PL ISSN 0459-6854

BULLETIN

DE LA SOCIETE DES SCIENCES ET DES LETTRES DE LOD?
2009 Vol. LIX

Recherches sur les déformations Vol. LVIII
pp. 45-58

Vitaliy S. Szpakowski

SOLUTION OF GENERAL QUADRATIC QUATERNIONIC
EQUATIONS

Sum m ary

We investigate a certain wide class of quadratic quaternionic equations. In article 3]
the equations of form Y} | aez? = 0 are investigated and there it is proved that roots can
be isolated points or constitute spheres. In our article we show, that the roots of the general
quadratic quaternionic equations can constitute not only the points and spheres but also: a
circle, a hyperbola, a cylindrical surface, two planes (which do not coincide with coordinate
planes), and other surfaces. We describe the examples of equations, whose roots form the
above mentioned structures.

1. Introduction

In paper [4] solutions of the general linear equations are specified, that is of ones of
the form

n
(1) Zaewbe =cC.
=1

The set of the solutions of such equation can be empty set, a straight line, a plane,
or a three-dimensional space. As it was already mentioned, there [3] any equation of
the form is investigated

n n
2) Z agz® =0 or Zz‘ag =0.
£=0

£=0
The set of the roots of (2) consists of isolated points and (or) spheres, and the centers
of the spheres lie on the real axis.
Because of non-commutativity of quaternions, equation of the form (2) is not a
general equation of the degree n. The general form of the quaternionic polynomial
equation is
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n myp
Z Z p,2,1Z0p £,2T - - - Ap,e,pTApe,p+1 |+ = 0.

p=1 \é=1
In [2] it is solved any equation of the following form
z?+za+bz+c=0.

Roots of the last equation can be isolated points or constitute a sphere with the
center in any point.
Moreover in paper [1] any equation of a kind

n
3) :cZ—I—Zagxae—}-c:O
=1
is reduced to a system of four non-linear equations with four unknowns.

In this article we are interested in the structure of the solutions set of the
quadratic quaternionic equation (4). With the help of theorem 1, we shall reduce this
equation to system (9) of four equations of the second degree. This system will be
investigated more carefully for the incomplete quaternionic equations of the forms
(23) and (34). For these equations simple but important propositions are proved.

Moreover in this paper some equations are solved and structures of the set of
their roots are found. As it was specified above, in the articles [2]- [4] the equations
of more simple type are solved, and the set of their roots consisted of points, spheres,
and for the general linear equation (see [4]) the set is a straight line, a plane, or a
three-dimensional space. But given in this article examples show that the set of the
solutions of a quadratic quaternionic equation can be other, a hyperbola, two crossed
straight lines, a cylindrical surface, and other surface.

2. Notations of the paper

For a quaternion we use the standard notations:
Z = 2o + T1t + 22f + x3k, To,71,72,73 ER,
where for the imaginary units ¢, 4, k, the following equalities are true:
P==k=-1,ij=—ji=k,jk=—kj=1i ki=—ik=j

Note also that we deal with only real quaternions, i. e., their components are real;
we use the word “quaternion” only for real one and denote the system of all real
quaternions by H. The number Sc(z) := zq is referred to as the scalar part of the
quaternion z; z1¢+ z2J + x3k is called the vector part of z and is denoted by Vec(z)
or T

\/x3+x§+x§+x§

is called the modulus of z and is denoted by |z|; we shall denote by H the set
{z € H: Sc(z) = 0};
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o — T11 — Toj — x3k
is called the conjugate number with respect to x and is denoted by Z. Let

Y = Yo+ y1i + Y25 + ysk, yo,y1, Y2, y3 € R,

thén the real number

(z,y) == zoyo + T1y1 + T2y2 + T3Y3

is referred to as the scalar product of z and y. According to the introduced definitions

|Z] = \/x? + 2% + 3, @:a’:’.

We shall agree that top index in brackets denote corresponding coordinates of
coefficients of equations, that is

a=a9+aWi+a®j+a®k,

where
a®, a®,a® a® e R

(though for unknowns we use subindices).

3. The basic results

In this article we consider quadratic quaternionic equations of the form:
n T 4
(4) Z apz?b, + Z CmZdm + Z frxge = h,
p=1 m=1 t=1
where {ap; bp; Cm; dm; ft; 913 bz} C H.

Lemma 1. For any a,b € H the following equality is true:
(5) @b+ ba = —2(a,b).

Proof. Using rules of multiplication of quaternions we easily conclude:

where A € H. Then having combined last two equality, we get the formula (5).

Lemma 2. For any a,b € H the following equality is true:
(6) ab = ba — 2bd — 2(a, b).
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Proof. We shall consider products:

) ab = (a©® + 3 +b) = a@b® + aOF + @ + &b
and
(8) ba = (b@ +5)(a® + &) = b@a©® 4 pOg 4 ba @ + b3,

Having combined equality (7), (8), in view of the formula (5), we get the equality (6).

Theorem 1. Any equation of the form (4) can be rewritten in the form:

T -
() Al.’l:g + Azlflz + Aszory + Aszozs + Aszors — 2 3 emT(Z, dm)+
m=1
+Agzg + A7y + Agzo + Agxs = h,

where

r n
Ay = E apb + Z Cmdm, Az = 42 2 Cmdm E Cmdm — Zl apb,,,
p:

m=] m=1

By:=2 Z apbp +2 Z Cmdm — 4 Z apbp_2 Z Cmdm,
p=1 m=1 p=1 m=1

(10) Byt2:= —4pz:jl b’ — 2m§;jl emd?, g=1,2,3,
Az = B3+B0i Ay = B4+Boj,A5 := Bs + Bok,
Ag := Z ftg¢, Be := Z fige —2 Z ftgt, Buye == —2 2 fg(u),
w=1,93, ArL Beit By, A m ~ Bej+ Bs, Ag = Bel+ Bo.

Proof. We shall transform every addend of the equation (4) , using equality (6). So
for the first addend, using the formula z? = 2z¢z — |z|?, we have the following:

iapxzb Zap 220z — |2|?) by = 220 Zapmb —|z? Zapb
p=1

=2z iap (bpx — 2b,& — 2(by, :Z‘)) —|z]2A =
p=1

= 2Azgx — 4BxoT — 49 Zap(bp,a:) -z3A—|Z7?A.
p=1
Hence

n n
(11) Y apa?h, = Az} + (24 — 4B) 2o — AJF? — 420 3 ay(by, B),
p=1 =1
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where

n n
(12) A= Zapbp, B:= Zapgp.
p=1 p=1

We shall consider the second addend of equality (4):

i CmTdmT = Zr: CmT (xdm —2%d,, — 2(z; Jm))
m=1 m=1

or
r

(13) Z EmTdmT = Zr: iy — 2 i CmTEdp, — 2 Zr: emZ(Z, dm).
m=1 m=1

m=1 m=1

We can write down he first addend of equality (13) similarly to expression (11):

(14) > em?dm = Dz} + (2D — 4C) 20F — D|F? — 4z > em(dm, &),
m=1 m=1

where
(15) D= Z Cmlm, C := Z Cmdm.
m=1 m=1

For the second addend of expression (13), we have the following:

r ks
~2 " emtEdn =2y em(z0 + B)Edpm = —230 > emidm +2|72C =

m=1 m=1 m=1

= —22, Z Cm (d”mf_ 247 — 2dom, 5)) +2|7%C.
m=1

Hence

T T
(16) ~2) " cm@@dy = 200CT + 40 Y cm(dim, ) + 207

m=1 m=1

And, for the last addend of equality (13), we have:
r T T
(17) 2 cna(® dm) = —280 > em(Z,dm) =2 Y cn(Z, dm)-
m=1 m=1 m=1

Then in view of equalities (14), (16) and (18) for the second addend of equation
(4) we have the following equality:

S emdme = Dz + (2D —2C) z0F + (+2C — D) |7~

(18) = . N .
=2r0 Y em(E,dm) =2 Y cmZ(E, dm).
m=1

m=1

We shall transform a linear part of equation (4):
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4 4 £ 4 ]

Do fwge =) filgw —25iF - 2§2) = Y frpz — 2 GT 2 fu(G: )
t=1 t=1 t=1 t=1 t=1

or

£ [4
19) | > fiwgr = Ezo+ (E—2F)Z -2 (3. 3),
t=1 t=1
where
£ £
(20) E:=) fig Fi=)_ fife
t=1 t=1

It is necessary to transform three more addends, namely:

¢
=2 fu(Gr, %) = 1My + 22 My + 23 Ms,
t=1

.
(21) ~2Y " em(dm, %) = 1Ny + 22N, + 23N3,

m=1

_42%(5@5) = 21K + 12 K2 + 23K3,

p=1
where

4 r n
(22) M,=-2)" fig®, No:=-23 cnd, K, := —4) "apb{), s =1,2,3.
t=1 m=1 p=1

To end the proof of theorem it is enough to combine equalities (11), (18), (19),
(21) and to take into account designations (12), (15), (20), and (22).

It is not difficult to write out the system of equations corresponding to (9), but
it would be very long and would demand many new notations. Therefore for the
solution of certain examples one has to construct a system of equations, which turns
out from certain conditions. Using the theorem proved above, we can receive many
interesting results for incomplete quadratic quaternionic equations.

4. The solution of incomplete quadratic equations
of the first form

In this section we shall study properties of equations of the form

n 4
(23) > apz?b,+ > fizgr = h
p=1 t=1



Solution of general quadratic quaternionic equations 51

In this section and in the next one we shall be interested in the following question:
if z is a root of the equation then under what conditions the opposite —z is a root
of this equation, and the same question about the conjugate Z.

Proposition 1. Let x be a root of equation (23), then —z is a root of this equation
if and only if

0
(29) Z frxge = 0.
=1

Proof. If equality (24) is true it is obvious, that —z is also a root. Let now z and
—z be roots of the equation (23). We shall prove that equality (24) holds true. The
condition and (23) imply:

n 2 n £
Zaszb,, + th(KQt = h, Zapx2bp - Z ftmgt = h.
t=1 p=1 t=1

p=1

The difference between last two equalities implies (24).
Under condition of (24), equation (23) takes the form:

(25) Zapxsz = h.
=1

According to theorem 1, the last equation is equivalent to the following equation:
Azd — A|Z|? + (—4K1 + (24 — 4B)i) 2oy + (—4K5 +

+(24 — 4B)j) xoz2 + (—4K3 + (2A — 4B)k) zox3 = h,

where A, B are defined by equality (12), and K, by equality (22). Moreover if all
ap, by € ﬁ, then A = B.

(26)

Remark 1. Vectorially it means, that the set of roots of equation (23) is symmetric
with respect to point 0 only under condition (24) (see Fig. 1 for Example1).
Ezample 1. Solve in H the following equation:
(27) jz?k + k2?5 = h.
Easily we get: A = B = Kj = 0, K5 = —4k, K3 = —4j. Then equation (26) is
equivalent to the following:
(28) —dzoz3j — 4zoz2k = h.

o Let h =0, then the set of the solutions of the equation (27) is either subspace

ﬁ, that is set {z = 210 + 227 + 23k : 21,20, 23 € R}, or a coordinate plane
x00x1, that is set {& = 2o + 14 : 20,71 € R}.

e Let h = —4j — 4k, then the set of the solutions of the equation (27) is a set
{z =20+ zi +22(j + k) : Zo = 1/22,{x0;22} C R\ {0},2; € R}. Then
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Fig. 1:

the corresponding set of points (zo,21,22) constitute a cylindric surface (see
Fig.1).

e Let h = —4j (or —4k), then the set of the solutions of the equation (27) is
set of points T = x¢ 4 x1¢ + 3k (or ¢ = 2o + 1% + 225), where (o, 71, z3)
(or (xo,z1,%2)) constitute a cylindrical surface zox3 = 1 (or zpz2 = 1) on
three-dimensional space zoz1z3 (or Zoz1232). See Fig. 1.

Note that Proposition1 is true in all these cases.

Proposition 2. If x is a root of the equation

n [4
(29) D apz?b,+ > frrg =0
p=1 t=1
and
(30) A=FE=0,

then its conjugate Z is also a root of this equation.

Proof. Taking into account conditions of proposition, we conclude that in equality (9)
Ay = Ay = Ag = 0. Then if in equality (9) one changes z1, z2, 23 by —21, —z9, —3,
then one obtains an identity.
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Fig. 2:

Remark 2. Vectorially it means, that the set of roots of the equation (29) is symmetric
with respect to the real axis under condition (30). See, for example, the the set of
solutions of equation (31) on Fig. 2.
Ezample 2. Solve in H the following equation:
(31) jz?k + ka?j + jzi + izj = 0.
We calculate coefficients of equation (9):

A=A =A3=A6=0, Ay=—4k, As= -4, A;=-2j, Ag=-2.
Then the equation (9) will be rewritten as follows:

2izo + 2j(z1 + 2xoz3) + 4kxoT2 = 0.

The solution of the last equation is £ = z¢ + 14 + z3k, where the corresponding
points (o, Z1, x3) constitute on surface z1 +2zor3 = 0 (see Fig. 2). This fact implies,
that conjugate Z is also a root of the equation (31) (proposition 2).

The proposition, contrary to proposition 2, generally speaking is not true. We
can prove only the following
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Proposition 3. If for every root x of (29) its conjugate T is a root of (29) then the
coefficients E and A satisfy the following relation:

1 BE=A%TE i g 20,

2. A=0,if z0=0.

Proof. If in the formula (1) we substitute values z and Z, and then add the received
equality, we shall have:

A(z} —|Z|?) + Exo = 0,

hence the proposition is proved.
For more detailed study of structure of the set of roots of the equation (23), we
shall consider two more examples.

Ezample 3a. Solve in H the following equation:
(32) ix’k + jai +izj = 0.
We calculate coefficients:

Ar=-Ay =3, Az3=-2k, A4=-2, A5=-2i,
A6 = AQ = 0, A7 s —Qj, Ag = —2i.

Hence, equation (32) is equivalent to the following equation:
—2x0x2 — 2i(T2 + Rzo73) + j(—22 + |2 — 221) — 22071k =0,
which is equivalent to system:

zoxy =0,

Ty + Rzozs = 0,

—z3 + 22 + 23 + 7} — 22, = 0,
zox1 = 0.

The solution of the last system is circle
(x1 - 1)2 +22 =1,
that is set
{z=zii+ 23k : 21,25 €R, (21 — 1)? + 22 = 1}

and point = = 0.
Ezxample 3b. Solve in H the following equation:
(33) kx?i + jzi + izj = 0.
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Using the data of the previous example, we get system:

oo = 0,
T2 + 2w0x3 =0,
2
73 — 23 — 23 — 23 — 221 =0,
Toxy = 0.

The solution of the last system is circle
(z1+1)2+22=1,

that is set
{:E =i+ z3k: z1,23 € R, (21 + 1)2 +.’E§ = 1}

and point z = 0.
5. The solution of incomplete quadratics equations
of the second form

In this section we shall study properties and solve equations of the form

(34) Z apzsz + Z cmzdmx = h.
p=1 m=1

If h = 0, then equation (34) takes the form:

n T
(35) Zapmsz + E Ccmadmz = 0.
p=1 m=1
According to theorem 1 equation (34) is equivalent to the following one:

r
(36) AlIL'g + Azlflz + Aszoxi + Aszore + Aszoz3 — 2 Z emZ(Z, Jm) = h.

m=1

Proposition 4. If z is a root of equation (35), then —=x is also a root of this equa-
tion.

It follows from the form of equation (35).

Remark 3. The set of solutions of equation (35) is always symmetrical with respect
to point 0.

Proposition 5. If z is a root of equation (35) and A; = As = 0, then its conjugate
I 1s also a root of this equation.

It follows from decomposition (36).
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Ezample 4. Solve in H the following equation:
(37) 2%k + ka?j +izjr = q.

We calculate coefficients of equation (36), and we have:
Ay = k, Ay = +3k, A3 = 0,A4 = —4k — 2’I:,A5 = —4j,

T
-2 Z Cmf(.’;f, d-;n) = 2$1$‘2 = 2]6.’13% -+ 2jx2x3.

m=1

Then equation (37) is equivalent to the following equation:
(38) 2myx2 — 2izozs + 25 (z2m3 — 22023) + k(27 — B2 +,’o’x§ +,3'1:§ —4zozy) = q.

We counsider cases.

e If g =0, then the set of the solution is two straight lines 22 — 322 = 0 in the
plane 24Oz, that is set

{t=z0+mz1i:20, 71 €R, m§—3x"17=0}.

e If ¢ = Rk, R € R\{0}, then equation (38) is equivalent to system

1T = 0,

Zox2 = 0,

ToZ3 — 210.’[3 =0

)

23 — Bz2 + 322 + 322 — Azoz0 = R.
0 2 1 3

(39)

The set of the solutions of system (39) is one of the following sets:
1) the hyperbola
3 —322 =R
in the plane zqOz;, that is set
{z =20 + 217 : 20,71 € R,2% — 322 = R};
2) the circle
zi4+22=—-R/3
with R < 0 in the plane z10z3, that is set
{z = z1i+ 23k : 21,23 € R, 23 + 22 = —R/3};
3) two points:
@3 = +v/—R/5
with R < 0, that is set
{z=+%V/-R/5j: R € (-0,0)}.
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Ezample 5. Solve in H the following equation:
(40) j22k + kx?j + izjz + jziz = s.

We calculate coefficients of equation (36). We have:

Ay = Ay = 0,Ag = —2j, Ay = —2 — 4k, A5 = —4j,

.
2 Z emE(Z, Jm) = 4x172 + 2k(2? — 23) + 2jzoz3 — 2iz173.

m=1

Then we have equation:

47172 — 2i(20x2 + 2123) + 25 (2223 — ToT1 — 2T0%3) + 2k(2? — 22 — 2wozs) = 5.

e Let s = 0, then we have a system

1Ty = 0,
ToT2 + 123 = 0,
T3 — ToZT1 — 2x0z3 = 0,

z? — 2% — 22025 = 0,

(41)

The solutions of system (41) are z = 0 and z = +k.
o If s = 2k, then z = +i.

e If s = 27, then the set of solutions is a hyperbole
1

0= —5—

2x3

in the plane z¢Oz3, that is set

{$=$0+$3k:$0,.’l}3 eER,xy = oz
3

o If s = —2¢, then equation (40) has no solution.

1

}-

As we see, the set of every possible set of solutions of the equations (37), (40) is

symmetric concerning a real axis.

It is interesting to note, that sometimes a quadratic equation has exactly three

solutions.
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ROZWIAZANIE OGOLNEGO KWATERNIONOWEGO ROWNANIA
. KWADRATOWEGO

Streszczenie

Rozwazamy pewng szeroka klasg kwaternionowych réwnan kwadratowych. W artykule
3] badane byly réwnania postaci 7. , aez® = 0 i zostalo tam wykazane, ze ich pierwiastki
sa badZ punktami odosobnionymi badz ukladaja sie w sfery. W obecnym artykule dowodzi-
my, ze pierwiastki ogélnego kwaternionowego réwnania kwadratowego moga by¢ nie tylko
punktami odosobnionymi lub ukladaé si¢ w sfery, lecz takze tworzy¢ okrag, hiperbole,
powierzchnig walcowa wzglednie parg plaszczyzn (ktére nie pokrywaja si¢ z plaszczyznami
wspdtrzednych) lub inne powierzchnie. Opisujemy przyklady réwnan, ktérych pierwiastki
tworza wspomniane struktury.



