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Real Matrix Representations for the
Complex Quaternions

Cristina Flaut* and Vitalii Shpakivskyi

Abstract. Starting from known results, due to Y. Tian in [5], referring
to the real matrix representations of the real quaternions, in this paper
we will investigate the left and right real matrix representations for the
complex quaternions and we will give some examples in the special case
of the complex Fibonacci quaternions.

Keywords. Quaternion algebra; complex Fibonacci quaternions; matrix
representation.

1. Introduction

We know that each finite dimensional associative algebra A over an arbitrary
field K is isomorphic with a subalgebra of the algebra Mn (K), with n =
dimK A. Therefore, we can find a faithful representation of the algebra A
in the algebra Mn (K) . For example, the real quaternion division algebra is
algebraically isomorphic to a 4 × 4 real matrix algebra. Starting from some
results obtained by Y. Tian in [5] and in [6], in this paper we will show that
the complex quaternion algebra is algebraically isomorphic to a 8 × 8 real
matrix algebra and will investigate the properties of the obtained left and
right real matrix representations for the complex quaternions. In Section 3,
we will provide some examples in the special case of the complex Fibonacci
quaternions.

Let K be the field {
(

a −b
b a

)
| a, b ∈ R}. The map

ϕ : C→ K,ϕ (a + bi) =
(

a −b
b a

)
,
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where i2 = −1 is a fields morphism and ϕ (z) =
(

a −b
b a

)
is called the

matrix representation of the element z = a + bi ∈ C.
Let H be the real division quaternion algebra, the algebra of the elements

of the form a = a0 + a1i + a2j + a3k, where

an ∈ R, n ∈ {0, 1, 2, 3}, i2 = j2 = k2 = −1;

and
ij = −ji = k, jk = −kj = i, ki = −ik = j.

H is an algebra over the field R. The set {1, i, j, k} is a basis in H. The
conjugate of the real quaternion a = a0 + a1i + a2j + a3k is the quaternion
a = a0 − a1i− a2j − a3k and n (a) = aa = aa is called the norm of the real
quaternion a.

A complex quaternion is an element of the form Q = c0 + c1e1 + c2e2 +
c3e3, where cn ∈ C, n ∈ {0, 1, 2, 3},

e2n = −1, n ∈ {1, 2, 3}
and

emen = −enem = βmnet, βmn ∈ {−1, 1},m �= n,m, n ∈ {1, 2, 3},
βmn and et being uniquely determined by em and en. We denote by HC the
algebra of the complex quaternions, called the complex quaternion algebra.
This algebra is an algebra over the field C. The set {1, e1, e2, e3} is a basis in
HC .

The map γ : R → C, γ (a) = a is the inclusion morphism between
R-algebras R and C. We denote by F the C-subalgebra of the algebra HC ,

F = {Q ∈ HC | Q = c0 + c1e1 + c2e2 + c3e3, cn ∈ R, n ∈ {0, 1, 2, 3}}.

By the scalar restriction, F became an algebra over R, with the multi-
plication “ · ”

a ·Q = γ (a)Q = aQ, a ∈ R, Q ∈ F.

We denote this algebra by HR. The map

δ : H→ HR, δ (1) = 1, δ (i) = e1, δ (j) = e2, δ (k) = e3

and
δ (a0 + a1i + a2j + a3k) = a0 + a1e1 + a2e2 + a3e3,

where am ∈ R,m ∈ {0, 1, 2, 3} is an algebra isomorphism between the alge-
bras H and HR.The algebra HR has the same basis {1, e1, e2, e3} as the alge-
bra HC . From now one, we will identify the quaternion a0 + a1i + a2j + a3k
with the “complex” quaternion a0+a1e1+a2e2+a3e3, am ∈ R,m ∈ {0, 1, 2, 3}
and instead of HR we will use H.

It results that the element Q ∈ HC , Q = c0 + c1e1 + c2e2 + c3e3, cm ∈
C,m ∈ {0, 1, 2, 3}, can be written as Q = (a0 + ib0) + (a1 + ib1)e1 + (a2 +
ib2)e2 + (a3 + ib3)e3, where am, bm ∈ R,m ∈ {0, 1, 2, 3} and i2 = −1.
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Therefore, we can write a complex quaternion under the form

Q = a + ib,

with a, b ∈ H, a = a0 + a1e1 + a2e2 + a3e3, b = b0 + b1e1 + b2e2 + b3e3.
The conjugate of the complex quaternion Q is the element Q = c0 −

c1e1 − c2e2 − c3e3. It results that

Q = a + ib. (1.1)

For the quaternion a = a0 + a1e1 + a2e2 + a3e3 ∈ H, we define the
element

a∗ = a0 + a1e1 − a2e2 − a3e3. (1.2)

We remark that
(a∗)∗ = a (1.3)

and
(a + b)∗ = a∗ + b∗, (1.4)

for all a, b ∈ H.
For the quaternion algebra H, in [5], was defined the map

λ : H→M4 (R) , λ (a) =

⎛
⎜⎜⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞
⎟⎟⎠ ,

where a = a0 +a1e1 +a2e2 +a3e3 ∈ H is an isomorphism between H and the
algebra of the matrices:⎧⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞
⎟⎟⎠ , a0, a1, a2, a3 ∈ R

⎫⎪⎪⎬
⎪⎪⎭

.

We remark that the matrix λ (a) ∈ M4 (R) has as columns the coeffi-
cients in R of the basis {1, e1, e2, e3} for the elements {a, ae1, ae2, ae3}.

The matrix λ (a) is called the left matrix representation of the element
a ∈ H.

Analogously with the left matrix representation, for the element a ∈ H

in [5], was defined the right matrix representation:

ρ : H→M4 (R) , ρ (a) =

⎛
⎜⎜⎝

a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0

⎞
⎟⎟⎠ ,

where a = a0 + a1e1 + a2e2 + a3e3 ∈ H.

We remark that the matrix ρ (a) ∈ M4 (R) has as columns the coeffi-
cients in R of the basis {1, e1, e2, e3} for the elements {a, e1a, e2a, e3a}.
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Proposition 1.1. [5] For x, y ∈ H and r ∈ K we have:

i) λ (x + y) = λ (x) + λ (y), λ (xy) = λ (x)λ (y), λ (rx) = rλ (x),
λ (1) = I4, r ∈ K.

ii) ρ (x + y) = ρ (x)+ρ (y), ρ (xy) = ρ (y) ρ (x), ρ (rx) = rρ (x), ρ (1) = I4,
r ∈ K.

iii) λ
(
x−1

)
= (λ (x))−1

, ρ
(
x−1

)
= (ρ (x))−1

, for x �= 0.

Proposition 1.2. [5] For x ∈ H, let −→x = (a0, a1, a2, a3)
t ∈ M1×4 (K), be

the vector representation of the element x. Therefore for all a, b, x ∈ H the
following relations are fulfilled:

i) −→ax = λ (a)−→x .

ii)
−→
xb = ρ (b)−→x .

iii)
−→
axb = λ (a) ρ (b)−→x = ρ (b)λ (a)−→x .

iv) ρ (b)λ (a) = λ (a) ρ (b) .
v) det (λ (x)) = det (ρ (x)) = (n (x))2 .

For details about the matrix representations of the real quaternions, the
reader is referred to [5].

2. Main Results

Let θ be the matrix θ =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ = λ (e1) = λ (i) . The matrix

Γ (Q) =
(

λ (a) −λ (b∗)
λ (b) λ (a∗)

)
,

where Q = a+ ib is a complex quaternion, with a = a0 +a1e1 +a2e2 +a3e3 ∈
H, b = b0 + b1e1 + b2e2 + b3e3 ∈ H and i2 = −1, is called the left real
matrix representation for the complex quaternion Q. The right real matrix
representation for the complex quaternion Q is the matrix:

Θ (Q) =
(

ρ (a) −ρ (b)
ρ (b∗) ρ (a∗)

)
.

We remark that Γ (Q) ,Θ (Q) ∈M8 (R) .
Now, let M be the matrix

M = (1,−e1,−e2,−e3)t .
Proposition 2.1. If a = a0 + a1e1 + a2e2 + a3e3 ∈ H, we have:

i) λ (a)M = Ma.
ii) θM = Me1.
iii) λ (ia) = θλ (a) and λ (ai) = λ (a) θ.

Author's personal copy
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Proof. i) λ (a)M=

⎛
⎜⎜⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−e1
−e2
−e3

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

a0+a1e1+a2e2+a3e3
a1-a0e1+a3e2-a2e3
a2-a3e1-a0e2+a1e3
a3+a2e1-a1e2-a0e3

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

a0+a1e1+a2e2+a3e3
-e1(a0+a1e1+a2e2+a3e3)
-e2 (a0+a1e1+a2e2+a3e3)
-e3 (a0+a1e1+a2e2+a3e3)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
−e1
−e2
−e3

⎞
⎟⎟⎠ a = Ma.

ii) θM =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
−e1
−e2
−e3

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

e1
1
e3
−e2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
−e1
−e2
−e3

⎞
⎟⎟⎠ e1 = Me1.

iii) For a = a0 + a1e1 + a2e2 + a3e3 ∈ H, we have ia = −a1 + a0e1 −
a3e2 + a2e3. It results that

λ (ia) =

⎛
⎜⎜⎝
−a1 −a0 a3 −a2
a0 −a1 −a2 −a3
−a3 a2 −a1 −a0
a2 a3 a0 −a1

⎞
⎟⎟⎠ .

Since θλ (a)=

⎛
⎜⎜⎝

0 -1 0 0
1 0 0 0
0 0 0 -1
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
−a1 −a0 a3 −a2
a0 −a1 −a2 −a3
−a3 a2 −a1 −a0
a2 a3 a0 −a1

⎞
⎟⎟⎠ , we obtain the asked relation. �

Proposition 2.2. Let a, x ∈ H be two quaternions, then the following relations
are true:

i) a∗i = ia, where i2 = −1.
ii) ai = ia∗, where i2 = −1.
iii) −a∗ = iai, where i2 = −1.
iv) (xa)∗ = x∗a∗.
v) For X,A ∈ HC , X = x + iy, A = a + ib, we have

XA = xa− y∗b + i (x∗b + ya) .
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Proof. Relations from i), ii), iii) are obviously.
iv) From ii), it results (xa)∗ = −i (xa) i = −ixai = (ixi)(iai) = x∗a∗.
v) We obtain

XA = (x + iy) (a + ib) = xa+xib+iya+iyib = xa−y∗b+i (x∗b + ya) . �

Proposition 2.3. For X,A ∈ HC , X = x+ iy, A = a+ ib, we have Γ (XA) =
Γ (X) Γ (A) .

Proof. From Proposition 1.2 i) and Proposition 2.2 iv), it results that

Γ (X) Γ (A) =
(

λ (x) −λ (y∗)
λ (y) λ (x∗)

)(
λ (a) −λ (b∗)
λ (b) λ (a∗)

)

=
(

λ (x)λ (a)− λ (y∗)λ (b) -λ (x)λ (b∗)−λ (y∗)λ (a∗)
λ (y)λ (a) + λ (x∗)λ (b) -λ (y)λ (b∗) +λ (x∗)λ (a∗)

)

=
(

λ(xa− y∗b) −λ(xb∗ + y∗a∗)
λ(ya + x∗b) λ(−yb∗ + x∗a∗)

)
.

Γ (XA) =
(

λ(xa− y∗b) −λ((x∗b + ya)∗)
λ(x∗b + ya) λ((xa− y∗b)∗)

)

=
(

λ(xa− y∗b) −λ(xb∗ + y∗a∗)
λ(ya + x∗b) λ(x∗a∗ − yb∗)

)
. �

Definition 2.4. For X ∈ HC , X = x + iy, we denote by
−→
X = (−→x ,−→y )t ∈M8×1 (R)

the vector representation of the element X, where x = x0 + x1e1 + x2e2 +
x3e3 ∈ H, y = y0 + y1e1 + y2e2 + y3e3 ∈ H and −→x = (x0, x1, x2, x3)t ∈
M4×1 (R), −→y = (y0, y1, y2, y3)t ∈ M4×1 (R) are the vector representations
for the quaternions x and y, as was defined in Proposition 1.2.

Proposition 2.5. Let X ∈ HC , X = x + iy, x, y ∈ H, then:

i)
−→
X = Γ (X)

(
1
0

)
, where 1 = I4 ∈ M4 (R) is the identity matrix and

0 = O4 ∈M4 (R) is the zero matrix.

ii)
−−→
AX = Γ (A)

−→
X.

iii) α
−→
y∗ = −→y , where α=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

⎞
⎟⎟⎠ ∈M4 (R) .

iv) α2 = I4.

Proof. i) Γ (X)
(

1
0

)
=
(

λ (x) -λ (y∗)
λ (y) λ (x∗)

)(
1
0

)
=
(

λ (x)
λ (y)

)

=
(

λ (1 · x)
λ (1 · y)

)
=
(

λ (1)−→x
λ (1)−→y

)
=
( −→x−→y

)
.
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ii) From i), we obtain that

−−→
AX = Γ (AX)

(
1
0

)
= Γ (A) Γ (X)

(
1
0

)
= Γ (A)

−→
X.

iii) α
−→
y∗=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y0
y1
−y2
−y3

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

y0
y1
y2
y3

⎞
⎟⎟⎠=−→y . �

Proposition 2.6. Let M8 be the matrix M8=
(

θM
−M

)
, then − 1

4M
t
8M8=1.

Proof. It results

M t
8M8=

(
e1 −1 e3 e2 −1 e1 e2 e3

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
−1
e3
e2
−1
e1
e2
e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −4. �

Theorem 2.7. Let Q ∈ HC be a complex quaternion. With the above notations,
the following relations are fulfilled:

i) Γt (Q∗)M8 = M8Q, where Q = x + iy, Q∗ = x∗ + iy, x, y ∈ H.
ii) Q = − 1

4M
t
8Γ (Q∗)M8.

Proof. i) Let Q be a complex quaternion. From Proposition 2.1 i) and ii), we
obtain:

Γt (Q∗)M8 =
(

λ (x∗) λ (y)
−λ (y∗) λ (x)

)(
θM
−M

)

=
(

λ (x∗) θM − λ (y)M
−λ (y∗) θM − λ (x)M

)
=
(

λ (x∗i− y)M
−λ (y∗i + x)M

)

=
(

λ (ix + iiy)M
−λ (iy + x)M

)
=
(

λ(i (x + iy))M
−M(x + iy)

)

=
(

θλ(x + iy)M
−M(x + iy)

)
=
(

θM (x + iy)
−M(x + iy)

)(
θM
−M

)
(x + iy)=M8Q.

ii) If we multiply the relation Γt (Q∗)M8=M8Q to the left side with

− 1
4M

t
8, we obtain Q=− 1

4M
t
8Γ

t (Q∗)M8. �

Proposition 2.8. For X,A ∈ HC , X = x + iy, A = a + ib, we have

Θ (XA) = Θ (A) Θ(X).

Proof. Using Proposition 1.1 ii), Proposition 2.2 iv), relations 1.3 and
1.4, it results that
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Θ (XA)=
(

ρ (xa-y∗b) -ρ (x∗b+ya)
ρ
(
(x∗b+ya)∗

)
ρ
(
(xa-y∗b)∗

) )

=
(

ρ (xa-y∗b) -ρ (x∗b+ya)
ρ
(
(x∗b+ya)∗

)
ρ
(
(xa-y∗b)∗

) )

=
(

ρ (xa-y∗b) -ρ (x∗b+ya)
ρ (xb∗+y∗a∗) ρ (x∗a∗-yb∗)

)
.

Θ (A) Θ (X)=
(

ρ (a) -ρ (b)
ρ (b∗) ρ (a∗)

)(
ρ (x) -ρ (y)
ρ (y∗) ρ (x∗)

)

=
(

ρ (a) ρ (x) -ρ (b) ρ (y∗) -ρ (a) ρ (y) -ρ (b) ρ (x∗)
ρ (b∗) ρ (x) +ρ (a∗) ρ (y∗) -ρ (b∗) ρ (y) +ρ (a∗) ρ (x∗)

)

=
(

ρ (xa− y∗b) −ρ (x∗b + ya)
ρ (xb∗ + y∗a∗) ρ (x∗a∗ − yb∗)

)
. �

Proposition 2.9. Let X ∈ HC , X = x + iy, x, y ∈ H, then:

i)
−→
X =

(
1 0
0 α

)
Θ (X)

(
1
0

)
, where 1 = I4 ∈ M4 (R) is the identity

matrix, 0 = O4 ∈ M4 (R) is the zero matrix and α ∈ M4 (R) as in
Proposition 2.5 iii).

ii)
−−→
XA =

(
1 0
0 α

)
Θ (A)

(
1 0
0 α

)−→
X.

iii) Γ (A)
(

1 0
0 α

)
Θ (B)

(
1 0
0 α

)
=

(
1 0
0 α

)
Θ (B)

(
1 0
0 α

)
Γ (A)

for all A,B ∈ HC .

Proof. i) We have
(

1 0
0 α

)
Θ (X)

(
1
0

)

=
(

1 0
0 α

)(
ρ (x) −ρ (y)
ρ (y∗) ρ (x∗)

)(
1
0

)

=
(

1 0
0 α

)(
ρ (x)
ρ (y∗)

)
=
(

1 0
0 α

)( −→x−→
y∗

)

=
( −→x

α
−→
y∗

)
=
( −→x−→y

)
.

ii)
−−→
XA=

(
1 0
0 α

)
Θ (XA)

(
1
0

)

=
(

1 0
0 α

)
Θ (A) Θ (X)

(
1
0

)

=
(

1 0
0 α

)
Θ (A)

(
1 0
0 α

)(
1 0
0 α

)
Θ (X)

(
1
0

)

=
(

1 0
0 α

)
Θ (A)

(
1 0
0 α

)−→
X.

iii) We obtain

−−−→
AXB =

−−−−−→
A(XB) = Γ (A)

−−→
XB = Γ (A)

(
1 0
0 α

)
Θ (B)

(
1 0
0 α

)−→
X.
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Since
−−−→
AXB =

−−−−−→
A(XB) =

−−−−−→
(AX)B, it results that

−−−−−→
(AX)B =

(
1 0
0 α

)
Θ (B)

(
1 0
0 α

)−−→
AX

=
(

1 0
0 α

)
Θ (B)

(
1 0
0 α

)
Γ (A)

−→
X,

therefore we obtain the asked relation. �

Theorem 2.10. With the above notations, the following relation is true:

Γt (X) = M1Θ (X)M2,

where

M1=

( −A1 0
0 A1

)
∈M8 (R) ,

M2=

( −A2 0
0 A2

)
∈M8 (R) and

A1=

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ ∈M4 (R) ,

A2=

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ∈M4 (R) .

Proof. First, we remark that A1ρ (a)A2 = λt (a) . Indeed,⎛
⎜⎜⎝

0 -1 0 0
-1 0 0 0
0 0 0 1
0 0 -1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a0 -a1 -a2 -a3
a1 a0 a3 -a2
a2 -a3 a0 a1
a3 a2 -a1 a0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 -1 0 0
-1 0 0 0
0 0 0 -1
0 0 1 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
−a1 −a0 −a3 a2
−a0 a1 a2 a3
a3 a2 −a1 a0
−a2 a3 −a0 −a1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

a0 a1 a2 a3
−a1 a0 a3 −a2
−a2 −a3 a0 a1
−a3 a2 −a1 a0

⎞
⎟⎟⎠ = λt (a) .

We have

M1Θ
(
X
)
M2

=
( −A1 0

0 A1

)(
ρ (x) −ρ (y)
ρ (y∗) ρ (x∗)

)( −A2 0
0 A2

)

=
( −A1ρ (x) A1ρ (y)

A1ρ (y∗) A1ρ (x∗)

)( −A2 0
0 A2

)
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=
(

A1ρ (x)A2 A1ρ (y)A2

−A1ρ (y∗)A2 A1ρ (x∗)A2

)
=
(

λ (x) λ (y)
−λ (y∗) λ (x∗)

)

=
(

λ (x) −λ (y∗)
λ (y) λ (x∗)

)t

= Γt (x) . �

Remark 2.11. From Theorem 2.7 and Theorem 2.10, it results that

Q = −1
4
N1Θt (X∗)N2,

where Q ∈ HC is a complex quaternion, N1 = M t
8M

t
2 and N2 = M t

1M8.

Proposition 2.12. For Q ∈ HC , Q = a + ib, we have:

det Γ (Q) = det Θ (Q) = n (aa∗ + b∗b)2 = n (a∗a + b∗b)2 .

Proof. We obtain:

det Γ (Q) = det
(

λ (a) −λ (b∗)
λ (b) λ (a∗)

)

= det (λ (a)λ (a∗) +λ (b∗)λ (b))

= det (λ (aa∗+b∗b)) = n (aa∗+b∗b)2 .

For the second, we have:

det Θ (Q) = det
(

ρ (a) −ρ (b)
ρ (b∗) ρ (a∗)

)

= det (ρ (a) ρ (a∗) +ρ (b) ρ (b∗))

= det (ρ (a∗a+b∗b)) = n (a∗a+b∗b)2 .

By straightforward calculation, it results that n (aa∗ + b∗b)2=n (a∗a + b∗b)2.
�

3. Examples

The following sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . ,

with the nth term given by the formula:

fn = fn−1 + fn−2, n ≥ 2,

where f0 = 0, f1 = 1, is called the Fibonacci numbers .
In [3], the author defined and studied Fibonacci quaternions given by

the formula:
Fn = fn · 1 + fn+1e2 + fn+2e3 + fn+3e4,

where fn is the Fibonacci numbers,

e2m = −1, m ∈ {2, 3, 4}
and

emeq = −eqem = βmqet, βmq ∈ {−1, 1},m �= q,m, q ∈ { 2, 3, 4},
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βmq and et being uniquely determined by em and eq. Fn is called the nth
Fibonacci quaternion. In the same paper, the author gave some relations for
the nth Fibonacci quaternions, as for example the norm formula:

n (Fn) = FnFn = 3f2n+3,

where Fn = fn · 1− fn+1e2 − fn+2e3 − fn+3e4 is the conjugate of the Fn.

In the same paper, Horadam defined the nth complex Fibonacci num-
bers as follows:

qn = fn + ifn+1, i
2 = −1,

where fn is the nth Fibonacci number.
Similarly, the nth complex Fibonacci quaternion is the element

Qn = Fn + iFn+1, i
2 = −1,

where Fn is the nth Fibonacci quaternion.

Example 3.1. For the real Fibonacci quaternion Fn, we have

det (λ (Fn)) = det (ρ (Fn)) = (n (Fn))2 = 9f2
2n+3.

Example 3.2. The left matrix representation for a complex Fibonacci quater-
nion is the matrix:

Γ (Qn)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fn −fn+1 −fn+2 −fn+3 −fn+1 fn+2 -fn+3 -fn+4

fn+1 fn −fn+3 fn+2 −fn+2 -fn+1 -fn+4 fn+3

fn+2 fn+3 fn −fn+1 fn+3 fn+4 -fn+1 fn+2

fn+3 −fn+2 fn+1 fn fn+4 -fn+3 -fn+2 -fn+1

fn+1 −fn+2 −fn+3 −fn+4 fn -fn+1 fn+2 fn+3

fn+2 fn+1 −fn+4 fn+3 fn+1 fn fn+3 -fn+2

fn+3 fn+4 fn+1 −fn+2 −fn+2 -fn+3 fn -fn+1

fn+4 −fn+3 fn+2 fn+1 −fn+3 fn+2 fn+1 fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By straightforward calculation, the determinant of the matrix Γ (Qn) is

det Γ (Qn) =
(
f2
n+2fnfn+2+2f2

n+2+f2
n+4+2fn+2fn+4

)2
· (f2

n-2fnfn+2+4f2
n+1+2f2

n+2+4f2
n+3+f2

n+4-2fn+2fn+4

)2
=

(
(fn+fn+2)2+ (fn+2+fn+4)

2
)2

·
(
(fn+2-fn)2 + (fn+4-fn+2)

2 +4f2
n+1+4f2

n+3

)2

=
(
(fn + fn+2)2+ (fn+2+fn+4)

2
)2 (

5f2
n+1+5f2

n+3

)2

= 25
(
(fn + fn+2)2 + (fn+2 + fn+4)

2
)2 (

f2
n+1 + f2

n+3

)2
.

Example 3.3. The right matrix representation for a complex Fibonacci quater-
nion is the matrix:
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Θ(Qn)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fn -fn+1 -fn+2 -fn+3 -fn+1 fn+2 fn+3 fn+4

fn+1 fn fn+3 -fn+2 -fn+2 -fn+1 -fn+4 fn+3

fn+2 -fn+3 fn fn+1 -fn+3 fn+4 -fn+1 -fn+2

fn+3 fn+2 -fn+1 fn -fn+4 -fn+3 fn+2 -fn+1

fn+1 -fn+2 fn+3 fn+4 fn -fn+1 fn+2 fn+3

fn+2 fn+1 -fn+4 fn+3 fn+1 fn -fn+3 fn+2

-fn+3 fn+4 fn+1 fn+2 -fn+2 fn+3 fn fn+1

-fn+4 -fn+3 -fn+2 fn+1 -fn+3 -fn+2 -fn+1 fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have

det Γ (Qn) =
(
f2
n + 2fnfn+2+2f2

n+2 + f2
n+4+2fn+2fn+4

)2
· (f2

n-2fnfn+2+4f2
n+1+2f2

n+2+4f2
n+3+f2

n+4-2fn+2fn+4

)2
= 25

(
(fn + fn+2)2 + (fn+2 + fn+4)

2
)2 (

f2
n+1 + f2

n+3

)2
.

Remark 3.4. A matrix representation for the complex Fibonacci quaternion
was introduced in [2]. This matrix representation, denoted in the following
with ε, is a pseudo-representation since ε (XA) �= ε (X) ε (A) or ε (XA) �=
ε (A) ε (X) , where X,A ∈ HC , X = x + iy, A = a + ib. Indeed, using the
above notations, we can write the representation from [2] under the form

ε (A) =
(

ρt (a) ρt (b)
−ρt (b) ρt (a)

)
.

By straightforward calculation, we have

ε (XA) =
(

ρt (xa− y∗b) ρt (x∗b + ya)
−ρt (x∗b + ya) ρt (xa− y∗b)

)
,

ε (X) ε (A) =
(

ρt (xa− yb) ρt (xb + ya)
−ρt (xb + ya) ρt (xa− yb)

)
,

and

ε (A) ε (X) =
(

ρt (ax− by) ρt (bx + ay)
−ρt (bx + ay) ρt (ax− by)

)
.

From Fundamental Theorem of Algebra, it is known that any polyno-
mial of degree n with coefficients in a field K has at most n roots in K. If the
coefficients are in H (the division real quaternion algebra), the situation is
different. For H over the real field, there it is a kind of a fundamental theorem
of algebra: If a polynomial has only one term of the greatest degree in Hthen
it has at least one root in H. (see [1] and [4]).

In the following, we will give two examples of complex quaternion equa-
tions with more than one greatest term with a unique solution or without
solutions.

Example 3.5. Let Qn = Fn + iFn+1 be a complex Fibonacci quaternion and
A a complex quaternion. We consider equations:

QnX −XQn = A (3.1)

and
QnX + XQn = A. (3.2)
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If the equation (3.1) has a solution, then this solution is not unique, but
the equation (3.2) has a unique solution. Indeed, using the vector represen-
tation, Proposition 2.5 and Proposition 2.9, equation (3.1) becomes:(

Γ (Qn)−
(

1 0
0 α

)
Θ (Qn)

(
1 0
0 α

))−→
X =

−→
A.

We obtain that the matrix

B = Γ (Qn)−
(

1 0
0 α

)
Θ (Qn)

(
1 0
0 α

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 -2fn+3 2fn+2 0 0 -2fn+4 2fn+3

0 2fn+3 0 -2fn+1 2fn+3 0 -2fn+1 0
0 -2fn+2 2fn+1 0 2fn+4 0 0 -2fn+1

0 0 -2fn+3 -2fn+4 0 0 2fn+2 2fn+3

0 0 0 0 0 0 0 0
0 2fn+4 2fn+1 0 -2fn+2 0 0 -2fn+1

0 -2fn+3 0 2fn+1 -2fn+3 0 2fn+1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has detB = 0 and rankB = 4, as we can find by straightforward calculation.
Therefore, if the equation (3.1) has a solution, this solution is not unique.

In the same way, the equation (3.2) becomes(
Γ (Qn) +

(
1 0
0 α

)
Θ (Qn)

(
1 0
0 α

))−→
X =

−→
A.

We obtain that the matrix

D = Γ (Qn) +
(

1 0
0 α

)
Θ (Qn)

(
1 0
0 α

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2fn -2fn+1 -2fn+2 -2fn+3 -2fn+1 2fn+2 -2fn+3 -2fn+4

2fn+1 2fn 0 0 -2fn+2 -2fn+1 0 0
2fn+2 0 2fn 0 0 2fn+4 0 2fn+2

2fn+3 0 0 2fn 0 -2fn+3 -2fn+2 0
2fn+1 -2fn+2 0 0 2fn -2fn+1 0 0
2fn+2 2fn+1 -2fn+4 2fn+3 2fn+1 2fn 2fn+3 -2fn+2

2fn+3 0 0 -2fn+2 0 -2fn+3 2fn 0
2fn+4 0 2fn+2 0 0 2fn+2 0 2fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has

detD

= 256 (fn-fn+2)
2 (fn+fn+2)

2 (
f2
n+2fnfn+2+2f2

n+2+f2
n+4+2fn+2fn+4

)
· (f2

n-2fnfn+2+4f2
n+1+2f2

n+2+4f2
n+3+f2

n+4-2fn+2fn+4

)
= 1280f2

n+1 (fn+fn+2)
2
(
(fn+fn+2)

2 + (fn+2+fn+4)
2
) (

f2
n+1+f2

n+3

)
.

It results detD �= 0, therefore the equation (3.2) has a unique solution.
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Example 3.6. With the above notations, the matrix

δ (Qn) = Γ (Qn)−Θ (Qn)

is an invertible matrix.

Indeed,

δ (Qn)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 -2fn+3 -2fn+4

0 0 -2fn+3 2fn+2 0 0 0 0
0 2fn+3 0 -2fn+1 2fn+3 0 0 2fn+2

0 -2fn+2 2fn+1 0 2fn+4 0 -2fn+2 0
0 0 -2fn+3 -2fn+4 0 0 0 0
0 0 0 0 0 0 2fn+3 -2fn+2

2fn+3 0 0 -2fn+2 0 -2fn+3 0 -2fn+1

2fn+4 0 2fn+2 0 0 2fn+2 2fn+1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
det δ (Qn) = 256 (fn+3)

4 (fn+2 + fn+4)
4

is different from zero.

Conclusions

In this paper we introduced two real matrix representation for the complex
quaternions and we investigated some of the properties of these representa-
tions. Because of their various applications to complex quaternions and to
matrices of complex quaternions, this paper can be regarded as a starting
point for a further research of these representations.
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us to improve this paper.
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