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Some Identities in Algebras Obtained by the
Cayley-Dickson Process

Cristina Flaut1 and Vitalii Shpakivskyi

Abstract. Polynomial identities in algebras are the central objects of
Polynomial Identities Theory. They play an important role in learning
of algebras properties. In particular, the Hall identity is fulfilled in the
quaternion algebra and does not hold in other non-commutative asso-
ciative algebras. For this reason, the Hall identity is important for the
quaternion algebra. The idea of this work is to generalize the Hall iden-
tity to algebras obtained by the Cayley-Dickson process.

Starting from the above remarks, in this paper, we prove that
the Hall identity is true in all algebras obtained by the Cayley-Dickson
process and, in some conditions, the converse of this statement is also
true for split quaternion algebras. From Hall identity, we will find some
new properties and identities in algebras obtained by the Cayley-Dickson
process.
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0. Introduction

In October 1843, William Rowan Hamilton discovered the quaternions, a 4-
dimensional algebra over R which is associative and noncommutative algebra.
In December 1843, John Graves discovered the octonions, an 8-dimensional
algebra over R which is nonassociative and noncommutative algebra. These
algebras were rediscovered by Arthur Cayley in 1845 and are also known
sometimes as the Cayley numbers. This process, of passing from R to C,
from C to H and fromH to O has been generalized to algebras over fields and
over rings. It is called the Cayley-Dickson doubling process or the Cayley–
Dickson process. In 1878, W. K. Clifford discovered Clifford algebras defined
to have generators e1, e2, . . . , en which anti-commute and satisfy e2i = ai ∈ R,
for all i ∈ {1, 2, . . . , n}. These algebras generalize the real numbers, complex
numbers and quaternions (see [Le; 06 ]).

1To my family: Dan and Ana-Theodora.
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Even if are old, quaternions, octonions and Clifford algebras have at
present many applications, as for example in physics, coding theory, computer
vision, etc. For this reasons these algebras are intense studied. In [Ha; 43], Hall
proved that the identity (xy − yx)2 z = z (xy − yx)2 holds for all elements
x, y, z in a quaternion algebra. This identity is called Hall identity. Moreover,
he also proved the converse: if the Hall identity is true in a skew-field F, then
F is a quaternion division algebra. In [Smi; 50], Smiley proved that the Hall
identity is true for the octonions and he also proved the converse: if the Hall
identity is true in an alternative division algebra A, then A is an octonion
division algebra.

In this paper we will prove that the Hall identity is true in all algebras
obtained by the Cayley-Dickson process and, in some conditions, the converse
is true for split quaternion algebras.

1. Preliminaries

In this paper, we assume that K is a commutative field with charK �= 2
and A is an algebra over the field K. The center C of an algebra A is the
set of all elements c ∈ A which commute and associate with all elements
x ∈ A. An algebra A is a simple algebra if A is not a zero algebra and {0}
and A are the only ideals of A. The algebra A is called central simple if the
algebra AF = F ⊗K A is simple for every extension F of K. A central simple
algebra is a simple algebra. An algebra A is called alternative if x2y = x (xy)
and xy2 = (xy) y, for all x, y ∈ A, flexible if x (yx) = (xy)x = xyx, for all
x, y ∈ A and power associative if the subalgebra < x > of A, generated
by any element x ∈ A, is associative. Each alternative algebra is a flexible
algebra and a power associative algebra. In each alternative algebra A, the
identities
1) a(x(ay)) = (axa)y
2) ((xa)y)a = x(aya)
3) (ax)(ya) = a(xy)a
hold, for all a, x, y ∈ A. These identities are called the Moufang identities.

A unitary algebra A �= K such that we have x2 +αxx+βx = 0, for each
x ∈ A, with αx, βx ∈ K, is called a quadratic algebra.

In the following, we briefly present the Cayley-Dickson process and the
properties of the algebras obtained. For details about the Cayley-Dickson
process, the reader is referred to [Sc; 66] and [Sc; 54].

Let A be a finite dimensional unitary algebra over a field K with a scalar
involution

: A → A, a → a,

i.e. a linear map satisfying the following relations:

ab = ba, a = a,

and
a + a, aa ∈ K · 1 for all a, b ∈ A.
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The element a is called the conjugate of the element a, the linear form

t : A → K , t (a) = a + a

and the quadratic form

n : A → K, n (a) = aa

are called the trace and the norm of the element a, respectively. Hence, an
algebra A with a scalar involution is quadratic.

Let γ ∈ K be a fixed non-zero element. We define the following algebra
multiplication on the vector space

A⊕A : (a1, a2) (b1, b2) =
(
a1b1 + γb2a2, a2b1 + b2a1

)
.

We obtain an algebra structure over A⊕A, denoted by (A, γ) and called the
algebra obtained from A by the Cayley-Dickson process. We have dim (A, γ) =
2 dimA.

Let x ∈ (A, γ), x = (a1, a2). The map

: (A, γ) → (A, γ) , x → x̄ = (a1, -a2) ,

is a scalar involution of the algebra (A, γ), extending the involution of the
algebra A. Let

t (x) = t(a1)
and

n (x) = n (a1) − γn(a2)
be the trace and the norm of the element x ∈ (A, γ) , respectively.

If we take A = K and apply this process t times, t ≥ 1, we obtain an
algebra over K,

At =
(γ1, . . . , γt

K

)
. (1.1)

By induction in this algebra, the set {1, e2, . . . , en}, n = 2t, generates a basis
with the properties:

e2i = γi1, i ∈ K, γi �= 0, i = 2, . . . , n (1.2)

and

eiej = −ejei = βijek, βij ∈ K, βij �= 0, i �= j, i, j = 2, . . . , n, (1.3)

βij and ek being uniquely determined by ei and ej .
From [Sc; 54], Lemma 4, it results that in any algebra At with the basis

{1, e2, . . . , en} satisfying relations (1.2) and (1.3) we have:

ei (eix) = γ2
i = (xei)ei, (1.4)

for all i ∈ {1, 2, . . . , n} and for every x ∈ A.
It is known that if an algebra A is finite-dimensional, then it is a division

algebra if and only if A does not contain zero divisors (see [Sc; 66]).
Algebras At of dimension 2t obtained by the Cayley-Dickson process,

described above, are central-simple, flexible and power associative for all t ≥ 1
and, in general, are not division algebras for all t ≥ 1. But there are fields on
which, if we apply the Cayley-Dickson process, the resulting algebras At are
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division algebras for all t ≥ 1 (see [Br; 67] and [Fl; 12]). We remark that the
field K is the center of the algebra At, for t ≥ 2 (see [Sc; 54]).

Let K be a field containing ω, a primitive n-th root of unity, and A be
an associative algebra over K. Let S = {e1, . . . , er} be a set of elements in
A such that the following condition are fulfilled: eiej = ωejei for all i < j
and eni ∈ {1, ω, ω2, . . . , ωn−1}. A generalized Clifford algebra over the field K,
denoted by Clnr (K) , is defined to be the polynomial algebra K[e1, . . . , er].
We remark that the algebra Clnr (K) is an associative algebra. For details
about generalized Clifford algebra, the reader is referred to [Ki, Ou; 99], [Ko;
10] and [Sm; 91].

Example 1.1. 1) For n = 2, we obtain Cl2r (K) with ω = −1, eiej = −ejei
for all i < j and e2i ∈ {−1, 1}. If r = p + q and e21 = . . . = e2p = 1,
e2p+1 = .. = e2q = −1, then the algebra Cl2r (K) will be denoted Clp,q (K) .

2) i) For p = q = 0 we have Cl0,0 (K) � K;
ii) For p = 0, q = 1, it results that Cl0,1 (K) is a two-dimensional

algebra generated by a single vector e1 such that e21 = −1 and therefore
Cl0,1 (K) � K (e1). For K = R it follows that Cl0,1 (R) � C.

iii) For p = 0, q = 2, the algebra Cl0,2 (K) is a four-dimensional algebra
spanned by the set {1, e1, e2, e1e2}. Since e21 = e22 = (e1e2)2 = −1 and e1e2 =
−e2e1, we obtain that this algebra is isomorphic to the division quaternions
algebra H.

iv) For p = 1, q = 1 or p = 2, q = 0, we obtain the algebra Cl1,1 (K) �
Cl2,0 (K) which is isomorphic with a split quaternion algebra, called paraqua-
ternion algebra or antiquaternion algebra (see [Iv, Za; 05]).

2. Main Results

Let A be an algebra obtained by the Cayley-Dickson process with the basis
{e0 := 1, e1, . . . , en} such that emer = −erem, r �= m, e2m = γm ∈ K,m ∈
{1, 2, . . . , n}. For elements a =

n∑
m=0

amem, b =
n∑

m=0
bmem we define an element

in K, denoted by T (a, b) , T (a, b) =
n∑

m=0
e2mambm. We denote by

−→
A the set of

the elements {−→a | −→a =
n∑

m=1
amem, am ∈ K}. It results that the conjugate

of the element a can be written as a = a0 − −→a . Obviously,
−−−→
( −→a ) = −→a and−→em = em.

Lemma 2.1. Let A be an algebra obtained by the Cayley-Dickson process. The
following equalities are true:

1)
T (a, b) = T (b, a) ,

for all a, b ∈ A.

Author's personal copy
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2)
T (λa, b) = λT (a, b) ,

for all λ ∈ K, a, b ∈ A.
3)

T (a, b + c) = T (a, b) + T (a, c) ,
for all a, b, c ∈ A.

4)
T (a, a) = aa = n (a) ,

for all a ∈ A
5)

−→a −→
b = 2T

(−→a ,
−→
b
)
−−→

b −→a , (2.1)

ab = ba− 2
−→
b −→a + 2T

(−→a ,
−→
b
)
, (2.2)

−−→−→a −→
b = −T

(−→a ,
−→
b
)

+ −→a −→
b . (2.3)

(−→a )2 ∈ K, (2.4)
for all a, b ∈ A.

Proof. Relations from 1), 2), 3), 4) are obvious.

5) For −→a =
n∑

m=1
amem,

−→
b =

n∑
m=1

bmem, we obtain

−→a −→
b =

n∑
m=1

amem ·
n∑

m=1

bmem=
n∑

m=1

e2mambm+α=T
(−→a ,

−→
b
)

+α, α ∈ −→
A.

(2.5)
Computing

−→
b −→a , it follows that

−→
b −→a = T

(−→a ,
−→
b
)
− α, α ∈ −→

A. (2.6)

If we add relations (2.5) and (2.6), it results −→a −→
b +

−→
b −→a = 2T

(−→a ,
−→
b
)
,

therefore relation (2.1) is obtained.
For a = a0 + −→a and b = b0 +

−→
b , we compute

ab = (a0 + −→a )
(
b0 +

−→
b
)

= a0b0 + a0
−→
b + b0

−→a + −→a −→
b

and
ba =

(
b0 +

−→
b
)

(a0 + −→a ) = b0a0 + b0
−→a + a0

−→
b +

−→
b −→a .

Subtracting the last two relations and using relation (2.1), we obtain
ab− ba = −→a −→

b −−→
b −→a = 2T

(−→a ,
−→
b
)
− 2

−→
b −→a , then relation (2.2) is proved.

Relation (2.3) is obvious.

For −→a =
n∑

m=1
amem, it results that (−→a )2 =

n∑
m=1

a2mγm ∈ K. �

For quaternion algebras, the above result was proved in [Sz; 09].
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Theorem 2.2. Let A be an algebra obtained by the Cayley-Dickson process
such that e2m = −1, for all m ∈ {1, 2, . . . , n}. If n − 1 ∈ K − {0}, then, for
all x ∈ A, we have

x =
1

1 − n

n∑
m=0

emxem.

Proof. Let x =
n∑

m=0
emxm. From Lemma 2.1 and relation (1.4) , we obtain

n∑
m=0

emxem = x +
n∑

m=1

emxem

= x +
n∑

m=1

em (emx− 2em−→x + 2T (em,−→x ))

= x +
n∑

m=1

e2mx− 2
n∑

m=1

e2m
−→x + 2

n∑
m=1

e2memxm

= x− nx + 2n−→x − 2
n∑

m=1

emxm

= (1 − n)x− 2 (1 − n)−→x = (1 − n) (x− 2−→x )

= (1 − n)x. �

For the real quaternions, the below relation is well known:

x = −1
2

(x + ixi + jxj + kxk) .

Theorem 2.3. Let A be an algebra obtained by the Cayley-Dickson process.
Then for all x, y, z ∈ A, it results that

(xy − yx)2 z = z (xy − yx)2 . (2.7)

Proof. We will compute both members of the equality (xy − yx)2 z =
= z (xy − yx)2 . Using relation (2.2) from Lemma 1 and since T (−→x ,−→y ) ∈ K,
we obtain

(−2−→y −→x + 2T (−→x ,−→y ))2 z = z (−2−→y −→x + 2T (−→x ,−→y ))2 ⇒

⇒
[
4 (−→y −→x )2 + 4T 2 (−→x ,−→y ) − 8 (−→y −→x )T (−→x ,−→y )

]
z =

= z
[
4 (−→y −→x )2 + 4T 2 (−→x ,−→y ) − 8 (−→y −→x )T (−→x ,−→y )

]
⇒

⇒ 4 (−→y −→x )2 z + 4T 2 (−→x ,−→y ) z − 8T (−→x ,−→y ) (−→y −→x ) z =

= 4z (−→y −→x )2 + 4T 2 (−→x ,−→y ) z − 8T (−→x ,−→y ) z (−→y −→x ) .
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Dividing this last relation by 4 and after reducing the terms, it results that
(−→y −→x )2 z − 2T (−→x ,−→y ) (−→y −→x ) z = z (−→y −→x )2 − 2T (−→x ,−→y ) z (−→y −→x ) .

We denote

E =
[
(−→y −→x )2 z − z (−→y −→x )2

]

− [2T (−→x ,−→y ) (−→y −→x ) z − 2T (−→x ,−→y ) z (−→y −→x )]

and we will prove that E = 0.
We set

E1 = (−→y −→x )2 z − 2T (−→x ,−→y ) (−→y −→x ) z

and
E2 = z (−→y −→x )2 − 2T (−→x ,−→y ) z (−→y −→x ) .

First, we compute E1. We obtain

E1 = [(−→y −→x )2 − 2T (−→x ,−→y ) (−→y −→x )]z.

From Lemma 2.1., relation (2.3) , we have −→y −→x = T (−→y ,−→x ) +
−−→−→y −→x . Then

(−→y −→x )2 = T 2 (−→y ,−→x ) +
(−−→−→y −→x

)2

+ 2T (−→y ,−→x )
−−→−→y −→x . Therefore

E1 = [T 2 (−→y ,−→x ) +
(−−→−→y −→x

)2

+ 2T (−→y ,−→x )
−−→−→y −→x − 2T (−→x ,−→y ) (−→y −→x )]z

= [T 2 (−→y ,−→x ) +
(−−→−→y −→x

)2

+ 2T (−→y ,−→x ) (
−−→−→y −→x −−→y −→x )]z.

Since
−−→−→y −→x −−→y −→x = −T (−→y ,−→x ) , it results that

[(−→y −→x )2 − 2T (−→x ,−→y ) (−→y −→x )]

= [
(−−→−→y −→x

)2

− T 2 (−→y ,−→x )] = α ∈ K,

from Lemma 2.1., relation (2.4) . Hence E1 = αz.
Now, we compute E2. We obtain

E2 = z[(−→y −→x )2 − 2T (−→x ,−→y ) (−→y −→x )] = zα = αz since α ∈ K.

It follows that E = E1 − E2 = 0, therefore relation (2.7) is proved. �

Remark 2.4. 1) Identity (2.7) is called the Hall identity. From the above
theorem, we remark that Hall identity is true for all algebras obtained by the
Cayley-Dickson process and in all Clifford algebras Clp,q(K).

2) Relation (2.7) can be written: [x, y]2 z = z [x, y]2 or
[
[x, y]2 , z

]
= 0,

where [x, y] = xy−yx is the commutator of two elements. If A = H, then the
identity (2.7) is proved by Hall in [Ha; 43]. If A = H and, for example, y =
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i, z = j, we have a quadratic quaternionic equation for which any quaternion
is a root:

xixk + kxix + ixixj − jxixi + x2j − jx2 − ix2k − kx2i = 0.

Proposition 2.5. Let A be an arbitrary algebra over the field K such that the
relation (2.7) holds for all x, y, z ∈ A. Then we have

[[x, y] [u, y] , z] + [[x, y][x, v], z] + [[u, y][x, y], z] + [[x, v][x, y], z] = 0, (2.8)

[[x, v][u, y], z] + [[u, y][x, v], z] + [[x, y][u, v], z] + [[u, v][x, y], z] = 0, (2.9)

[[u, y][u, v], z] + [[x, v][u, v], z] + [[u, v][u, y], z] + [[u, v][x, v], z] = 0 (2.10)
for all x, y, z, u, v ∈ A.

Proof. We linearize relation (2.7) . Let x, y, z ∈ A be three arbitrary elements
such that (xy − yx)2 z = z (xy − yx)2 . For x + λu, y + λv, z we obtain

[(x + λu) (y + λv) − (y + λv) (x + λu)]2z

= z[(x + λu) (y + λv) − (y + λv) (x + λu)]2.

It results

[xy − yx + λ(uy + xv − yu− vx) + λ2 (uv − vu)]2z

= z
[
xy − yx+λ(uy + xv − yu− vx) + λ2 (uv − vu)

]2
.

We obtain

(xy − yx)2 z + λ2[(uy − yu) + (xv − vx)]2z

+ λ4 (uv − vu)2 z

+ λ[(xy − yx) ((uy − yu) + (xv − vx))]z

+ λ[((uy − yu) + (xv − vx)) (xy − yx)]z

+ λ2[(uv − vu) (xy − yx)]z

+ λ2[(xy − yx) (uv − vu)]z

+ λ3[[(uy − yu) + (xv − vx)] (uv − vu)]z

+ λ3[(uv − vu) [(uy − yu) + (xv − vx)]]z

= z (xy − yx)2 + λ2z[(uy − yu) + (xv − vx)]2

+ λ4z (uv − vu)2

+ λz[(xy − yx) ((uy − yu) + (xv − vx))]

+ λz[((uy − yu) + (xv − vx)) (xy − yx)]

+ λ2z[(uv − vu) (xy − yx)]

+ λ2z[(xy − yx) (uv − vu)]
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+ λ3z[[(uy − yu) + (xv − vx)] (uv − vu)]

+ λ3z[(uv − vu) [(uy − yu) + (xv − vx)]], for all x, y, z, u, v ∈ A.

Since the coefficients of λ are equal in both members of the equality, we
obtain:

[(xy − yx) ((uy − yu) + (xv − vx))]z

+ [((uy − yu) + (xv − vx)) (xy − yx)]z

= z[(xy − yx) ((uy − yu) + (xv − vx))]

+ z[((uy − yu) + (xv − vx)) (xy − yx)].

We can write this last relation under the form:

{[x, y] [u, y]}z + {[x, y] [x, v]}z + {[u, y] [x, y]}z + {[x, v] [x, y]}z
= z{[x, y] [u, y]} + z{[x, y] [x, v]} + z{[u, y] [x, y]} + z{[x, v] [x, y]}.

It results

[[x, y] [u, y] , z] + [[x, y][x, v], z] + [[u, y][x, y], z] + [[x, v][x, y], z] = 0

and we obtain relation (2.8) .
Since the coefficients of λ2 are equal in both members of the equality,

we obtain:

[(uy − yu) + (xv − vx)]2z

+ [(uv − vu) (xy − yx)]z

+ [(xy − yx) (uv − vu)]z

= z[(uy − yu) + (xv − vx)]2

+ z[(uv − vu) (xy − yx)]

+ z[(xy − yx) (uv − vu)].

It results that

[(uy − yu) (xv − vx)]z + [(xv − vx) (uy − yu)]z

+ [(uv − vu) (xy − yx)]z + [(xy − yx) (uv − vu)]z

= z[(uy − yu) (xv − vx)] + z[(xv − vx) (uy − yu)]

+ z[(uv − vu) (xy − yx)] + z[(xy − yx) (uv − vu)].

We can write this last relation under the form:

[[x, v] [u, y] , z] + [[u, y] [x, v] , z] + [[x, y] [u, v] , z] + [[u, v] [x, y] , z] = 0

and we obtain relation (2.9) .
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Since the coefficients of λ3 are equal in both members of the equality,
we obtain:

[[(uy − yu) + (xv − vx)] (uv − vu)]z

+ [(uv − vu) [(uy − yu) + (xv − vx)]]z

= z[[(uy − yu) + (xv − vx)] (uv − vu)]

+ z[(uv − vu) [(uy − yu) + (xv − vx)]].

We can write this last relation under the form:

[[u, y][u, v], z] + [[x, v][u, v], z] + [[u, v][u, y], z] + [[u, v][x, v], z] = 0

and we obtain relation (2.10). �

Remark 2.6. 1) In [Ti; 99] and [Fl; 01] some equations over division quater-
nion algebra and octonion algebra are solved: in [Fl; 01] for general case, when
K is a commutative field with charK �= 2 and γm are arbitrary and in [Ti;
99] for K = R, γm = −1, with m ∈ {1, 2} for quaternions and m ∈ {1, 2, 3}
for octonions. Let A be such an algebra. For example, equation

ax = xb, a, b, x ∈ A, (2.11)

for a �= b has general solution under the form x = −→a p + p
−→
b , for arbitrary

p ∈ A.

2) In [Fl, Şt; 09], authors studied equation x2a = bx2 + c, a, b, c ∈ A,
where A is a generalized quaternion division algebra or a generalized octonion
division algebra. If A is an arbitrary algebra obtained by the Cayley-Dickson
process and a, b, c ∈ A with a = b and c = 0, then, from Theorem 2.3., it
results that this equation has infinity of solutions of the form x = vw − wv,
where v, w ∈ A.

Proposition 2.7. Let A be a quaternion algebra or an octonion algebra. Then
for all x, y ∈ A, there are the elements z, w such that (xy−yx)2 = −→z w+w−→z .

Proof. Let z be an arbitrary element in A − K. From Theorem 2.3., we
have that (xy − yx)2 z = z (xy − yx)2 , for all x, y, z ∈ A. Since z �= z and
(xy − yx)2 is a solution for the equation (2.11) , from Remark 2.6, it results
that there is an element w ∈ A such that (xy − yx)2 = −→z w + w−→z . �

Proposition 2.8. Let A be a finite dimensional unitary algebra with a scalar
involution

: A → A, a → a,

such that for all x, y ∈ A, the following equality holds:

(xy + yx)2 = 4 (xx) (yy) . (2.12)

Then the algebra A has dimension 1.
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Proof. We remark that xy + yx = xy + xy ∈ K. First, we prove that [xy +
yx]2 = 4 (xx) (yy), ∀x, y ∈ A, if and only if x = ry, r ∈ K. If x = ry, then
relation (2.12) is proved. Conversely, assuming that relation (2.12) is true and
supposing that there is not an element r ∈ K such that x = ry, then for each
two non zero elements a, b ∈ K, we have ax+ by �= 0. Indeed, if ax+ by = 0,
it results x = − b

ay, false. We obtain that

(ax + by) (ax + by) �= 0. (2.13)

Computing relation (2.13) , it follows

a2 (xx) + abxy + bayx + b2yy �= 0. (2.14)

If we put a = yy in relation (2.14) and then simplify by a, it results

(yy) (xx) + bxy + byx + b2 �= 0. (2.15)

Let b = − 1
2 (xy + yx) ∈ K, b �= 0. If we replace this value in relation (2.15) ,

we obtain 4 (xx) (yy) − (xy + yx)2 �= 0, which it is false. Therefore, there is
an element r ∈ K such that x = ry.

Assuming that the algebra A has dimension greater or equal with 2, it
results that there are two linearly independent vectors, v and w, respectively.
Since relation (2.12) is satisfies for v and w, we obtain that there is an element
s ∈ K such that v = sw, which it is false. Hence dimA = 1. �
Proposition 2.9. Let A be an alternative division algebra over the field K
whose center is K. If (xy − yx)2 z = z (xy − yx)2 for all x, y, z ∈ A, then A
is a quadratic algebra.

Proof. Let x, y ∈ A such that xy �= yx. If we denote z = xy − yx, it follows
that z2 commutes with all elements from A, then z2 is in the center of A. We
obtain z2 = α ∈ K∗. For t = x2y− yx2 it results that t2 = (x2y− yx2)2 ∈ K
and t = (xy − yx)x + x (xy − yx) = zx + xz. We have zt = z (zx + xz) =
z2x+zxz = αx+zxz and tz = (zx + xz) z = zxz+xz2 = αx+zxz. Therefore
tz = zt. For z + t =

(
x2 + x

)
y− y

(
x2 + x

)
we have that (z + t)2 = β ∈ K,

then z2+t2+2tz = β, hence tz = γ ∈ K. Since zx = x(yx)−(yx)x, it follows
that (zx)2 = δ ∈ K. If we multiply the relation (zx) (zx) = δ with z in the
left side, we obtain z ((zx) (zx)) = δz. Using alternativity and then flexibility,
it results

(
z2x

)
(zx) = δz, therefore α (xzx) = δz, hence xzx = θz, where

θ = α−1δ. It follows that z (xzx) = θz2 = θα ∈ K. Since z (xzx) = (zxz)x,
from Moufang identities, we have that (zxz)x = θα ∈ K. It results that
γx = (tz)x = (αx + zxz)x = αx2 + (zxz)x = αx2 + θα, hence x2 = ax + b,
where a = α−1γ, b = −θ. We obtain that A is a quadratic algebra. �

When A is a division associative algebra, this proposition was proved
by Hall in [Ha; 43], Lemma 1.

Theorem 2.10. Let A be an alternative simple algebra such that the center
of A is K and (xy − yx)2 z = z (xy − yx)2 for all x, y, z ∈ A.

1) If A is a division algebra, then A = K or A = At, t ∈ {1, 2, 3}, where
At is a division algebra obtained by the Cayley-Dickson process.
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2) If A is a quadratic but not a division algebra and there are two elements
y, z ∈ A such that y2, z2 ∈ K − {0}, yz = −zy �= 0, then A is a
generalized split quaternion algebra.

Proof. 1) From Proposition 2.9, it results that A is a quadratic algebra, there-
fore, from [Al; 49], Theorem 1, we have dimA ∈ { 1, 2, 4, 8}. If dimA = 1,
then A = K. If dimA = 2, since the center is K, then we can find an element
x ∈ A−K such that x2 ∈ K. It results that the set {1, x} is a basis in A, there-
fore A = K (x) is a quadratic field extension of the field K. If dimA = 4, from
[Al; 39], p. 145, we have that there are two elements x, y ∈ A, which do not
permute, such that x2 = x+a with 4a+1 �= 0, xy = y (1 − x) , y2 = b, a, b ∈
K. Denoting z = x − 1

2 , we obtain that z2 =
(
x− 1

2

)2 = a − 1
4 ∈ K. Since

zy =
(
x− 1

2

)
y = xy− y

2 = y−yx− y
2 = y

2 −yx and yz = y
(
x− 1

2

)
= yx− y

2 ,

we have yz = −zy then (yz)2 ∈ K. It follows that in the algebra A we can
find the elements y, z such that y2, z2, (yz)2 ∈ K and yz = −zy. Therefore,
from [Al; 49], Lemma 4, it results that A is a generalized division quaternion
algebra.

2) From the above, it results that A = Q = K + yK + zK + yzK is a
generalized quaternion algebra, which is split from hypothesis. �

The above Theorem generalizes Theorem 6.2 from [Ha:43].

Corollary 2.11. Let A be a non-division associative algebra such that the
center of A is K. If in algebra A we have (xy − yx)2 z = z (xy − yx)2 for
all x, y, z ∈ A and there are two elements v, w such that v2, w2 ∈ K − {0},
vw = −wv �= 0, then A is a generalized split quaternion algebra. �

Example 2.12. 1) Using notations given in preliminaries, if in Theorem 2.10,
we have t = 1 and α1 = −1, it results that A = Cl0,1 (K) is a quadratic
field extension of the field K. If t = 2 and α1 = α2 = −1, we have that
A = Cl0,2 (K) is a quadratic division quaternion algebra.

2) If we have v2, w2 ∈ {−1, 1} in Corollary 2.11, then A = Cl1,1 (K) �
Cl2,0 (K) .

Conclusions

In this paper we proved that the Hall identity is true in all algebras obtained
by the Cayley-Dickson process and that the converse is also true, in some
particular conditions, for split quaternion algebras. Some identities, as above
mentioned identity, in algebras obtained by the Cayley-Dickson process can
be used to find solutions for some equations in these algebras or to solve them.
This is an idea which can constitute the starting point for further research.
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[Fl, Şt; 09] C. Flaut, M. Ştefănescu, Some equations over generalized quaternion
and octonion division algebras. Bull. Math. Soc. Sci. Math. Roumanie,
52 (4), (100) (2009), 427–439.

[Ha; 43] M. Hall, Projective planes. Trans. Amer. Math. Soc. 54 (1943), 229-
277.

[Iv, Za; 05] S. Ivanov and S. Zamkovoy, Parahermitian and paraquaternionic
manifolds. Differential Geometry and its Applications 23 (2005), 205–
234

[Le; 06] D. W. Lewis, Quaternion Algebras and the Algebraic Legacy of Hamil-
ton’s Quaternions. Irish Math. Soc. Bulletin 57 (2006), 41–64.

[Ki, Ou; 99] E. H. El Kinani and A. Ouarab, The Embedding of Uq(sl (2)) and
Sine Algebras in Generalized Clifford Algebras. Adv. Appl. Clifford
Algebras 9 (1) (1999), 103-108.
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