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Summary

For monogenic functions taking values in a three-dimensional commutative harmonic
algebra with the unit and two-dimensional radical, we have proved analogs of classical
integral theorems of the theory of analytic functions of the complex variable: the Cauchy
integral theorems for surface integral and curvilinear integral, the Morera theorem and the
Cauchy integral formula.

1. Introduction

Let Az be a three-dimensional commutative associative Banach algebra with the
unit 1 over the field of complex numbers C. Let {1, p1, p2} be a basis of the algebra
Ag with the multiplication table p1p2 = p2 = 0, p? = py.

The algebra As is harmonic (see [1,2]) because there exist harmonic bases {e; =
1,e2,e3} in Aj satisfying the following condition

(1) el +el+e2=0.

Consider the linear envelope Fs := {¢ =z +yey + ze3 : z,y,2 € R} generated
by the vectors 1, ez, es over the field of real numbers R. For a set S ¢ R3 consider
the set S¢ := {{ = = + yez + ze3 : (z,y,2) € S} C E3 congruent to S. In what
follows, ( =z + yeas + zez and z,y,z € R.

A continuous function @ : Q¢ — Az is monogenic in a domain Q¢ CE3if @ is
differentiable in the sense of Gateaux in every point of ¢, i. e. if for every ¢ €
there exists an element ®'(¢) € A3 such that

Jim (B(C+eh) ~ 8(Q)) ™! = h¥'(() Vh € B,
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It follows from the equality (1) and the equality

2 2 2
N3® = g—; + ZT%) + %; =3"(¢)(ed + €2 + €2)
that every twice monogenic function @ : Q¢ — Ajs satisfies the three-dimensional
Laplace equation Ag® = 0.

In the paper [3] for functions differentiable in the sense of Lorch in an arbitrary
convex domain of commutative associative Banach algebra, some properties similar
to properties of holomorphic functions of complex variable (in particular, the integral
Cauchy theorem and the integral Cauchy formula, the Taylor expansion and the
Morera theorem) are established. In the paper [4] the convexity of the domain is
withdrawn in the mentioned results from [3].

In this paper we establish similar results for monogenic functions @ : Oy — Aj
given only in a domain Q¢ of the linear envelope Fj instead of domain of the whole
algebra Az. Let us note that a priori the differentiability of the function ® in the
sense of Géteaux is a restriction weaker than the differentiability of this function in
the sense of Lorch. Moreover, note that the integral Cauchy formula established in
the papers [3,4] is not applicable for a monogenic function & : Q¢ — Aj because
it deals with an integration along a curve on which the function ® is not given,
generally speaking.

Note that as well as in [3,4], some hypercomplex analogues of the integral Cauchy
theorem for a curvilinear integral are established in the papers [5,6]. In the papers
[5,7-9] similar theorems are established for surface integral.

2. Cauchy integral theorem for a surface integral

A function ®(¢) of the variable ¢ € §2¢ is monogenic if and only if the following
Cauchy-Riemann conditions are satisfied (see Theorem 1.3 [2]):

) 8@_8@6 8@_6@6
oy ~ 8z » bz 8z >
Along with monogenic functions, consider a function ¥ : ¢ — Az having contin-
uous partial derivatives of the first order in a domain €)¢ and satisfying the equation

5 ow ou  ov
ox Oy e oz

at every point of this domain.

In the scientific literature the different denominations are used for functions sat-
isfying equations of the form (3). For example, in [5,6,10] — regular functions, and
in the papers [7,8,11] they are called monogenic functions. As well as in the pa-
pers [9,12,13], we call a function hyperholomorphic if it satisfies the equation (3).

It is well known that in the quaternionic analysis the classes of functions deter-
mined by means conditions of the form (2) and (3) do not coincide (see [5,14]).

e3=0
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Note that in the algebra Az the set of monogenic functions is a subset of the set of
hyperholomorphic functions because every monogenic function @ : ¢ — Ag satisfies
the equality (3) owing to the conditions (1), (2). Yet, there exist hyperholomorphic
functions which are not monogenic. For example, the function

Y(z + yes + zeg) = zes — yes

satisfies the condition (3), but it does not satisfy the equalities of the form (2).
Let © be a bounded closed set in R3. For a continuous function ¥ : Q¢ — Az of
the form

3 3
(4) \I/(.’IJ +yez + Z63) = Z Uk(-’l), Y, z)ek +i Z Vk(l’, v, z)ekh
k=1 k=1

where (z,y,2) € Q, we define a volume integral by the equality
3 3
/\I!(C)dxdydz i= Z €k / Uk(z, y, 2)dzdydz + i Z ek / Vi(z,y, z)dzdydz.
k=1 & =

Let ¥ be a quadrable surface in R® with quadrable projections on the coordinate
planes. For a continuous function ¥ : £; — Ag of the form (4), where (r,y,2) € %,
we define a surface integral on ¥, with the differential form

Oon 0,05 = C1dydz + ondzdzres + azdrdyes, where g, on, 03 € R,
by the equality
3 3
/\II(C )Cai,az,as i= Ze /alUk(:z, y, 2)dydz + Z egek/azUk(:c, Yy, 2)dzdz
ZC k=1 k=1 )

3

3
+ Z esex /a3 Uk(z,y, z)dzdy + i Z ek /ale (z,y, z)dydz

k=1 T k=1 v

3 3
+1 Z eoer / axVi(z, y, 2)dzdx + zz esey /agvk(z, y, 2)dzdy.

k=1 > k=1 5

A connected homeomorphic image of a square in R® is called simple surface. A
surface is locally-simple if it is simple in a certain neighbourhood of every point.

If a simply connected domain © C R? has a closed locally-simple piecewise-
smooth boundary ) and a function ¥ : 9, — A; is continuous together with
partial derivatives of the first order up to the boundary 0%, then the following
analogue of the Gauss-Ostrogradski formula is true:

(5) / ¥(¢)o = / (QE + 2\1162 + -?9—\363) dxdydz,

where 0 := 0111 = dydz + dzdmeg + dzdyes. Now, the next theorem is a result of
the formula (5) and the equality (3).
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Theorem 1. Suppose that Q is a simply connected domain with a closed locally-
simple piecewise-smooth boundary 8S). Suppose also that the function U : Q; — Ag
is continvous in the closure Q—C of the domain Q¢ and hyperholomorphic in Q¢. Then

/wgw=u

3. Cauchy integral theorem for a curvilinear integral

Let 7 be a Jordan rectifiable curve in R3. For a continuous function ¥ : Yo — A
of the form (4), where (z,y, z) € v, we define an integral along the curve v, by the

equality
3 3
/\II(C)d( = Zek/Uk(x, Y, 2)dz + Zegek/Uk(x, Yy, 2)dy
Y% k=1 % =i B!
3 3
+Ze3€k/Uk($, y,2)dz +z‘Zek/Vk(x,y, z)dz
k=1 pe k=1 o
3 3
+i Z €€ / Vilz,y, 2)dy + 4 z esex / Vi (2, y, 2)dz,
k=1 -4 k=1 =
where

d¢ 1= dz + exdy + ezdz.

If a function ® : Q¢ — A3 is continuous together with partial derivatives of the
first order in a domain Q¢, ¥ is a piecewise-smooth surface in 2, and the edge v of
the surface X is a rectifiable Jordan curve, then the following analogue of the Stokes
formula is true:

od oP o 0P
/@(C)dg = / (a—xez - (9_y> d.’l}dy + (5—563 = '562) dydz
e

Y¢

b 8%
(6) (-a—z ~ %

Now, the next theorem is a result of the formula (6) and the equalities (2).

83) dzdz.

Theorem 2. Suppose that @ : ¢ — Az is a monogenic function in a domain Q¢,
% is a piecewise-smooth surface in ), and the edge 7 of the surface T is a rectifiable
Jordan curve. Then

(M /@@«:a

Ye

Now, similarly to the proof of Theorem 3.2 [4] we can prove the following



Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Integral theorems and a Cauchy formula 51

Theorem 3. Let @ : Q¢ — Az be a monogenic function in a domain Q¢. Then for
every closed Jordan rectifiable curve v homotopic to a point in S, the equality (7)
holds.

For functions taking values in the algebra As, the following Morera theorem can
be established in the usual way.

Theorem 4. If a function & : Q¢ — A3 is continuous in a domain Q¢ and satisfies
the equality

(8) / B(C)d¢ =0
)

for every triangle ¢ such that ZZ C Q¢, then the function ® is monogenic in the
domain €.

4. Cauchy integral formula

In what follows, we consider a harmonic basis {e1, e2, 3} with the following decom-
position with respect to the basis {1, p1, 2 }:

ey :
e =1, €2=2+§sz, € =—p1— 5 ip2.
It follows from Lemma 1.1 [2] that

_ 1 z i \/§z—y g4
9 t= 3
©) ¢ ac+iy_'-(z+iy)2pl+(2 (x+iy)2+($+iy)3)p2

for all ( = x + yes + ze3 € E3 \ {ze3 : z € R}. Thus, it is obvious that the straight
line {ze3 : 2 € R} is contained in the radical of the algebra Aj.
Using the equality (9), it is easy to calculate that

(10) / rldr = 2mi,
¥
where 4; 1= {7 =z + yez : 2% + y? = R?}.
Theorem 5. Let Q) be a domain convez in the direction of the azxis Oz and @ : Q¢ —

Ag be a monogenic function in the domain Q¢. Then for every point {y € Sl the
following equality is true:

ay 260 = 57 [ 2O ¢~ )7

where 7 is an arbitrary closed Jordan rectifiable curve in Q¢, which surrounds once
the straight line {(o + ze3 : 2 € R}.
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Proof. We represent the integral on the right-hand side of the equality (11) as the
sum of the following two integrals:

/ () (¢ - o) de = / (B() — B(¢o)) (¢ ~ €)™ de+
Y Y
+8(Go) / (C=Go) de = L + I,

Inasmuch as the domain € is convex in the direction of the axis Oz and the curve
7¢ surrounds once the straight line {Cy + ze3: 2z € R}, v is homotopic to the circle

K(R):={(z - mo)2 + (y— y0)2 =R%z= Z0}, where (p =z + yoes + Zp€s.

Then using the equality (10), for 7 = ¢ — (o, we have I, = 271i®(Co).

Let us prove that I; = 0. First, we choose on the curve 7 two points A and
B in which there are tangents to v, and we choose also two points A;, B; on the
circle K (¢) which is completely contained in the domain Q. Let 7', 42 be connected
components of the set v\ {4, B}. By K! and K? we denote connected components
of the set K(g) \ {41, B;} in such a way that after a choice of smooth arcs r, r2
each of the closed curves v' UT2 UK UT?! and v2 UT? U K2 UT2 will be homotopic
to a point of the domain Q \ {(z¢,y0,2) : z € R}.

Then it follows from Theorem 3 that

(12) [ @o-s@c-wta=o
-ygurguxgurg

(13) [ eo-ew)c-wra=o
ygur}quurg

Inasmuch as each of the curves i 8 T'? has different orientations in the equalities
(12), (13), after addition of the mentioned equalities we obtain

10 [@O-s)c-w = [ (@08 c- G
¥ K¢(e)
where the curves K¢() and v, have the same orientation. _
The integrand in the right-hand side of the equality (14) is bounded by a constant
which does not depend on ¢. Therefore, passing to the limit in the equality (14) as
& — 0, we obtain I; = 0 and the theorem is proved.

Using the formula (11), we obtain the Taylor expansion of monogenic function
in the usual way. Thus, as in the complex plane, one can give different equivalent
definitions of a monogenic function ® : Q¢ — Ag, i. e. the following theorem is true:

Theorem 6. Let Q be a domain convez in the direction of the azis Oz. Then a
function ® : Q¢ — Aj is monogenic in the domain Q¢ if and only if one of the
following conditions is satisfied:
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(1) the components Uy : 2 — C, k =1,3, of the decomposition

3
() =Y Uk(x,y,2) ek,
k=1

of the function ® are differentiable with respect to the variables z,y, z in Q and the
conditions (2) are satisfied in the domain §l¢;

(II) the function ® is continuous in ¢ and satisfies the equality (8) for every
triangle A¢ such that D¢ C Q¢;

(IIT) for every (o € S there exists a neighbourhood in which the function b is
expressed as the sum of the power series

Q)= (C—¢0)fs  cx€As

k=0
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TWIERDZENIA CALKOWE I WZOR CAUCHY’EGO
W PRZEMIENNEJ TROJWYMIAROWEJ ALGEBRZE
HARMONICZNEJ

Streszczenie

Dla funkcji jednoznacznie odwracalnych o wartodciach w tréjwymiarowe; przemiennej
algebrze harmonicznej z jedynka i dwuwymiarowym pierwiastkiem, dowodzimy odpowied-
nikéw klasycznych twierdzeti catkowych teorii funkeji analitycznych jednej zmiennej ze-
spolonej: twierdzer catkowych Cauchy’ego dla calki powierzchniowej i krzywoliniowej twier-
dzenia Morery i wzoru catkowego Cauchy’ego.



