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Abstract. In this paper we investigated some properties of holomorphic func-

tions (belonging to the kernel of the Dirac operator) defined on domains of the real

Cayley-Dickson algebras. For this purpose, we study first some properties of these

algebras, especially multiplication tables for certain elements of the basis. Using these

properties, we provided an algorithm for constructing examples of the class of functions

under consideration.
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0. Introduction

The theory of quaternionic differentiable functions has many applications
in different areas of mathematics, physics and in other applied sciences (see,
for example, [3], [4]). This theory has its origins in the paper [7] in which the
authors proposed, for the first time, an analogue of the Cauchy-Riemann condi-
tions in three-dimensional case. For the four-dimensional case, an analogue of
these conditions was considered in the paper [2] and, as a next step of this gen-
eralization, the differentiable functions in the octonionic algebra was considered
in the papers [11], [12].

Generalization of the Cauchy-Riemann conditions in all algebras obtained
by the Cayley-Dickson process (called Cayley-Dickson algebras) was done in the
paper [6], where differentiable functions of variables belonging to Cayley-Dickson
algebras were defined. For such functions, was established analogues results with
the main results of complex analysis, results which can be successfully used
in the further studies of special functions of variables with values in Cayley–
Dickson algebras.

Comparing with [6], in the present paper, we investigate another class of
differentiable functions (using the Dirac operator) in Cayley-Dickson algebras
and, more important, we provide an example of this kind of functions and an
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algorithm to find such as examples. Since these functions are rather complicated
objects, it is quite important to have a way to generate examples.

The paper is organized in two sections. In the first section, we briefly pre-
sented some properties of algebras obtained by the Cayley-Dickson process and
the algorithm described by J. W. Bales regarding to an easy way to multiply
the elements from a basis in such algebras (by using exclusive or operation and
a twist map). In the second section, by description the multiplication tables
for certain elements of the basis (Propositions 2.2 and 2.3), we obtained the
main result of this work: an example of a left hyperholomorphic function in
generalized Cayley-Dickson algebras (Theorem 2.12). Moreover, in the Thorem
2.10 we proved that for studying left At-holomorphic functions in generalized
Cayley-Dickson algebras At =

(
γ1,...,γt

R
)
with γ1 < 0, . . . , γt < 0. it is suffices to

consider left At-holomorphic functions only in the algebras
(−1,...,−1

R
)
.

1. Preliminaries

Let K be a commutative field with charK ̸= 2 and A be an algebra over
the field K. A unitary algebra A ̸= K such that we have x2 +αxx+ βx = 0, for
each x ∈ A, with αx, βx ∈ K, is called a quadratic algebra.

In the following, we briefly present the Cayley-Dickson process and the prop-
erties of the algebras obtained. For details about the Cayley-Dickson process,
the reader is referred to [9] and [10].

Let A be a finite dimensional unitary algebra over a field K with a scalar
involution

: A → A, a → a,

i. e. a linear map satisfying the following relations:

ab = ba, a = a,

and
a+ a, aa ∈ K · 1 for all a, b ∈ A.

The element a is called the conjugate of the element a, the linear form

t : A → K, t (a) = a+ a

and the quadratic form

n : A → K, n (a) = aa

are called the trace and the norm of the element a. Hence an algebra A with
a scalar involution is quadratic.

Let γ ∈ K be a fixed non-zero element. We define the following algebra
multiplication on the vector space

A⊕A : (a1, a2) (b1, b2) := (a1b1 + γb2a2, a1b2 + b1a2) . (1)
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We obtain an algebra structure over A ⊕ A, denoted by (A, γ) and called the
algebra obtained from A by the Cayley-Dickson process or simply generalized
Cayley-Dickson algebra. We have dim (A, γ) = 2 dimA.

Let x ∈ (A, γ), x = (a1, a2). The map

: (A, γ) → (A, γ) , x → x̄ = (a1, -a2) ,

is a scalar involution of the algebra (A, γ), extending the involution of the
algebra A.

If we take A = K and apply this process t times, t ≥ 1, we obtain an algebra
over K,

At =
(γ1, ..., γt

K

)
.

By induction in this algebra, the set {e0 = 1, e1, ..., en−1}, n = 2t, generates a
basis with the properties:

e2i = γi1, γi ∈ K, γi ̸= 0, i = 1, ..., n− 1 (2)

and

eiej = −ejei = βijek, βij ∈ K, βij ̸= 0, i ̸= j, i, j = 1, ...n− 1, (3)

βij and ek being uniquely determined by ei and ej .
From [10], Lemma 4, it results that in an algebra At with the basis B =

{e0 = 1, e1, ..., en−1} satisfying relations (2) and (3) we have:

ei (eix) = γ2
i x = (xei)ei, (4)

for all i ∈ {1, 2, ..., n− 1} and for every x ∈ A.
The algebras At, in general, are neither commutative and nor associative

algebras, but are flexible (i. e. x(yx) = (xy)x = xyx, for all x, y ∈ At) quadratic
and power associative (i. e. the subalgebra< x > of A, generated by any element
x ∈ A, is associative).

Remark 1.1. For γ1 = ... = γt = −1 and K = R, in [1], the author
described how we can multiply the basis vectors in the algebra At, dimAt =
2t = n. He used the binary decomposition for the subscript indices.

Let ep, eq be two vectors in the basis B with p, q representing the binary
decomposition for the indices of the vectors, that means p, q are in Zn

2 . We have
that epeq = γn (p, q) ep⊗q, where:

i) p ⊗ q are the sum of p and q in the group Zn
2 or, more precisely, the

”exclusive or” for the binary numbers p and q;
ii) γn is a function γn : Zn

2 × Zn
2 → {−1, 1}.

The map γn is called the twist map.
The elements of the group Zn

2 can be considered as integers from 0 to 2n−1
with multiplication ”exclusive or” of the binary representations. Obviously, this
operation is equivalent with the addition in Zn

2 .
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From now on, in whole the paper, we will consider K = R. Using the same
notations as in the Bales’s paper, we consider the following matrices:

A0 = A =

(
1 1
1 −1

)
, B =

(
1 −1
1 1

)
, C =

(
1 −1
−1 −1

)
. (5)

In the same paper [1], the author find the properties of the twist map γn
and put the signs of this map in a table. He partitioned the twist table for Zn

2

into 2× 2 matrices and obtained the following result:

Theorem 1.2. ([1], Theorem 2.2., p. 88-91) For n > 0, the Cayley-
Dickson twist table γn can be partitioned in quadratic matrices of dimension 2
of the form A,B,C,−B,−C, defined in the relation (5). Relations between them
can be found in the below twist trees:

Fig. 1: Twist trees([1], Table 9)

�
Definition 1.3. Let x = x0, x1, x2, .... and y = y0, y1, y2, ..... be two se-

quences of real numbers. The ordered pair

(x, y) = x0, y0, x1, y1, x2, y2, ....

is a sequence obtained by shuffling the sequences x and y.
Using Theorem 1.2, in [1], the author gave the below algorithm for find

γn (s, r) , where s, r ∈ Zn
2 :

i) We find the shuffling sequence (s, r) .
ii) Starting with the root A0, we can find γn (s, r) using the twist tree. We re-

mark that ”00”= unchanged, ”01” =left →right, ”10”=right→ left, ”11”=right
→ right.

Let H (γ1, γ2) be the generalized quaternion algebra and H(− 1,−1) be the
quaternion division algebra. Below, you can see the multiplication tables:
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· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 γ1 e3 γ1e2
e2 e2 −e3 γ2 −γ2e1
e3 e3 −γ1e2 γ2e1 −γ1γ2

Multiplication table for the generalized quaternion algebra

· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1
e3 e3 e2 −e1 −1

Multiplication table for the real division quaternion algebra

· 1 e1 e2 e3
1 1 1 1 1
e1 1 −1 1 −1
e2 1 −1 −1 1
e3 1 1 −1 −1

Quaternion twist table

(
A0 A
B −B

)
Quaternion twist table using notations from Theorem 1.2.

Example 1.4. Let A4 be the real sedenion algebra. That means dimA4 =
16 with {1, e1, ..., e15} a basis in this algebra. Let compute e7e13 = γ4(72, 132)e7⊗13.
We have the following binary decompositions:

72 = 0111, since 7 = 22 + 2 + 1 and

132 = 1101, since 13 = 23 + 22 + 1.

Since 0111⊗ 1101 = 1010(= 23 + 2 = 10), it results that 7⊗ 13 = 10.
Now, we compute γ4 (e7, e13) . First, we shuffle the sequences 0111 and 1101.

We obtain 01 11 10 11. Starting with A0, it results: A0
01→ A

11→ −C
10→ C

11→ −C,
then γ4 (e7, e13) = −1 and e7e13 = −e10.
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2. Main results

In this section, for a generalized Cayley-Dickson algebra At, writing the
basis’s elements in a convenient way, we can obtain multiplication tables for
certain elements of the basis. Using these results, in Theorem 2.12 we provide
an example of a left hyperholomorphic function in generalized Cayley-Dickson
algebras.

2.1. Multiplication table in generalized Cayley-Dickson algebras.

Remark 2.1. i) In the generalized quaternion algebra, H (γ1, γ2) , the basis
can be written as

{1 = e0, e1, e2, e1e2}.

For the generalized octonion algebra, O(γ1, γ2, γ3), the basis can be written

{1 = e0, e1, e2, e1e2, e4, e1e4, e2e4, (e1e2) e4}.

Therefore e3 = e1e2, e7 = e3e4 = (e1e2) e4, e2e4 = e6 and, when compute them,
in these products do not appear any of the elements γ1, γ2, γ3, or products of
some of them at the end.

We remark that in the algebra At =
(
γ1,...,γt

R
)
in the products of the form

e1e2, (e1e2) e4, ..., ((e2re2r+1) . . . e2k)e2i ,

when compute them, do not appear any of the elements γ1, γ2, ..., γt or products
of some of them at the end.

ii) Using above remarks, the basis in the algebra At =
(
γ1,...,γt

R
)
can be

written under the form

{1 = e0, e1, e2, . . . , e2t−1−1, e2t−1 , e1e2t−1 , e2e2t−1 , e3e2t−1 , . . . , e2t−1−1e2t−1}
(6)

with
eie2t−1 = −e2t−1ei = e2t−1ei, i ∈ {1, 2, . . . , 2t−1 − 1}. (7)

Proposition 2.2. Let At =
(
γ1,...,γt

R
)
be an algebra obtained by the Cayley-

Dickson process and {e0 = 1, e1, ..., en−1}, n = 2t be a basis. Let r ≥ 1, r <
k ≤ i < t. Therefore

((e2re2r+1) . . . e2k)e2i = (−1)
k−r+2

eT , (8)

((e1e2r )e2r+1) . . . e2k)e2i = (−1)
k−r+3

eT+1, (9)
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where T = 2r + 2r+1 + . . .+ 2k + 2i and

e1e2i = e2i+1. (10)

.

Proof. From Remark 2.1, it results that we can use Theorem 1.2 for
γ1, γ2, . . . , γt arbitrary. From Remark 1.1, it results T = 2r+2r+1+ . . .+2k+2i.
For T, we have the binary decomposition

T2 = 100 . . . 0︸ ︷︷ ︸
i−k−1

111 . . . 1︸ ︷︷ ︸
k−r+1

0 . . . 0︸ ︷︷ ︸
r

.

Using the same remark, we obtain e2re2r+1 = γn

01...0︸ ︷︷ ︸
r+2

, 10 . . . 0︸ ︷︷ ︸
r+2

 e2r+2r+1 . We

”shuffling” 01 . . . 0︸ ︷︷ ︸
r+2

and 10 . . . 0︸ ︷︷ ︸
r+2

and we obtain 01 10 00 00 . . . 00 00︸ ︷︷ ︸
r pairs

. Starting

with A0, it results:

A0
01→ A

10→ C,

then γn

01 . . . 0︸ ︷︷ ︸
r+2

, 10 . . . 0︸ ︷︷ ︸
r+2

 = 1 and e2re2r+1 = e2r+2r+1 .

We compute (e2re2r+1)e2r+2 . We obtain

(e2re2r+1)e2r+2 = e2r+2r+1e2r+2 = γn

011...0︸ ︷︷ ︸
r+3

, 10...0︸ ︷︷ ︸
r+3

 e2r+2r+1+2r+2 .

Shuffling 011...0︸ ︷︷ ︸
r+3

and 10...0︸ ︷︷ ︸
r+3

, we get 01 10 1000 00...00 00︸ ︷︷ ︸
r pairs

. Starting with A0, it

results: A0
01→ A

10→ C
10→ −C, then

γn

011...0︸ ︷︷ ︸
r+3

, 10...0︸ ︷︷ ︸
r+3

 = −1,

therefore e2r+2r+1e2r+2 = −e2r+2r+1+2r+2 . Continuing this procedure, we remark
that the number of ”1” in the ”shuffling” obtained influences the sign. Since
T = 2r + 2r+1 + ...+ 2k + 2i has binary decomposition

T2 = 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

,

in which we have k− r+2 elements equal with 1, we obtain relation (8). In the
same way it results relations (9) and (10). �
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Proposition 2.3. With the same notations as in Proposition 2.2, for the
algebra At =

(−1,...,−1
R

)
, we have:

· eT eT+1

eT1 (−1)
k−r+1

e2i − (−1)
k−r+1

e2i+1

eT1+1 − (−1)
k−r+1

e2i+1 − (−1)
k−r+1

e2i

(11)

for r < k, where T = 2r + 2r+1 + ...+ 2k + 2i, T1 = 2r + 2r+1 + ...+ 2k and

· eT eT+1

e2k eM −eM+1

e2k+1 −eM+1 −eM

, (12)

where M = 2k + 2i.

Proof. Case 1 : r < k. We compute eT1eT . We have eT1eT = γ (s, q) eM ,
where s, q are the binary decomposition of T1 and T. The binary decomposition
of M is M2 = T1 ⊗ T. It results M = 2i,

s = 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, q = 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

.

By ”shuffling” s⊗ q, we obtain

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 11 11 ...11︸ ︷︷ ︸
(k−r+1) pairs

00 00 ...00 00︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C

11→ C
11→ −C

11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
00→ (−1)

k−r+1
C︸ ︷︷ ︸

r

.

Therefore γ (s, q) = (−1)
k−r+1

.
Now, we compute eT1eT+1. For this, we will ”shuffling” 00...0︸ ︷︷ ︸

i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

with

100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

. It results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 11 11...11︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 01︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C

11→ C
11→ −C

11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
01→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.
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For eT1+1eT , ”shuffling” 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

with 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 01 01...01︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 10︸ ︷︷ ︸
r pairs

.

Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C

11→ C
11→ −C

11→ C → ...
11→ (−1)

k−r+1
C︸ ︷︷ ︸

k−r+1

00→ ...
10→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.

For eT1+1eT+1, we compute first (T1 + 1)⊗ (T + 1) . We obtain:(
2r + 2r+1 + ...+ 2k + 1

)
⊗
(
2r + 2r+1 + ...+ 2k + 2i + 1

)
=

=

00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

⊗

100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

 =

= 10...0︸ ︷︷ ︸
i−k

000...0︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

= 2i.

Now, ”shuffling” 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

with 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 01 01...01︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 11︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C

11→ C
11→ −C

11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
11→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.

Case 2 : r = k. We have M = 2k⊗T = 2i+2k. For e2keT , ”shuffling” 00...0︸ ︷︷ ︸
i−k

10...0︸ ︷︷ ︸
k+1

with 100...0︸ ︷︷ ︸
i−k

0...0︸︷︷︸
k+1

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

10 00 00 ...00︸ ︷︷ ︸
(k+1) pairs

.

Starting with A0, we get:

A0
01→ A

00→ .....
00→︸ ︷︷ ︸

i−k

A
10→ C

00→ C
00→ ...

00→ C︸ ︷︷ ︸
k+1

.
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For e2keT+1, ”shuffling” 00...0︸ ︷︷ ︸
i−k

10...0︸ ︷︷ ︸
k+1

with 100...0︸ ︷︷ ︸
i−k

0...1︸︷︷︸
k+1

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

10 00 00 ...01︸ ︷︷ ︸
(k+1) pairs

.

Starting with A0, we get:

A0
01→ A

00→︸ ︷︷ ︸ ... 00→
i−k

A
10→ C

00→ C
00→ ...

01→ −C︸ ︷︷ ︸
k+1

.

etc.�
Proposition 2.4. Let At =

(
γ1,...,γt

R
)
be an algebra obtained by the Cayley-

Dickson process. For any x1, x2, ..., xt ∈ R− {0}, we have that(γ1, ..., γt
R

)
≃

(
γ1x

2
1, ..., γtx

2
t

R

)
.

Proof. Let At =
(
γ1,...,γt

R
)
with the basis {e0 = 1, e1, ..., en−1}, n = 2t and

let A′
t =

(
γ1x

2
1,...,γtx

2
t

R

)
with the basis {e′0 = 1, e′1, ..., e

′
n−1} such that (e′i)

2 =

γix
2
i , i ∈ {1, 2, ..., n − 1}. We remark that (xiei)

2 = x2
i γi and from here, it

results that the map τ : A′
t → At, τ (e′i) = eixi is an algebra isomorphism. �

The above proposition generalized Proposition 1.1, p. 52 from [5].

Remark 2.5. From Proposition 2.4, it results that for each n = 2t there
are only n non-isomorphic algebras At. These algebras are of the form At =(
γ1,...,γt

R
)
, with γ1, ..., γt ∈ {−1, 1}.

2.2. At−holomorphic functions.

Definition 2.6. Let {e0 = 1, e1, ..., en−1} be a basis in At =
(
γ1,...,γt

R
)
,

n = 2t. To domain Ω ⊂ R2t−1 we will associate the domain Ωζ := {ζ =
x1e1 + . . .+ xn−1en−1 : (x1, x2, . . . , xn−1) ∈ Ω} included in At.

Consider a function Φ : Ωζ → At of the form

Φ(ζ) =

n−1∑
k=1

Φk(x1, x2, . . . , xn−1)ek, (13)

where (x1, x2, . . . , xn−1) ∈ Ω and Φk : Ω → R.
We say that a function of the form (13) is left At−holomorphic in a domain

Ωζ if the first partial derivatives ∂Φk/∂xk exist in Ω and the following equality
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is fulfilled in every point of Ωζ :

D[Φ](ζ) =

2t−1∑
k=1

ek
∂Φ

∂xk
= 0.

The operator D is called Dirac operator. Note that if At is the generalized
quaternion algebra, then the left At−holomorphic functions is also called hyper-
holomorphic. We also note that every hyperholomorphic function Φ in a domain
Ωζ is a solution of the equation

γ1
∂2Φ

∂x2
1

+ γ2
∂2Φ

∂x2
2

+ γ1γ2
∂2Φ

∂x2
3

= 0.

Remark 2.7. Let H (γ1, γ2) be the generalized quaternion algebra with the
basis {1, e1, e2, e3}, γ1 < 0, γ2 < 0 and H( − 1,−1) be the usual quaternion
division algebra with the basis {1, i, j, k}. Let Ω be a domain in R3, and let
Ωζ := {ζ = xi+yj+zk : (x, y, z) ∈ Ω} be a corresponding domain in H(−1,−1).
The function Φ : Ωζ → H(− 1,−1) of the form

Φ(ζ) = u1 (x, y, z) + u2 (x, y, z) i+ u3 (x, y, z) j + u4 (x, y, z) k.

is hyperholomorphic in the domain Ω if

D[Φ](ζ) = i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z
= 0.

For another domain ∆ ⊂ R3, we associate the domain ∆ζ̃ := {ζ̃ = x̃e1+ỹe2+

z̃e3 : (x̃, ỹ, z̃) ∈ ∆} in the algebra H (γ1, γ2). The Dirac operator in H (γ1, γ2) ,

denoted by D̃, is

D̃ := e1
∂

∂x̃
+ e2

∂

∂ỹ
+ e3

∂

∂z̃
.

The elements of bases inH (−1,−1) andH (γ1, γ2) satisfy the following equal-
ities:

e1 = i
√
−γ1, e2 = j

√
−γ2, e3 = k

√
γ1γ2. (14)

Now we establish a connection between hyperholomorphic functions in the
algebras H (−1,−1) and H (γ1, γ2), where γ1 < 0, γ2 < 0. For this, we denote

x =
1√
−γ1

x̃, y =
1√
−γ2

ỹ, z =
1

√
γ1γ2

z̃.

These relations give us the operator equalities:

∂

∂x̃
=

1√
−γ1

∂

∂x
,

∂

∂ỹ
=

1√
−γ2

∂

∂y
,

∂

∂z̃
=

1
√
γ1γ2

∂

∂z
. (15)

Now, using relations (14) and (15), we obtain

D̃[Φ](ζ̃ ) = e1
∂Φ

∂x̃
+ e2

∂Φ

∂ỹ
+ e3

∂Φ

∂z̃
=

11



= i
∂Φ

∂x

1√
−γ1

√
−γ1 + j

∂Φ

∂y

1√
−γ2

√
−γ2 + k

∂Φ

∂z

1
√
γ1γ2

√
γ1γ2 =

= i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z
= D[Φ](ζ) = 0.

Using the above notations, we obtain the following theorem:

Theorem 2.8. Let Ω be an arbitrary domain in R3 and ∆ be a domain in
R3 such that the coordinates of the corresponding points ζ = xi+ yj + zk ∈ Ωζ

and ζ̃ = x̃e1 + ỹe2 + z̃e3 ∈ ∆ζ̃ satisfy the following relations:

x =
1√
−γ1

x̃, y =
1√
−γ2

ỹ, z =
1

√
γ1γ2

z̃.

Then if the function Φ : Ωζ → H(−1,−1) is hyperholomorphic in the domain

Ωζ , then the same function Φ, of ζ̃, is hyperholomorphic in the domain ∆ζ̃ ∈
H(γ1, γ2) with γ1 < 0, γ2 < 0. The converse is also true.

Proof. The result directly follows from Remark 2.7.�

Remark 2.9. (i) The above Theorem tell us that for studying hyperholo-
morphic functions in generalized quaternion algebras H(γ1, γ2) with γ1 < 0,
γ2 < 0 it is suffices to consider hyperholomorphic functions only in the usual
quaternion algebra H(−1,−1).

(ii) The result similar to the previous remark was established in the paper
[8] (Theorem 5) in a three-dimensional commutative associative algebra.

Theorem 2.10. Let At =
(
γ1,...,γt

R
)
be a generalized Cayley-Dickson algebra

with γ1 < 0, . . . , γt < 0. Let Ω be an arbitrary domain in R2t−1 and ∆ be a
domain in R2t−1 such that the coordinates of the corresponding points ζ =
x1e1 + . . . + x2t−1e2t−1 ∈ Ωζ and ζ̃ = x̃1 ẽ1 + x̃2 ẽ2 + . . . + x̃2t−1 ẽ2t−1 ∈ ∆ζ̃
satisfy the following relations

x1 =
1√
−γ1

x̃1, x2 =
1√
−γ2

x̃2, . . . , xn =
1√

(−1)tγ1 . . . γt
x̃n.

If the function Φ : Ωζ →
(−1,...,−1

R
)
is left At-holomorphic in the domain Ωζ ,

then the same function Φ, but depending of ζ̃ is left At-holomorphic in the
domain ∆ζ̃ ∈ At. The converse is also true.

Proof. Let {1, e1, ..., en−1} be a basis in
(−1,...,−1

R
)
and {1, ẽ1, ..., ẽn−1} be

a basis in At =
(
γ1,...,γt

R
)
.

Since
ẽ1 = e1

√
−γ1, ẽ2 = e2

√
−γ2, . . . ,

. . . , ẽn−1 = en−1

√
(−1)tγ1 . . . γt ,

the result is obtained from a simple computation as in Remark 2.7.�
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Remark 2.11. Using above Theorem, it is obvious that, for studying left
At-holomorphic functions in generalized Cayley-Dickson algebras At =

(
γ1,...,γt

R
)

with γ1 < 0, . . . , γt < 0. it is suffices to consider left At-holomorphic functions
only in the algebras

(−1,...,−1
R

)
.

Now we consider another class of differentiable functions. LetAt =
(
γ1,...,γt

R
)
,

with γ1 = ... = γt = −1, and the domain Ω ⊂ R2t . We denote with Ωζ := {ζ =
x0+x1e1+. . .+xn−1en−1 : (x0, x1, . . . , xn−1) ∈ Ω} a domain in At. This domain
is called congruent with the domain Ω.

We consider a function Φ : Ωζ → At of the form

Φ(ζ) =

n−1∑
k=0

Φk(x0, x1, . . . , xn−1)ek, (16)

where (x0, x1, . . . , xn−1) ∈ Ω and Φk : Ω → R.
We say that a function of the form (16) is left At−hyperholomorphic in a

domain Ωζ if the first partial derivatives ∂Φk/∂xk exist in Ω and the following
equality is fulfilled in every point of Ωζ :

2t−1∑
k=0

ek
∂Φ

∂xk
= 0.

In the following, we will provide an algorithm to constructing a leftAt−hyperholomorphic
functions. Using the above notations, let v (x, y) be a rational function defined
in a domain G ⊂ R2. In the following, using some ideas given in Theorem 3
from [12], we will give an example of left At−hyperholomorphic function, for all
t ≥ 1, t ∈ N. For this, we consider the following functions:

ϕ1 = x0 + e1x1, ϕ2 =
1

e1
(x0 + e1x1),

ρ2s−1 = x2s − e1x2s+1, ρ2s = − 1

e1
(x2s − e1x2s+1), s ∈ {1, 2, ..., 2t−1 − 1},

Ft (ζ) = v (ϕ1, ϕ2) + v (ρ1, ρ2) e2 + v (ρ3, ρ4) e4 + [v (ρ5, ρ6) e2] e4+

+v (ρ7, ρ8) e8+(v (ρ9, ρ10) e2) e8+(v (ρ11, ρ12) e4) e8+[(v (ρ13, ρ14) e2) e4] e8+ ...

...+
t−1∑
i=4

(
i∑

k=1

k−1

(
∑
r=1

v (ρMrki−1, ρMrki
) e2r )e2r+1 ...)e2k)e2i) +

t−1∑
i=1

(v (ρ2i−1, ρ2i) e2i) ,

where Mrki = 2r + 2r+1 + ...+ 2k + 2i.

It results

Ft (ζ) = v (ϕ1, ϕ2)+

+
t−1∑
i=1

(
i∑

k=1

k−1

(
∑
r=1

v (ρMrki−1, ρMrki
) e2r )e2r+1 ...)e2k)e2i) +

t−1∑
i=1

(v (ρ2i−1, ρ2i) e2i) ,
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or

Ft (ζ) = Ft−1 (ζ)+

+(
t−2∑
k=1

k−1

(
∑
r=1

v
(
ρMrk(t−1)−1, ρMrk(t−1)

)
e2r )e2r+1 ...)e2k)e2t−1)+v (ρ2t−1−1, ρ2t−1) e2t−1 .

We denote with C2s the ”complex” planes {x2s + e1x2s+1 : x2s, x2s+1 ∈ R}
and withD2s := {(x2s, x2s+1) : x2s+e1x2s+1 ∈ C2s}, s ∈ {0, 1, 2, ..., 2t−1−1} the
Euclidian planes. Let G2s be a domains in C2s and let G̃2s be the corresponded
domains in D2s. We have the following theorem:

Theorem 2.12. With the above notations, we consider the functions v (ϕ1, ϕ2)
and v (ρ2s−1, ρ2s) defined in the corresponding domains G0 ⊂ C0 and G2s ⊂
C2s, s ∈ {1, 2, ..., 2t−1−1}. Then the map Ft (ζ) is a left At−hyperholomorphic

function in the domain Θ ⊂ At which is congruent with the domain G̃0 × G̃2 ×
G̃4 × ...× G̃2t−1−1 ⊂ R2t , for t ≥ 1.

Proof. For t = 1, we have F1 (ζ) = v (ϕ1, ϕ2) , which is an holomorphic
function in D0 ⊂ C0, as we can see in [12], Theorem 3.

For t = 2, we obtain F2 (ζ) = v (ϕ1, ϕ2) + v (ρ1, ρ2) e2 and for t = 3, we get
F3 (ζ) = v (ϕ1, ϕ2) + v (ρ1, ρ2) e2 + v (ρ3, ρ4) e4. F2 (ζ) and F3 (ζ) are hyperholo-
morphic, respectively octonionic hyperholomorphic function, from Remark 2.1
and Theorem 3 from [12].

For t ≥ 4, using induction steps, supposing that Ft−1 (ζ) is a left At−1-
hyperholomorphic function, we will prove that Ft (ζ) is At-hyperholomorphic.
That means D[Ft] = 0. From relations (6) and (7), we have that

D[Ft] =
2t−1∑
k=0

ek
∂Ft

∂xk
=

2t−1−1∑
k=0

ek
∂Ft

∂xk
+

2t−1∑
k=2t−1

ek
∂Ft

∂xk
=

= D[Ft−1] + e2t−1

2t−1−1∑
k=0

ek
∂Ft

∂xk+2t−1

.

From induction steps, we obtainD[Ft−1] = 0.We will prove that
2t−1−1∑
k=0

ek
∂Ft

∂x2t−1+k
=

0. This sum has 2t−1 terms. First two terms are:( ∂Ft

∂x2t−1

− e1
∂Ft

∂x2t−1+1

)
=

=
∂v

∂ρ2t−1−1

∂ρ2t−1−1

∂x2t−1

+
∂v

∂ρ2t−1

∂ρ2t−1

∂x2t−1

−e1

(
∂v

∂ρ2t−1−1

∂ρ2t−1−1

∂x2t−1+1
+

∂v

∂ρ2t−1

∂ρ2t−1

∂x2t−1+1

)
=
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=
∂v

∂ρ2t−1−1

+
∂v

∂ρ2t−1

(
−1

e1

)
− e1

(
∂v

∂ρ2t−1−1

(−e1) +
∂v

∂ρ2t−1

)
=

=
∂v

∂ρ2t−1−1

+
∂v

∂ρ2t−1

e1 −
∂v

∂ρ2t−1−1

− e1
∂v

∂ρ2t−1

= 0.

Since e21 = γ1, γ2
1 = 1, ∂v

∂ρ2t−1−1
and ∂v

∂ρ2t−1
can be written as a2t−1−1 (ζ) +

b2t−1−1 (ζ) e1, respectively a2t−1 (ζ)+b2t−1 (ζ) e1 where a2t−1−1 (ζ) , b2t−1−1 (ζ) ,
a2t−1 (ζ), b2t−1 (ζ) are real valued functions.

Case 1 : r < k. In the general case, we denote T = 2r +2r+1+ ...+2k +2t−1

and T1 = 2r + 2r+1 + ...+ 2k, for r < k. We will compute the terms

−eT1

∂Ft

∂xT
− eT1+1

∂Ft

∂xT+1
.

We compute first ∂Ft

∂xT
. It results

∂Ft

∂xT
=

(
...

(
∂v

∂ρT−1

∂ρT−1

∂xT
+

∂v

∂ρT

∂ρT
∂xT

)
e2r )e2r+1)...e2k)e2t−1 =

=

(
...

(
∂v

∂ρT−1
+

∂v

∂ρT

−1

e1

)
e2r )e2r+1)...e2k)e2t−1 =

=

(
...

(
∂v

∂ρT−1
+

∂v

∂ρT
e1

)
e2r )e2r+1)...e2k)e2t−1 .

Since we can write ∂v
∂ρT−1

under the form aT−1 (ζ) + bT−1 (ζ) e1 and ∂v
∂ρT

under

the form aT (ζ) + bT (ζ) e1, where aT−1, bT−1, aT , bT are real valued functions,
using Proposition 2.2, we obtain:

∂Ft

∂xT
=

(
...

(
∂v

∂ρT−1
+

∂v

∂ρT
e1

)
e2r )e2r+1)...e2k)e2t−1 =

= (...(aT−1(ζ)e2r )e2r+1)...e2k)e2t−1 + (...(bT−1(ζ)e1)e2r )e2r+1)...e2k)e2t−1+

+(...(aT (ζ)e1)e2r )e2r+1)...e2k)e2t−1 + (...(bT (ζ)e1)e1)e2r )e2r+1)...e2k)e2t−1 =

= aT−1(ζ)(−1)k−r+2eT + bT−1(ζ)(−1)k−r+3eT+1+

+aT (ζ)(−1)k−r+3eT+1 − bT (ζ)(−1)k−r+2eT .
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Using Proposition 2.3, relation (11), we compute −eT1

∂Ft

∂xT
.

−eT1

∂Ft

∂xT
= −eT1

(
aT−1(ζ)(−1)k−r+2eT + bT−1(ζ)(−1)k−r+3eT+1+

+aT (ζ)(−1)k−r+3eT+1 − bT (ζ)(−1)k−r+2eT

)
=

= −
(
aT−1(ζ)(−1)k−r+2(−1)k−r+1e2i − bT−1(ζ)(−1)k−r+3(−1)k−r+1e2i+1

)
−

−
(
− aT (ζ)(−1)k−r+3(−1)k−r+1e2i+1 − bT (ζ)(−1)k−r+2(−1)k−r+1e2i

)
=

= −
(
aT−1(ζ)(−1)2k−2r+3e2i − bT−1(ζ)(−1)2k−2r+4e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+4e2i+1 − bT (ζ)(−1)2k−2r+3e2i

)
.

Now, we compute ∂Ft

∂xT+1
. We obtain

∂Ft

∂xT+1
=

(
...

(
∂v

∂ρT−1

∂ρT−1

∂xT+1
+

∂v

∂ρT

∂ρT
∂xT+1

)
e2r )e2r+1)...e2k)e2t−1 =

=

(
...

(
− ∂v

∂ρT−1
e1 +

∂v

∂ρT

)
e2r )e2r+1)...e2k)e2t−1 .

Since we can write ∂v
∂ρT−1

under the form aT−1 (ζ) + bT−1 (ζ) e1 and ∂v
∂ρT

under

the form aT (ζ) + bT (ζ) e1, where aT−1, bT−1, aT , bT are real valued functions,
using Proposition 2.2, we obtain:

∂Ft

∂xT+1
=

(
...

(
− ∂v

∂ρT−1
e1 +

∂v

∂ρT

)
e2r )e2r+1)...e2k)e2t−1 =

= (...(−aT−1(ζ)e1)e2r )e2r+1)...e2k)e2t−1−(...(bT−1(ζ)e1e1)e2r )e2r+1)...e2k)e2t−1+

+(...(aT (ζ))e2r )e2r+1)...e2k)e2t−1 + (...(bT (ζ)e1))e2r )e2r+1)...e2k)e2t−1 =

= −aT−1(ζ)(−1)k−r+3eT+1 + bT−1(ζ)(−1)k−r+2eT+

16



+aT (ζ)(−1)k−r+2eT + bT (ζ)(−1)k−r+3eT+1.

Using Proposition 2.3, we compute −eT1+1
∂Ft

∂xT+1
.

−eT1+1
∂Ft

∂xT+1
= −eT1+1

(
− aT−1(ζ)(−1)k−r+3eT+1 + bT−1(ζ)(−1)k−r+2eT+

+aT (ζ)(−1)k−r+2eT + bT (ζ)(−1)k−r+3eT+1

)
=

= −
(
aT−1(ζ)(−1)k−r+3(−1)

k−r+1

e2i − bT−1(ζ)(−1)k−r+2(−1)
k−r+1

e2i+1

)
−

−
(
− aT (ζ)(−1)k−r+2(−1)

k−r+1

e2i+1 − bT (ζ)(−1)k−r+3(−1)
k−r+1

e2i

)
=

= −
(
aT−1(ζ)(−1)2k−2r+4e2i − bT−1(ζ)(−1)2k−2r+3e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+3e2i+1 − bT (ζ)(−1)2k−2r+4e2i

)
.

Now, we can compute −eT1

∂Ft

∂xT
− eT1+1

∂Ft

∂xT+1
. It results

−eT1

∂Ft

∂xT
− eT1+1

∂Ft

∂xT+1
=

= −
(
aT−1(ζ)(−1)2k−2r+3e2i − bT−1(ζ)(−1)2k−2r+4e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+4e2i+1 − bT (ζ)(−1)2k−2r+3e2i

)
−

−
(
aT−1(ζ)(−1)2k−2r+4e2i − bT−1(ζ)(−1)2k−2r+3e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+3e2i+1 − bT (ζ)(−1)2k−2r+4e2i

)
= 0.

Case 2 : r = k, we use Proposition 2.2 and Proposition 2.3, relation (12) and
it easy to show that

−e2k
∂Ft

∂xT
− e2k+1

∂Ft

∂xT+1
= 0.

�
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Remark 2.13. The above proposition generalizes Theorem 3 from [12].

The Algorithm

1) Input t.
2) Input functions v, ϕ1, ϕ2.
3) For i ∈ {1, ..., t − 1}, k ∈ {1, ..., i}, r ∈ {1, ..., k − 1}, compute Mrki =

2r + ...+ 2k + 2i, v (ρMrki−1, ρMrki
) = αMrki

+ βMrki
e1.

4) For i ∈ {1, ..., t− 1}, k ∈ {1, ..., i}, r ∈ {1, ..., k − 1},

-if r < k, we compute

(... (αMrki
+ βMrki

e1) e2r )e2r+1 ...)e2k)e2i) =

= (−1)
k−r+2

(αMrki
eMrki

− βMrki
eMrki−1)

-if r = k , we compute

v (ρ2i−1, ρ2i) e2i = (α2i−1 + β2i−1e1)e2i =

= α2i−1e2i + β2i−1e2i+1.

5) Output function

Ft (ζ) = v (ϕ1, ϕ2)+
t−1∑
i=4

(
i∑

k=1

k−1

(
∑
r=1

(−1)
k−r+2

(αMrki
(ζ) eMrki

− βMrki
(ζ) eMrki−1)))+

+

t−1∑
i=1

(α2i−1 (ζ) e2i + β2i−1 (ζ) e2i+1) .

Conclusion. In this paper, we generalized the notion of leftAt−holomorphic
functions from quaternions to all algebras obtained by the Cayley-Dickson pro-
cess and we provided an algorithm to find examples of left At−hyperholomorphic
functions, using the shuffling procedure given by Bales in [1].

The theory of the right At−holomorphic functions and the theory of the right
At−hyperholomorphic functions are similarly to the corresponding theories for
the left functions and can be easy treated, using the above ideas and procedures.

This paper is supported by the grant of CNCS (Romanian National Council
of Research) PN-II-ID-WE-2012-4-169.
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