arXiv:1412.5320v1 [math.CV] 17 Dec 2014

Integral theorems for the quaternionic

G-monogenic mappings

V. S. Shpakivskyi and T. S. Kuzmenko

Abstract. In the paper [I] considered a new class of quaternionic mappings, so-
called G-monogenic mappings. In this paper we prove analogues of classical integral
theorems of the holomorphic function theory: the Cauchy integral theorems for surface
and curvilinear integrals, and the Cauchy integral formula for G-monogenic mappings.

AMS Subject Classification: 30G35; 11R52.

Keywords: quaternion algebra, G-monogenic mapping, Cauchy integral
theorem, Cauchy integral formula.

0. Introduction

The Cauchy integral theorem and Cauchy integral formula for holomorphic
functions of the complex variable are fundamental results of the classical com-
plex analysis. Analogues of these results are also important tools in the quater-
nionic analysis.

Maybe the first quaternionic analogues of the mentioned results for a sur-
face in R?® are obtained by G. Moisil and N. Theodoresco [2]. Namely, they
proved some analogues of the Cauchy’s theorems for a smooth surface and for
continuously differentiable functions f satisfying the equality

ﬁ + 91 ; Jj+ a—fk =0,
RS 0y 0z
where i, j, k are the basis quaternionic units.

R. Fueter [3] transferred the results of paper [2] for a smooth surface in R*

and for so-called the regular functions f which by definition satisfies the equality
of L of. f of .
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The proofs of [2] and [3] are based on the Stokes formula.

B. Schuler [4] generalized the results of Fueter by adapting of Goursat’s proof
of the Cauchy’s theorem. Due to this, he replaced the condition of continuity of
partial derivatives to the differentiability of the real-valued components in the
Stolz sense.
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A. Sudbery [B] proved the Cauchy theorem and Cauchy formula under more
general conditions on a function and a surface. He assumed as in the complex
analysis only differentiability of real-valued components of the integrand. He
also considered the so-called differentiable surface and the rectifiable 3-chain.

O. Herus [6] proved the quaternionic Cauchy theorem for a surface in R?
under the same conditions on the function as in [5], but for another class of
surfaces.

Some analogues of the quaternionic Cauchy theorem and Cauchy integral
formula in the theory of s-regular functions are established in [7].

In this paper for quaternionic G-monogenic mappings we prove analogues
of the Cauchy theorem for surface and curvilinear integrals and the Cauchy
integral formula curvilinear integral.

1. The quaternionic G-monogenic mappings.

Let H(C) be the quaternion algebra over the field of complex numbers C,
whose basis consists of the unit 1 of the algebra and of the elements I, J, K
satisfying the multiplication rules:

I’=J=K?=-1,1J=-JI=K,JK=-KJ=1I,KI=—IK = J.

In the algebra H(C) there exists another basis {e1, e2, €3, €4}:
1 . 1 . 1, . 1.
6125(1—}—2]), 6225(1—21), €3=§(ZJ—K), 64=§(ZJ+K),

where ¢ is the complex imaginary unit. Multiplication table in a new basis can
be represented as

- er | eofes|ea]
€1 €1 0 €3 0
€9 0 €9 0 €q |- (1)
€3 0 €3 0 €1
€4 €4 0 €9 0

The unit 1 can be decomposed as 1 = ej + es.
Consider linear functionals f; : H(C) — C and f; : H(C) — C satisfying the
equalities

filer) = files) =1,  fi(e2)
fa(e2) = fa(es) =1, f2(e1)

Let us consider the vectors

Ji(es)
e3

07
fales) = 0.

i1 =1=e1+ea, id2=aier+azez, i3=bier+bses, arb,e€C k=12

which are a linearly independent over the field of real numbers R. It means that
the equality
oty + agio + aziz = 0, a,az,a3 € R

holds if and only if a3 = as = az = 0.



In the algebra H(C) consider the linear span E5 := {¢ = x4y + yia + 2i3 :
x,y,z € R} generated by the vectors i1, io, i3 over the field R. Denote fi(F3) :=
{fr(Q) : ¢ € E3}, k = 1,2. In what follows, we make the following essential
assumption: f1(FEs) = fa(E3) = C. Obviously, it holds if and only if at least
one of the numbers in each of pairs (a1,b1) or (az,bs) belongs to C\ R.

Let us introduce the notations

&= f1(Q) = z + yar + 2by, &2 := f2(Q) = =+ yaz + zb.

Now, the element ¢ € E3 can be represented in the form ¢ = & e1 + &aea.

A set S C R3? is associated with the set S¢ 1= {¢ = wiy +yis+zi3 : (z,y,2) €
S} in E3. We also note that a topological property of a set S¢ in E3 understand
as the same topological property of the set S in R3. For example, we will say
that a curve 7. C Fj3 is homotopic to the zero if v C R? is homotopic to the
zero, etc.

Let Q¢ be a domain in Ej.

A continuous mapping ® : Q. — H(C) (or D Q¢ — H(C)) is right-G-
monogenic (or resp. leﬁ—G-monogenic) in a domain Q¢ C E3, if ® (or resp. :13)
is differentiable in the sense of the Gateaux in every point of {)¢, i. e. if for every
¢ € Q¢ there exists an element ®'(¢) € H(C) (or resp. () € H(C)) such that

lim ((I)(C Yeh) - @(g))g* = h¥'(¢) Vhe Es

<or resp. lim (6(( +eh) — 6(()) el =d()h Vhe Eg).
e—0+0
®’(¢) is the right Gateaux derivative in the point ¢ and 6’(() is the left Gateaux
deriwative in the point ¢ .
A mapping ®(¢) (or ®(¢)) of the variable ¢ = z+yis+2zi3 € Q¢ with differen-
tiable real-valued components is right-G-monogenic (or resp. left-G-monogenic)
if and only if the following Cauchy — Riemann conditions are satisfied [1]:

o . 09 oo | 00
a—y:’LQ%, 5223% (2)
Oor resp.

oy oz 9z Oz °
It follows from the decomposition of the resolvent

1 n 1
= (& (&
t—§1 1 t—€2 2

t—¢07" VEeC: t£&, t#&

that the points (z,y, 2) € R?® corresponding to the noninvertible elements ¢ =
Ti1 + yia + zi3 of the algebra H(C) form the straight lines in R3:

L' x +yRea; + zReb; =0, ylmay + 2Imb; =0,



L?: x4+ yReas + zRe by = 0, ylmag + 2Imby =0

in the three-dimensional space R3.

Denote by Dy C C the image of Q¢ under the mapping fx, £ = 1,2. A
constructive description of all right- and left-G-monogenic mappings by means
of holomorphic functions of the complex variable are obtained in the paper [1].
Namely, proved the theorem:

Let a domain © C R? is convex in the direction of the straight lines L', L?
and fi(E3) = f2(F3) = C. Then any right-G-monogenic mapping ® : Q¢ —
H(C) can be expressed in the form

O(C) = Fi(&1)er + Fa(€a)ea + F3(E1)es + Fu(§2)eq, (4)

V(= xiy + yia + zizg € Q,

where Fi, Fy are the certain holomorphic in a domain D; functions of the vari-
able & := = + ya1 + zby, and Fj, F3 are the certain holomorphic in a domain
D, functions of the variable & := x + yas + zbs. R

Under the same assumptions, any left-G-monogenic mapping ® : Q, — H(C)
can be expressed in the form

B(¢) = Fi(&1)er + Fa(&)ea + Fs(&)es + Fi(&r )ea, (5)
where F,,, n = 1,2, 3,4 are defined similarly to above.

2. Cauchy integral theorem for a curvilinear integral. Let v be a
Jordan rectifiable curve in R?. For a continuous mapping V¥ : v, — H(C) of the
form

4 4
\I/(C) :ZUk(:r,y,z)ek+zZVk(:c,y,z)ek, (6)
k=1 k=1

where (z,y,2) € vy and Uy : v = R, Vi : v = R, we define integrals along a
Jordan rectifiable curve «¢ by the equalities:

4 4
/dQI/(C) :=Zek/Uk(x,y,z)dx—I—Zigek/Uk(x,y,z)dy—i—
8!

Ye k=1 k=1 5
4 4
—|—Zigek/Uk(a:,y,z)dz—l—iZek/Vk(x,y,z)d:r—l—
k=1 2 k=1 3
4 4
—i—iZigek/Vk(x,y,z)dy—FiZigek/Vk(:zr,y,z)dz
¥ k=1 ¥

and

4 4
/\II(Q)dC :=Zek/Uk(x,y,z)dx—I—Zekig/Uk(x,y,z)dy—i—
¥

k=1 5



_|_

ekig/Uk T, Y, 2 dz—l—zZek/Vk x,y, z)dz+
¥

k=1

+1

- 10

>
Il

1

€ki2/Vk(I,y72’)dy+iZ€ki3/Vk(fl?,yvz)dz
k=1
Y v

where d¢ := dx + i2dy + i3dz.

Let X be a piece-smooth surface in R3. For a continuous function ¥ : ¥, —
H(C) of the form (@), where (z,y, z) € £, we define surface integrals on ¥, with
the differential form o := dydz + dzdzis + dxdyis by the equalities

4
/ Zek/Uk x,y, z)dydz + Z’Lgek/Uk x,y, z)dzdr+

S k=1 % k=1
4 4
+223ek/Uk(x,y,z)da:dy—FiZek/Vk(x,y,z)dydz—F
k=1 % k=1 %
4 4
+ZZZQ€k/Vk T,Y,2 dzda:—l—zZigek/Vk(x,y,z)dxdy;
)

b
I
—

k=1 5

4

4
/\I/(C)a = Zek/Uk x,y, z)dydz + Z ekzz/ w(z,y, 2)dzdz+
)

k=1 k=1

4

NE

+ ekig/Uk(az,y,z)da:dy—FiZek/Vk(x,y,z)dydz+
k=1 ¥ k=1 %
4 4
—l—iZekig/Vk(x,y,z)dzdx+iZeki3/Vk(x,y,z)d:vdy.
k=1 % k=1 %

If a function ¥ : Q — H(C) is continuous together with partial derivatives
of the first order in a domain ¢, and ¥ is a piece-smooth surface in €2, and the
edge v of surface ¥ is a rectifiable Jordan curve, then the following analogues
of the Stokes formula are true:

0¥ 9v ov 8\11
/dC\II(Q —E/ <22 o 8y> dxdy + ( 8y 25 )dydz-i—

¢ <

+ <E - 13%> dzdz, (7)

/ ¢)d¢ = / 8‘11 ([Nj dzdy + 8_\111_3_6_\112_2 dydz+
y 0z



v oV
<E - %13> dzdz. (8)

Now, the next theorem is a result of the formulae (), (8) and the equalities
@), @), respectively.

Theorem 1. Suppose that @ : Q¢ — H(C) is a right-G-monogenic mapping
in a domain Q¢ and P Q¢ — H(C) is a left-G-monogenic mapping in Q¢ .
Suppose also that ¥ is a piece-smooth surface in ), and the edge v of surface ¥
1s a rectifiable Jordan curve. Then

[aco© = [#0ic=o )

¢ ¢

In the case where a domain 2 is convex, then by the usual way (see, e. g.,
[9]) the equality (@) can be prove for an arbitrary closed Jordan rectifiable curve
Y

In the case where a domain 2 is an arbitrary, then similarly to the proof of
Theorem 3.2 [10] we can prove the following

Theorem 2. Let ® : Q. — H(C) be a right-G-monogenic mapping in a
domain Q¢ and D : Q¢ — H(C) be a left-G-monogenic mapping in Q¢ . Then
for every closed Jordan rectifiable curve ¢ homotopic to a point in Q¢ , the the
equalities (@) holds.

3. Cauchy integral formula. To establish the Cauchy integral formula
for a curvilinear integral, consider the following auxiliary statement:

Lemma. Suppose that a domain Q@ C R3 is conver in the direction of the
straight lines L', L* and fi1(E3) = f2(E3) = C. Suppose also that ® : Q¢ —
H(C) is a right-G-monogenic mapping in Q¢, and D : Qe — H(C) is a left-
G-monogenic mapping in ¢, and ¢ is an arbitrary rectifiable curve in €.

Then

/ dCB() = ) / Fy(€)d€) e / Fa2)dés +es / Fy(1)dé) e / Fy(2)dés
¢ Y1 Y2 71 Y2
(10)

and respectively

/ B(C)d¢ = ex / Fi(61)dé1 4o / Fo(62)dEs + o3 / Fy(62)dEo +c4 / Fu(61)den
71 Y2 Y1

¢ Y2

(11)
where 7y is the image of ¢ under the mapping fr and F,, is the same function
as in @) and @) respectively.

Proof. The equality (I0)) follows immediately from the representation (),
the equality d¢ = d&1e1 4+ d€ze2 and the multiplication rules (Il). Similarly we
can prove the equality (II)). Lemma is proved.



Let ¢ € E3. An inverse element (! is of the following form:
Cil = —€1 —+ —€9 (12)

and it exists if and only if & # 0 and & # 0.

Let (p = §§O)el + féo)eg be a point in a domain Qs C Es3. In a neighborhood
of (o contained in Q. let us take a circle C((p) with the center at the point (.
By C; C C we denote the image of C({p) under the mapping fx, k =1,2. We
assume that the circle C({y) embraces the set {( — (o : (¢ € L% U Lg} It means

that Cy bounds some domain Dj and 5 0) ¢ D, k=1,2.

We say that the curve v, C QC embraces once the set {(—(p: (€ L1 UL? et
if there exists a circle C'({p) which embraces the mentioned set and is homotoplc
to ¢ in the domain Q: \{¢— (o : C € Lé U Lg}

Theorem 3. Suppose that a domain Q C R3 is convex in the direction
of the straight lines L', L? and fi1(E3) = f2(E3) = C. Suppose also that ® :
Q¢ — H(C) is a right-G-monogenic mapping in Q¢ and D : Q¢ — H(C) is a
left-G-monogenic mapping in Q¢. Then for every point (o € Q¢ the following
equalities are true:

(Go) = / (€ — Go) 1 B(C) (13)
and )
B(60) = 5 [ BOC - ) e (14)

where ¢ is an arbitrary closed Jordan rectifiable curve in ¢, that embraces
once the set {¢ — (o : ¢ € L1 U Ly}.

Proof. Inasmuch as -y, is homotopic to C((p) in the domain Q¢ \ {¢ — (o :
¢ € L1 U Ly}, it follows from Theorem 2 that

1

2mi

- Mce0) = o [ (-G Mace)
¢ C(Co)

Further, using the equality (IZ]), Lemma and the integral Cauchy formula
for holomorphic functions F,,, we obtain immediately the following equalities:

1 1 Fi(&) 1 Fy (&)
| (C-arerO =agy, [ / St
C(Co)
1 F5(&1) Fy(&
63%/51 §0>d§ “omi / 5(0 PRI
C1

=" (550))61 + By (gé ))62 + F3(§1 )63 + Fy( (0)) = ®(¢o),



where (o = 510)61 + §2 eo. Similarly can be proved the equality (I4)). The
theorem is proved.

We note that the method of this proof is similarly to the proof of Theo-
rem 6 of the paper [§], where Cauchy integral formula is obtained in a finite-
dimensional semi-simple commutative algebra.

4. Cauchy integral theorem for a surface integral. Let (2 be a bounded
domain in R3. For a continuous mapping ¥ : Q¢ — H(C) of the form (@), where
(2,y,2) € Qand Uy : Q@ - R, Vi : Q@ = R, we define a volume integral by the
equality

4

/ (Q)dzdydz := Zek/Uk x,Y, 2 )dxdydz—FzZek/Vk(x y, z)dxdydz.

Qe k=1 k=1 g

Let X be a piece-smooth surface in R3. For a continuous mapping ¥ : ¥ —
H(C) of the form (@), where (x,y,2) € Zand Uy : & - R,V : ¥ = R, we
define the surface integrals on a piece-smooth surface Y. with the differential
form o := dydz + dzdxis + dxdyis by the equalities

4

/U\If Zek/Uk T,Y, 2 )dydz—i—Zzgek/Uk(:v y, z)dzdx+

S k=1 b
4 4
—|—Zi36k/Uk(x,y,z)da:dy—FiZek/Vk(x,y,z)dydz—F
k=1 ¥ k=1 %
4
—H'Zigek/Vk (z,y,2 )dzd:v—i—zZz;gek/Vk (z,y, z)dzdy
k=1 % k=1
and
4 4
Zek/ (x,y,2 )dydz+Zekzg/Uk(:v,y,z)dzdx—i—
S k=1 % k=1 %

4

4
—|—Zeki3/Uk(az,y,z)da:dy—FiZek/Vk(x,y,z)dydz+
5

k=1 k=1 %
—HZeng/Vk (z,y,2 )dzd:v+zZek23/Vk(x,y,z)d:vdy.
k=1 %

If a domain Q C R? has a closed piece-smooth boundary 9 and a mapping
U : Q: — H(C) is continuous together with partial derivatives of the first



order up to the boundary 0, then the following analogues of the Gauss —
Ostrogradsky formula are true:

ov oJv  ov
/ a¥(() = / (% —l—zza—y +235> dxdydz. (15)
Q¢ Q¢
and ov v ov
/\I/(C)UZ/(%'i‘a—ylg—FEZg) dxdydz. (16)
Q¢ Qc

Now, the next theorem is a result of the formulas (I5), (I6) and the condi-
tions (@), @), respectively.

Theorem 4. Suppose that Q0 has a closed piece-smooth boundary 9. Sup-
pose also that the mapping ® : Q¢ — H(C) is a right-G-monogenic in Q¢ and
o Q¢ — H(C) is a left-G-monogenic in ¢, and these mappings are continuous
together with partial derivatives of the first order up to the boundary 0Q¢:. Then

/acb(g) :/(1+z’§+i§)q>’(g)dxdydz (17)
FeIe%e Q¢

and
/@(c)a:/6’(<)(1+i§+i§)dxdydz. (18)
o Q¢

Corollary. Under the conditions of Theorem 4 with the additional assump-
tion 1 + i3 +1i3 = 0, i. e. the mappings ® and ® are solutions of the three-
dimensional Laplace equation, then the equalities (IT) and ([8) can be rewritten

in the form
[ w0 = [ d0-o

Q¢ Q¢
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