-
dimensional Laplace equation by means of analytic functions of the complex
variable.

1. Introduction

1.1. Algebras associated with the Laplace equation. An important
achievement of mathematics is the description of plane potential fields by means of
analytic functions of complex variable.

A potential u(x, y) and a flow function v(x, y) of plane stationary potential
solenoid field satisfy the Cauchy–Riemann conditions

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
,

and they form the complex potential F (x+iy) = u(x, y)+iv(x, y) being an analytic
function of complex variable x + iy. In turn, every analytic function F (x + iy)
satisfies the two-dimensional Laplace equation

Δ2F :=
∂2F

∂x2 +
∂2F

∂y2
≡ F ′′(x+ iy) (12 + i2) = 0

due to the equality 12 + i2 = 0 for unit 1 and the imaginary unit i of the algebra
of complex numbers.

The effectiveness of analytic function methods in the complex plane for
researching plane potential fields inspires mathematicians to develop analogous
methods for spatial fields.
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Apparently, W. Hamilton (1843) made the first attempts to construct an alge-
bra associated with the three-dimensional Laplace equation

(1.1) Δ3u(x, y, z) :=

(
∂2

∂x2 +
∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = 0

in the sense that components of hypercomlex functions satisfy Eq. (1.1). However,
the Hamilton quaternions form a noncommutative algebra, and after constructing
the quaternion algebra he did not study the problem about constructing any other
algebra (see [3]).

Let A be a commutative associative Banach algebra of rank n (3 ≤ n ≤ ∞) over
either the field of real numbers R or the field of complex numbers C. Let {e1, e2, e3}
be a part of the basis of A, and E3 := {ζ := xe1 + ye2 + ze3 : x, y, z ∈ R} be the
linear envelope generated by the vectors e1, e2, e3.

A function Φ : Qζ → A is analytic in the domain Qζ ⊂ E3 if in a certain
neighborhood of every point ζ0 ∈ Qζ it can be represented in the form of the sum
of convergent power series with coefficients belonging to the algebra A.

It is obvious that if the basic elements e1, e2, e3 satisfy the condition

(1.2) e21 + e22 + e23 = 0 ,

then every analytic function Φ : Qζ → A satisfies Eq. (1.1), because

(1.3) Δ3Φ(ζ) ≡ Φ′′(ζ) (e21 + e22 + e23) = 0 , ζ = xe1 + ye2 + ze3 .

We say that an algebra A is harmonic (see [2, 8, 9]) if in A there exists a triad
of linearly independent vectors {e1, e2, e3} satisfying the equality (1.2) provided
that e2k �= 0 for k = 1, 2, 3. We say also that such a triad {e1, e2, e3} is harmonic.

P.W. Ketchum [2] considered the C. Segre algebra of quaternions [10] in its
relations with the three-dimensional Laplace equation. Indeed, in the Segre algebra
of quaternions there is unit 1, and the multiplication table for the basis {1, i, j, k}
is of the following form: i2 = j2 = −1, k2 = 1, i j = k, i k = −j, j k = −i.
Therefore, there are harmonic triads, in particular: e1 =

√
2, e2 = i, e3 = j.

K.S. Kunz [5] developed a method for a formal construction of solutions of
Eq. (1.1) using power series in any commutative associative algebra over the field C.

I.P. Mel’nichenko [6] noticed that doubly differentiable functions in the sense of
Gateaux form the largest class of functions Φ(ζ) satisfying identically the equality
(1.3). He suggested an algebraic-analytic approach to equations of mathematical
physics which means finding a commutative Banach algebra such that differentiable
in the sense of Gateaux functions with values in this algebra have components
satisfying the given equation with partial derivatives.

We say that a continuous function Φ : Ωζ → A is monogenic in a domain
Ωζ ⊂ E3 if Φ is differentiable in the sense of Gateaux in every point of Ωζ , i.e., if
for every ζ ∈ Ωζ there exists an element Φ′(ζ) ∈ A such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

Because monogenic functions take values in a commutative Banach algebra form
a functional algebra, note that a relation between these functions and solutions of
given equation with partial derivatives is important for constructing the mentioned
solutions.

It is quite natural that for Eq. (1.1) in such a way a quantity of fulfilled opera-
tions will be minimal in an algebra of third rank. In the paper [6], I.P. Mel’nichenko
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established that there does not exist a harmonic algebra of third rank with unit over
the field R, but he constructed a three-dimensional harmonic algebra over the field
C. At the same time, for commutative associative algebras of third rank over the
field C in the papers [8, 9], I. P. Mel’nichenko developed a method for extracting
all harmonic bases. In addition, in [9] monogenic functions with values in three-
dimensional harmonic algebras are explicitly constructed in the form of principal
extensions of analytic functions of complex variable.

1.2. An algebra associated with the biharmonic equation. Such an
algebra is constructed in the paper [4].

We say that an associative commutative two-dimensional algebra B with unit
1 over the field C is biharmonic if in B there exists a biharmonic basis {e1, e2}
satisfying the conditions

(1.4) (e21 + e22)
2 = 0, e21 + e22 �= 0 .

V. F. Kovalev and I. P. Mel’nichenko [4] found a multiplication table for a
biharmonic basis {e1, e2}:
(1.5) e1 = 1, e22 = e1 + 2ie2.

In the paper [7], I. P. Mel’nichenko proved that there exists the unique bihar-
monic algebra B with a non-biharmonic basis {1, ρ}, for which ρ2 = 0. Moreover,
he constructed all biharmonic bases in the form:

(1.6) e1 = α1 + α2 ρ , e2 = ± i

(
α1 +

(
α2 −

1

2α1

)
ρ

)
,

where complex numbers α1 �= 0, α2 can be chosen arbitrarily. In particular, for the
basis (1.5) in the equalities (1.6) we choose α1 = 1, α2 = 0 and + of the double
sign:

(1.7) e1 = 1, e2 = i− i

2
ρ,

Note that every analytic function Φ(ζ) of the variable ζ = xe1 + ye2 satisfies
the two-dimensional biharmonic equation

(1.8) (Δ2)
2U(x, y) :=

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
U(x, y) = 0

due to the relations (1.4) and (Δ2)
2Φ = Φ(4)(ζ) (e21 + e22)

2.

1.3. Below we obtain a constructive description of monogenic functions taking
values in a harmonic algebra constructed in [8, 9] by means of analytic functions of
the complex variable. We also prove similar results for monogenic functions taking
values in the biharmonic algebra. In addition, we prove that every biharmonic func-
tion in a bounded simply connected domain is the first component of a monogenic
function defined in the corresponding domain of the biharmonic plane.

2. Monogenic functions in a three-dimensional harmonic algebra with
the two-dimensional radical

2.1. A harmonic algebra A3. Let A3 be a three-dimensional commutative
associative Banach algebra with unit 1 over the field of complex numbers C. Let
{1, ρ1, ρ2} be a basis of the algebra A3 with the multiplication table

ρ1ρ2 = ρ22 = 0, ρ21 = ρ2.
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The algebra A3 is harmonic. All harmonic bases in A3 are described in The-
orem 1.6 [9], namely, the basis {e1, e2, e3} is harmonic if decompositions of its
elements with respect to the basis {1, ρ1, ρ2} are of the form

(2.1)
e1 = 1,
e2 = n1 + n2ρ1 + n3ρ2,
e3 = m1 +m2ρ1 +m3ρ2,

where nk and mk for k = 1, 2, 3 are complex numbers satisfying the system of
equations

(2.2)

1 + n2
1 +m2

1 = 0,
n1n2 +m1m2 = 0,

xn2
2 +m2

2 + 2(n1n3 +m1m3) = 0

and the inequality n2m3 −n3m2 �= 0, and moreover, at least one of the numbers in
each of the pairs (n1, n2) and (m1,m2) is not equal to zero. Any harmonic basis in
A3 can be obtained as a result of multiplication of elements of harmonic basis (2.1)
by any invertible element of the algebra A3.

For example, if n1 = i, n2 = i/2, n3 = m1 = 0, m2 = −1, m3 = −
√
3 i/2, then

we have a harmonic basis {e1, e2, e3} with the following decomposition with respect
to the basis {1, ρ1, ρ2}:

(2.3) e1 = 1, e2 = i+
1

2
iρ2, e3 = −ρ1 −

√
3

2
iρ2.

The algebra A3 has the unique maximum ideal I := {λ1ρ1+λ2ρ2 : λ1, λ2 ∈ C}
which is also the radical of A3.

Consider the linear functional f : A3 → C such that the maximum ideal I is its
kernel and f(1) = 1. It is well-known [1] that f is also a multiplicative functional,
i.e., the equality f(ab) = f(a)f(b) is fulfilled for all a, b ∈ A3.

2.2. A constructive description of monogenic functions taking values
in the algebra A3. Let {e1, e2, e3} be a harmonic basis of the form (2.1) and
ζ = x+ ye2 + ze3, where x, y, z ∈ R.

It follows from the equality

(t− ζ)−1 =
1

t− x− n1y −m1z
+

n2y +m2z

(t− x− n1y −m1z)2
ρ1

+

(
n3y +m3z

(t− x− n1y −m1z)2
+

(n2y +m2z)
2

(t− x− n1y −m1z)3

)
ρ2

∀ t ∈ C : t �= x+ n1y +m1z

(see. [9, p. 30]) that the element ζ = x + ye2 + ze3 ∈ E3 is noninvertible in A3 if
and only if the point (x, y, z) belongs to the following straight line in R3:

L :

{
x+ yRen1 + zRem1 = 0,

yImn1 + zImm1 = 0 .

We say that the domain Ω ⊂ R3 is convex in the direction of the straight
line L if Ω contains every segment parallel to L and connecting two points
(x1, y1, z1), (x2, y2, z2) ∈ Ω.

Associate with a set Q ⊂ R3 the set Qζ := {ζ = xe1 + ye2+ ze3 : (x, y, z) ∈ Q}
in E3.
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To obtain a constructive description of monogenic functions given in the domain
Ωζ and taking values in the algebra A3, consider an auxiliary statement.

Lemma 2.1. Let a domain Ω ⊂ R
3 be convex in the direction of the straight

line L and Φ : Ωζ → A3 be a monogenic function in the domain Ωζ . If ζ1, ζ2 ∈ Ωζ

and ζ2 − ζ1 ∈ Lζ , then

(2.4) Φ(ζ1)− Φ(ζ2) ∈ I.

Proof. Let the segment connecting the points (x1, y1, z1), (x2, y2, z2) ∈ Ω be
parallel to the straight line L.

Let us construct in Ω two surfaces Q and Σ satisfying the following conditions:

• Q and Σ have the same edge;
• the surface Q contains the point (x1, y1, z1) and the surface Σ contains
the point (x2, y2, z2);

• restrictions of the functional f onto the sets Qζ and Σζ are one-to-one
mappings of these sets onto the same domain G of the complex plane;

• for every ζ0 ∈ Qζ (and ζ0 ∈ Σζ) the equality

(2.5) lim
ε→0+0

(Φ(ζ0 + ε(ζ − ζ0))− Φ(ζ0)) ε
−1 = Φ′(ζ0)(ζ − ζ0)

is fulfilled for all ζ ∈ Qζ for which ζ0 + ε(ζ − ζ0) ∈ Qζ for all ε ∈ (0, 1) (or
for all ζ ∈ Σζ for which ζ0+ ε(ζ− ζ0) ∈ Σζ for all ε ∈ (0, 1), respectively).

As the surface Q, we can take an equilateral triangle having the center
(x1, y1, z1) and apexes A1, A2, A3, and, in addition, the plane of this triangle is
perpendicular to the straight line L.

To construct the surface Σ, first consider a triangle with the center (x2, y2, z2)
and apexes A′

1, A
′
2, A

′
3 such that the segments A′

1A
′
2, A

′
2A

′
3, A

′
1A

′
3 are parallel to the

segments A1A2, A2A3, A1A3, respectively, and, in addition, the length of A′
1A

′
2 is

less than the length of A1A2. Inasmuch as the domain Ω is convex in the direction
of the straight line L, the prism with vertexes A′

1, A
′
2, A

′
3, A

′′
1 , A

′′
2 , A

′′
3 is completely

contained in Ω, where the points A′′
1 , A

′′
2 , A

′′
3 are located in the plane of triangle

A1A2A3 and the edges A′
mA′′

m are parallel to L for m = 1, 3.
Further, set a triangle with apexes B1, B2, B3 such that the point Bm is located

on the segment A′
mA′′

m for m = 1, 3 and the truncated pyramid with vertexes
A1, A2, A3, B1, B2, B3 and lateral edges AmBm, m = 1, 3, is completely contained
in the domain Ω.

Finally, in the plane of triangle A′
1A

′
2A

′
3, set a triangle T with apexes C1, C2, C3

such that the segments C1C2, C2C3, C1C3 are parallel to the segments A′
1A

′
2, A

′
2A

′
3,

A′
1A

′
3, respectively, and, in addition, the length of C1C2 is less than the length of

A′
1A

′
2. It is evident that the truncated pyramid with vertexes B1, B2, B3, C1, C2, C3

and lateral edges BmCm, m = 1, 3, is completely contained in the domain Ω.
Now for the surface Σ, denote the surface formed by the triangle T

and the lateral surfaces of mentioned truncated pyramids A1A2A3B1B2B3 and
B1B2B3C1C2C3.

For each ξ ∈ G, define two complex-valued functions H1 and H2 so that

H1(ξ) := f(Φ(ζ)), where ξ = f(ζ) and ζ ∈ Qζ ,

H2(ξ) := f(Φ(ζ)), where ξ = f(ζ) and ζ ∈ Σζ .
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Inasmuch as f is a linear continuous multiplicative functional, from the equality
(2.5) it follows that

lim
ε→0+0

(f(Φ(ζ0 + ε(ζ − ζ0)))− f(Φ(ξ))) ε−1 = f(Φ′(ζ0))(f(ζ)− f(ζ0)).

Thus, there exist all directional derivatives of the functions H1, H2 in the point
f(ζ0) ∈ G, and, moreover, these derivatives are equal for each of the functions
H1, H2. Therefore, by Theorem 21 [12], the functions H1, H2 are analytic in the
domain G, i.e., they are holomorphic in the case where ξ = τ + iη, and they are
antiholomorphic in the case where ξ = τ − iη, τ, η ∈ R.

Inasmuch as H1(ξ) ≡ H2(ξ) on the boundary of domain G, this identity is
fulfilled everywhere in G. Therefore, the equalities

f(Φ(ζ2)− Φ(ζ1)) = f(Φ(ζ2))− f(Φ(ζ1)) = 0

are fulfilled for ζ1 := x1+y1e2+z1e3 and ζ2 := x2+y2e2+z2e3. Thus, Φ(ζ2)−Φ(ζ1)
belongs to the kernel I of functional f . �

Let D := f(Ωζ) and A be the linear operator which assigns the function
F : D → C to every monogenic function Φ : Ωζ → A3 by the formula
F (ξ) := f(Φ(ζ)), where ζ = xe1 + ye2 + ze3 and ξ := f(ζ) = x + n1y + m1z.
It follows from Lemma 2.1 that the value F (ξ) does not depend on a choice of a
point ζ, for which f(ζ) = ξ.

Now the following theorem can easily be proved in the same way as Theorem 2.4
[9].

Theorem 2.2. If a domain Ω ⊂ R3 is convex in the direction of the straight
line L, then every monogenic function Φ : Ωζ → A3 can be expressed in the form

(2.6) Φ(ζ) =
1

2πi

∫
Γζ

(AΦ)(t)(t− ζ)−1dt+Φ0(ζ) ∀ ζ ∈ Ωζ ,

where Γζ is an arbitrary closed Jordan rectifiable curve in D that embraces the point
f(ζ), and Φ0 : Ωζ → I is a monogenic function taking values in the radical I.

Note that the complex number ξ = f(ζ) is the spectrum of ζ ∈ A3, and
the integral in the equality (2.6) is the principal extension of analytic function
F (ξ) = (AΦ)(ξ) of the complex variable ξ into the domain Ωζ .

It follows from Theorem 2.2 that the algebra of functions monogenic in Ωζ is
decomposed into the direct sum of the algebra of principal extensions of analytic
functions of the complex variable and the algebra of monogenic functions in Ωζ

taking values in the radical I.
In Theorem 1.7 [9], the principal extension of analytic function F : D → C into

the domain Πζ := {ζ ∈ E3 : f(ζ) ∈ D} was explicitly constructed in the form

1

2πi

∫
Γζ

F (t)(t− ζ)−1dt = F (x+ n1y +m1z)

+(n2y +m2z)F
′(x+ n1y +m1z)ρ1(2.7)

+

(
(n3y +m3z)F

′(x+ n1y +m1z) +
(n2y +m2z)

2

2
F ′′(x+ n1y +m1z)

)
ρ2

∀ζ = xe1 + ye2 + ze3 ∈ Πζ .
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It is evident that the domain Π ⊂ R3 congruent to Πζ is an infinite cylinder, and
its generatrix is parallel to L.

In the following theorem, we describe all monogenic functions given in the
domain Ωζ and taking values in the radical I.

Theorem 2.3. If a domain Ω ⊂ R
3 is convex in the direction of the straight

line L, then every monogenic function Φ0 : Ωζ → I can be expressed in the form

(2.8) Φ0(ζ) = F1(ξ) ρ1 + (F2(ξ) + (n2y +m2z)F
′
1(ξ))ρ2

∀ζ = xe1 + ye2 + ze3 ∈ Ωζ ,

where F1, F2 are complex-valued analytic functions in the domain D and ξ =
x+ n1y +m1z.

Proof. A function Φ0(ζ) of the variable ζ = x+ ye2 + ze3, where x, y, z ∈ R,
is monogenic in Ωζ if and only if the following Cauchy–Riemann conditions are
satisfied (see [9, Theorem 1.3]):

(2.9)
∂Φ0

∂y
=

∂Φ0

∂x
e2,

∂Φ0

∂z
=

∂Φ0

∂x
e3.

The function Φ0 is of the form

(2.10) Φ0(ζ) = V1(x, y, z)ρ1 + V2(x, y, z)ρ2 ,

where Vk : Ω → C for k = 1, 2.
Substituting the expressions (2.1), (2.10) into the equalities (2.9) and taking

into account the uniqueness of decomposition of element of A3 with respect to the
basis {1, ρ1, ρ2}, we get the following system for the determination of functions
V1, V2:

(2.11)

∂V1

∂y
= n1

∂V1

∂x
,

∂V2

∂y
= n2

∂V1

∂x
+ n1

∂V2

∂x
,

∂V1

∂z
= m1

∂V1

∂x
,

∂V2

∂z
= m2

∂V1

∂x
+m1

∂V2

∂x
.

Inasmuch as

(2.12) ξ = (x+ yRen1 + zRem1) + i(yImn1 + zImm1) =: τ + iη ,

from the first and the third equations of the system (2.11), we get

(2.13)
∂V1

∂η
Imn1 = i

∂V1

∂τ
Imn1 ,

∂V1

∂η
Imm1 = i

∂V1

∂τ
Imm1 .

It follows from the first equation of the system (2.2) that at least one of the
numbers Imn1, Imm1 is not equal to zero. Therefore, from (2.13) we get the
equality

(2.14)
∂V1

∂η
= i

∂V1

∂τ
.
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Let us prove that V1(x1, y1, z1) = V1(x2, y2, z2) for the points (x1, y1, z1),
(x2, y2, z2) ∈ Ω such that the segment connecting these points is parallel to the
straight line L. Consider two surfaces Q, Σ in Ω and the domain G in C that are
defined in the proof of Lemma 2.1. For each ξ ∈ G, define two complex-valued
functions H1 and H2 so that

H1(ξ) := V1(x, y, z) for (x, y, z) ∈ Q,

H2(ξ) := V1(x, y, z) for (x, y, z) ∈ Σ,

where the correspondence between the points (x, y, z) and ξ ∈ G is determined by
the relation (2.12). The functions H1, H2 are analytic in the domain G due to the
equality (2.14) and Theorem 6 [11]. Further, the identity H1(ξ) ≡ H2(ξ) in G can
be proved in the same way as in the proof of Lemma 2.1.

Thus, the function V1 of the form V1(x, y, z) := F1(ξ), where F1(ξ) is an arbi-
trary function analytic in D, is the general solution of the system consisting of the
first and the third equations of the system (2.11).

Now from the second and the fourth equations of the system (2.11), we get the
following system for the determination of function V2(x, y, z):

(2.15)

∂V2

∂y
− n1

∂V2

∂x
= n2

∂F1

∂x
,

∂V2

∂z
−m1

∂V2

∂x
= m2

∂F1

∂x
.

The function (n2y + m2z)F
′
1(ξ) is a particular solution of this system and,

therefore, the general solution of the system (2.15) is represented in the form

V2(x, y, z) = F2(ξ) + (n2y +m2z)F
′
1(ξ),

where F2 is an arbitrary function analytic in the domain D. �

It follows from the equalities (2.6), (2.8) that in the case where a domain
Ω ⊂ R3 is convex in the direction of the straight line L, any monogenic function
Φ : Ωζ → A3 can be constructed by means of three complex analytic in D functions
F , F1, F2 in the form:

Φ(ζ) =
1

2πi

∫
Γζ

F (t)(t− ζ)−1dt+ ρ1F1(x+ n1y +m1z)

+ ρ2

(
F2(x+ n1y +m1z) + (n2y +m2z)F

′
1(x+ n1y +m1z)

)
(2.16)

∀ζ = xe1 + ye2 + ze3 ∈ Ωζ

and in this case the equality (2.7) is applicable.
It is evident that the following statement follows from the equality (2.16).

Theorem 2.4. If a domain Ω ⊂ R3 is convex in the direction of the straight
line L, then every monogenic function Φ : Ωζ → A3 can be continued to a function
monogenic in the domain Πζ .

Note that the condition of convexity of Ω in the direction of the line L is essential
for the veracity of Lemma 2.1 and consequently for that of Theorems 2.2 – 2.4.

252



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMMUTATIVE ALGEBRAS OF MONOGENIC FUNCTIONS 253

Example 2.5. Let us construct a domain Ω, which is not convex in the direction
of the straight line L, and an example of monogenic function Φ : Ωζ → A3 for which
the relation (2.4) is not fulfilled for a certain ζ1, ζ2 ∈ Ωζ such that ζ2 − ζ1 ∈ Lζ .

Consider a harmonic basis (2.3). In this case, the straight line L coincides with
the axis Oz. Consider the domain Ωζ which is the union of sets

Ω
(1)
ζ := {x+ ye2+ ze3 ∈ E3 : |x+ iy| < 2, 0 < z < 2, −π/4 < arg(x+ iy) < 3π/2},

Ω
(2)
ζ := {x+ ye2 + ze3 ∈ E3 : |x+ iy| < 2, 2 ≤ z ≤ 4, π/2 < arg(x+ iy) < 3π/2},

Ω
(3)
ζ := {x+ ye2 + ze3 ∈ E3 : |x+ iy| < 2, 4 < z < 6, π/2 < arg(x+ iy) < 9π/4}.

It is evident that the domain Ω ⊂ R3 congruent to Ωζ is not convex in the direction
of the axis Oz.

In the domain {ξ ∈ C : |ξ| < 2,−π/4 < arg ξ < 3π/2} of the complex
plane, consider a holomorphic branch H1(ξ) of the analytic function Ln ξ for which
H1(1) = 0. In the domain {ξ ∈ C : |ξ| < 2, π/2 < arg ξ < 9π/4}, consider also a
holomorphic branch H2(ξ) of the function Ln ξ for which H2(1) = 2πi.

Further, consider the principal extension Φ1 of the function H1 into the set

Ω
(1)
ζ ∪ Ω

(2)
ζ and the principal extension Φ2 of function H2 into the set Ω

(2)
ζ ∪ Ω

(3)
ζ

constructed using the formula (2.7):

Φ1(ζ) = H1(x+ iy)− 2z − iy

2(x+ iy)
ρ1 −

( √
3iz

2(x+ iy)
+

(2z − iy)2

8(x+ iy)2

)
ρ2 ,

Φ2(ζ) = H2(x+ iy)− 2z − iy

2(x+ iy)
ρ1 −

( √
3iz

2(x+ iy)
+

(2z − iy)2

8(x+ iy)2

)
ρ2 ,

where ζ = x+ ye2 + ze3.
Now the function

Φ(ζ) :=

⎧⎨
⎩

Φ1(ζ) ζ ∈ Ω
(1)
ζ ∪ Ω

(2)
ζ ,

Φ2(ζ) ζ ∈ Ω
(3)
ζ

is monogenic in the domain Ωζ , because Φ1(ζ) ≡ Φ2(ζ) everywhere in Ω
(2)
ζ . At the

same time, for the points ζ1 = 1 + e3 and ζ2 = 1 + 5 e3 we have ζ2 − ζ1 ∈ Lζ but

Φ(ζ2)− Φ(ζ1) = 2πi− 4 ρ1 − (12 + 2
√
3 i)ρ2 /∈ I ,

i.e., the relation (2.4) is not fulfilled.

The following statement is true for monogenic functions in an arbitrary
domain Ωζ .

Theorem 2.6. For every monogenic function Φ : Ωζ → A3 in an arbitrary

domain Ωζ , the Gateaux n-th derivatives Φ(n) are monogenic in Ωζ for any n.

Proof. Consider an arbitrary point (x0, y0, z0) ∈ Ω and a ball � ⊂ Ω with the
center in the point (x0, y0, z0). Inasmuch as � is a convex set, in the neighbourhood
�ζ of the point ζ0 = x0 + y0e2 + z0e3 we have the equality (2.6), where the integral
has the Gateaux n-th derivatives in �ζ for any n. Furthermore, the function Φ0 is
represented in �ζ in the form (2.8) and is infinitely differentiable with respect to
the variables x, y, z. Therefore, the Gateaux derivative Φ′

0 satisfies the conditions
of the form (2.9) in �ζ , i.e., Φ

′
0 is a monogenic function. In the same way, it can be
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proved that the Gateaux n-th derivatives Φ
(n)
0 are monogenic functions in �ζ for

any n. �

For monogenic functions Φ : Ωζ → A3, analogs of the Cauchy integral theorem
and the Cauchy integral formula can be proved. It yields the Taylor expansion of
monogenic functions in the usual way. An analog of Morera theorem can be also
established.

Thus, as in the complex plane, one can give different equivalent definitions of
monogenic functions Φ : Ωζ → A3.

3. Monogenic functions in the biharmonic algebra

3.1. A constructive description of monogenic functions given in a
biharmonic plane. The algebra B has the unique maximum ideal I := {λρ : λ ∈
C} which is also the radical of B. In what follows, f : B → C is the linear functional
such that the maximum ideal I is its kernel and f(1) = 1.

Consider a biharmonic plane μ := {ζ = x e1 + y e2 : x, y ∈ R} which is a linear
envelope generated by the elements e1, e2 of a biharmonic basis (1.6). In what
follows, ζ = x e1 + y e2 and x, y ∈ R.

Let Gζ be a domain in the biharmonic plane μ. Inasmuch as divisors of zero
don’t belong to the plane μ, the Gateaux derivative of function Φ : Gζ → B coincides
with the derivative

Φ′(ζ) := lim
h→0, h∈μ

(
Φ(ζ + h)− Φ(ζ)

)
h−1 .

Therefore, we define monogenic functions as functions Φ : Gζ → B for which the
derivative Φ′(ζ) exists in every point ζ ∈ Gζ .

Let D := f(Gζ) and A be the linear operator which assigns the function
F : D → C to every function Φ : Gζ → B by the formula F (ξ) := f(Φ(ζ)),
where ξ := f(ζ) = α1(x± iy).

It is evident that if Φ is a monogenic function in the domain Gζ , then F is an
analytic function in the domain D, i.e., F is either holomorphic in the case where
ξ = α1(x+ iy) or antiholomorphic in the case where ξ = α1(x− iy).

The following theorem can be proved similarly to Theorem 2.4 [9].

Theorem 3.1. Every monogenic function Φ : Gζ → B can be expressed in the
form

(3.1) Φ(ζ) =
1

2πi

∫
Γζ

(AΦ)(t)(t− ζ)−1 dt+Φ0(ζ) ∀ ζ ∈ Gζ ,

where Γζ is an arbitrary closed rectifiable curve in D that embraces the point f(ζ),
and Φ0 : Gζ → I is a monogenic function taking values in the radical I.

Note that the complex number ξ = f(ζ) is the spectrum of ζ ∈ B, and the
integral in the equality (3.1) is the principal extension of analytic function F (ξ) =
(AΦ)(ξ) of the complex variable ξ into the domain Gζ .

It follows from Theorem 3.1 that the algebra of monogenic functions in Gζ is
decomposed into the direct sum of the algebra of principal extensions of analytic
functions of the complex variable and the algebra of monogenic functions in Gζ

taking values in the radical I.
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It is established in the paper [4] that a function Φ(ζ) is monogenic in a domain
of a biharmonic plane generated by the biharmonic basis (1.7) if and only if the
following Cauchy–Riemann condition

(3.2)
∂Φ(ζ)

∂y
=

∂Φ(ζ)

∂x
e2.

is satisfied.
It can similarly be proved that a function Φ : Gζ → B is monogenic in a domain

Gζ of an arbitrary biharmonic plane μ if and only if the following equality is fulfilled

(3.3)
∂Φ(ζ)

∂y
e1 =

∂Φ(ζ)

∂x
e2 ∀ ζ = xe1 + ye2 ∈ Gζ .

In the following theorem, we describe all monogenic functions given in the
domain Gζ and taking values in the radical I.

Theorem 3.2. Every monogenic function Φ0 : Gζ → I can be expressed in the
form

(3.4) Φ0(ζ) = F0(ξ)ρ ∀ ζ ∈ Gζ ,

where F0 : D → C is an analytic function and ξ = f(ζ).

Proof. Substituting the function (3.4) in the equality (3.3) in place of Φ, we
get

(3.5)
∂F0(ξ)

∂y
ρe1 =

∂F0(ξ)

∂x
ρe2 ∀ ξ ∈ D.

Using the equality e−1
1 = 1

α1

(
1− α2

α1
ρ
)
and the relations (1.6), we obtain the

equality ρe2e
−1
1 = ±iρ. Then, as a result of multiplication of the equality (3.5) by

e−1
1 , we get

∂F0(ξ)

∂y
ρ = ±i

∂F0(ξ)

∂x
ρ ∀ ξ ∈ D.

From this, taking into account the uniqueness of decomposition of element of B
with respect to the basis {1, ρ}, we obtain the equality

∂F0(ξ)

∂y
= ±i

∂F0(ξ)

∂x
∀ ξ ∈ D.

Thus, the function F0 is either holomorphic inD in the case where ξ = α1(x+iy)
or antiholomorphic in D in the case where ξ = α1(x− iy), i.e., F0 is analytic in the
domain D. �

It follows from equalities (3.1), (3.4) that any monogenic function Φ : Gζ → B

can be constructed by means of two complex analytic functions F , F0 in D in the
form:

(3.6) Φ(ζ) =
1

2πi

∫
Γζ

F (t)(t− ζ)−1dt+ F0(f(ζ))ρ ∀ζ ∈ Gζ .

Moreover, using the expression

(t− ζ)−1 =
1

t− ξ
− 1

2α1

2α2ξ ± iy

(t− ξ)2
ρ

∀ ζ = xe1 + ye2 ∈ Gζ ∀ t ∈ C : t �= ξ = α1(x± iy),
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the principal extension of analytic function F in D into Gζ can explicitly be con-
structed in the form

1

2πi

∫
Γζ

F (t)(t− ζ)−1dt = F (ξ)− F ′(ξ)

α1

(
α2ξ ±

iy

2

)
ρ, ξ = f(ζ) ∈ D,(3.7)

∀ ζ = xe1 + ye2 ∈ Gζ .

Note that in a particular case, in the paper [4], principal extensions of analytic
functions of a complex variable were explicitly constructed into the biharmonic
plane generated by the biharmonic basis (1.7).

The following theorem can be proved similarly to Theorem 2.6.

Theorem 3.3. Every monogenic function Φ : Gζ → B has derivatives of all
orders in the domain Gζ .

Monogenic functions Φ : Gζ → B have properties similar to properties of ana-
lytic functions of complex variable, namely, the Cauchy integral theorem and the
Cauchy integral formula and the Taylor expansion and the Morera theorem are true
in the biharmonic plane μ.

3.2. A representation of biharmonic function in the form of the first
component of monogenic function. In what follows, the basic elements e1, e2
are defined by the equalities (1.7).

U : G → R is called a biharmonic function in a domain G ⊂ R2 if it satisfies
the equation (1.8) in G.

We shall prove that every biharmonic function U1(x, y) in a bounded simply
connected domain G ⊂ R2 is the first component of some monogenic function

(3.8) Φ(ζ) = U1(x, y) e1+U2(x, y) ie1+U3(x, y) e2+U4(x, y) ie2, ζ = xe1+ye2,

in the corresponding domain Gζ := {ζ = xe1 + ye2 : (x, y) ∈ G} of biharmonic
plane μ, where Uk : G → R for k = 1, 4.

First, consider the following auxiliary statements.

Lemma 3.4. Every monogenic function (3.8) with U1 ≡ 0 is of the form

Φ(ζ) = i(−ax2 + kx− ay2 − by + n) + e2(2ay
2 + 2by + c)

+ ie2(−2axy − bx+ ky +m) ∀ ζ = xe1 + ye2,(3.9)

where a, b, c, k,m, n are arbitrary real constants.

To prove Lemma 3.4, taking into account the identity U1 ≡ 0, one should
integrate the Cauchy–Riemann condition (3.2) rewritten in expanded form:

0 =
∂U3(x, y)

∂x
,

∂U2(x, y)

∂y
=

∂U4(x, y)

∂x
,

∂U3(x, y)

∂y
= −2

∂U4(x, y)

∂x
,

∂U4(x, y)

∂y
=

∂U2(x, y)

∂x
+ 2

∂U3(x, y)

∂x
.
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Lemma 3.5. If F is a holomorphic function in a bounded simply connected
domain D ⊂ C, then the functions

Φ1(ζ) = u(x, y) + iv(x, y)− e2v(x, y) + ie2u(x, y),

Φ2(ζ) = yu(x, y) + iyv(x, y) + e2 (U(x, y)− yv(x, y))

+ ie2 (V(x, y) + yu(x, y)) ,

Φ3(ζ) = xu(x, y) + ixv(x, y) + e2 (V(x, y)− xv(x, y))

+ ie2 (xu(x, y)− U(x, y)) ∀ ζ = xe1 + ye2 ∈ Gζ

are monogenic in the domain Gζ ≡ {ζ = xe1 + ye2 : x+ iy ∈ D} of the biharmonic
plane μ, where

u(x, y) := ReF (ξ), v(x, y) := ImF (ξ),

U(x, y) := ReF(ξ), V(x, y) := ImF(ξ) ∀ ξ = x+ iy ∈ D

and F is a primitive function for the function F .

To prove Lemma 3.5, it is easy to show that the functions Φ1, Φ2, Φ3 satisfy
the conditions of the form (3.2).

It is well-known that every biharmonic function U1(x, y) in the domain G is
expressed by the Goursat formula

(3.10) U1(x, y) = Re (ϕ(ξ) + ξ̄ψ(ξ)), ξ = x+ iy,

where ϕ, ψ are holomorphic functions in the domain D ≡ {x + iy : (x, y) ∈ G},
ξ̄ := x− iy.

Theorem 3.6. Every biharmonic function U1(x, y) in a bounded simply con-
nected domain G ⊂ R

2 is the first component in the decomposition (3.8) of the
function

Φ(ζ) = ϕ(ξ) + ξ̄ψ(ξ) + ie2
(
ϕ(ξ) + ξ̄ψ(ξ)− 2F(ξ)

)
,(3.11)

ζ = xe1 + ye2, ξ = x+ iy,

monogenic in the corresponding domain Gζ of biharmonic plane μ, where ϕ, ψ are
the same functions as in the equality (3.10) and F is a primitive function for the
function ψ. Moreover, all monogenic functions in Gζ for which the first component
in the decomposition (3.8) is the given function U1 are expressed as the sum of the
functions (3.9) and (3.11).

Proof. Introducing the functions u1(x, y) := Reϕ(z), u2(x, y) := Reψ(z),
v2(x, y) := Imψ(z), we rewrite the equality (3.10) in the form

(3.12) U1(x, y) = u1(x, y) + xu2(x, y) + yv2(x, y).

Now it follows from the equality (3.12) and Lemma 3.5 that the function (3.11) is
monogenic in the domain Gζ and the first component in the decomposition (3.8)
is the given function U1. Finally, it evidently follows from Lemma 3.4 that all
monogenic functions in Gζ for which the first component in the decomposition (3.8)
is the given function U1 are expressed as the sum of functions (3.9) and (3.11). �
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