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We prove an analogue of the Cauchy integral theorem for hyperholomorphic
functions given in three-dimensional domains with non piece-smooth boundaries
and taking values in an arbitrary finite-dimensional commutative associative
Banach algebra.
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1. Introduction

The Cauchy integral theorem is a fundamental result of the classical complex analysis in
the complex plane C: if the boundary ∂ D of a domain D ⊂ C is a closed Jordan rectifiable
curve, and a function F : D −→ C is continuous in the closure D of D and is holomorphic
in D, then

∫
∂ D F(z)dz = 0 .

Developing hypercomplex analysis in both commutative and noncommutative algebras
needs similar general analogues of the Cauchy integral theorem for several-dimensional
spaces.

It is well known that in the case where a simply connected domain has a closed piece-
smooth boundary, spatial analogues of the Cauchy integral theorem can be obtained with
using the classical Gauss – Ostrogradskii formula, if a given function has specifically
continuous partial derivatives of the first-order up to the boundary. In such a way, analogues
of the Cauchy integral theorem are proved in the quaternion algebra (see, e.g. [1, p.66]) and
in Clifford algebras (see, e.g. [2, p.52]).

Generalizations of the Cauchy integral theorem have relations to weakening require-
ments to the boundary or the given function. Usually, such generalizations are based on
generalized Gauss – Ostrogradskii – Green – Stokes formula (see, e.g. [3,4]) under the
condition of continuity of partial derivatives of the given function, but for extended classes
of surfaces of integration; see, e.g. [5,6], where rectifiable or regular surfaces are considered.
In the papers [7,8], the continuity of partial derivatives is changed by a differentiability of
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Complex Variables and Elliptic Equations 111

components of the given function taking values in the quaternion algebra. Note that the
boundary of domain is remained piece-smooth in [8].

In this paper, we prove an analogue of the Cauchy integral theorem for functions taking
values in an arbitrary finite-dimensional commutative associative algebra. Similarly to the
paper [8], we weaken requirements to functions given in a domain of three-dimensional
space. At the same time, the functions can be given in a domain with non piece-smooth
boundary.

2. Quadrable surfaces

A set � is called a surface in the real space R
3 if � is a homeomorphic image of the square

G := [0, 1] × [0, 1] (cf. e.g. [9, pp.24, 131]).
By �ε we denote ε-neighborhood of the surface �, i.e. the set �ε := {(x, y, z) ∈ R

3 :√
(x − x1)2 + (y − y1)2 + (z − z1)2 ≤ ε, (x1, y1, z1) ∈ �}.

The Fréchet distance d(�,�) between the surfaces � and � is called the infimum of
real numbers ε, for which the relations � ⊂ �ε, � ⊂ �ε are fulfilled (see, e.g. [10]). A
sequence of polyhedral surfaces �n converges uniformly to the surface �, if d(�n, �) → 0
as n → ∞ (cf. e.g. [9, p.121]).

The Lebesgue area of a surface � is

L(�) := inf lim inf
n→∞ L(�n),

where the infimum is taken for all sequences �n convergent uniformly to � (see, e.g. [9,
p.468]), and L(�n) is the area of polyhedral surface �n .

Let a surface � have the finite Lebesgue area, i.e. L(�) < ∞. Then by the L. Cesari
theorem [11, p.7], there exists a surface parameterization

� = {
f (u, v) := (

x(u, v), y(u, v), z(u, v)
) : (u, v) ∈ G

}
such that the Jacobians

A := ∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
, B := ∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u
, C := ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
(1)

exist a.e. in the square G and

L(�) =
∫
G

√
A2 + B2 + C2 dudv (2)

(here and in what follows, all integrals are understood as Lebesgue integrals).
In the case where L(�) < ∞ and the equality (2) holds for the given parameterization

of �, we shall say that a surface � is quadrable.
Let us formulate certain sufficient conditions for a surface � be quadrable.

(1) Let � be a rectifiable surface, i.e. � be a Lipschitz image of the square G. Then it
follows from [9, IV.4.28, IV.4.1 (e)] that � is quadrable.

(2) Let the components x(u, v), y(u, v), z(u, v) of mapping f be absolutely
continuous in the sense of Tonelli (see, e.g. [12, p.169]). Let, furthermore, in
Jacobians A, B, C of mapping f in every of the products ∂y

∂u
∂z
∂v

, ∂y
∂v

∂z
∂u , ∂z

∂u
∂x
∂v

,
∂z
∂v

∂x
∂u , ∂x

∂u
∂y
∂v

, ∂x
∂v

∂y
∂u , one partial derivative belong to the class L p(G) of functions
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112 S.A. Plaksa and V.S. Shpakivskyi

integrable to the pth power on G and the other partial derivative belong to Lq(G),
where 1

p + 1
q = 1. Then, � is quadrable (see [9, V.2.26]). Note that for a rectifiable

surface �, components x(u, v), y(u, v), z(u, v) of mapping f are absolutely con-
tinuous in the sense of Tonelli (see, e.g. [12, p.169]).

(3) If two components of the mapping f (u, v) are Lipschitz functions and the third
component is absolutely continuous in the sense of Tonelli, then � is quadrable
(see [9, V.2.28]).

3. Surface integrals

In what follows, we understand the closed surface � ⊂ R
3 as an image of a sphere under

homeomorphic mapping which maps at least one circle onto a rectifiable curve. In other
words, the closed surface � is the union of two surfaces �1, �2 for which �1 ∩ �2 =: γ is
a closed Jordan rectifiable curve. Let the surfaces �1, �2 be parametrically definable:

�1 = {
f1(u, v) := (

x1(u, v), y1(u, v), z1(u, v)
) : (u, v) ∈ G

}
,

�2 = {
f2(u, v) := (

x2(u, v), y2(u, v), z2(u, v)
) : (u, v) ∈ G

}
.

A closed surface � is called quadrable if the surfaces �1 and �2 are quadrable.
For a closed quadrable surface � and a continuous function F : � → R, we define

integrals on � by the equalities∫
�

F(x, y, z) dydz : =
∫
G

F
(

x1(u, v), y1(u, v), z1(u, v)
)

A1 dudv

−
∫
G

F
(

x2(u, v), y2(u, v), z2(u, v)
)

A2 dudv, (3)

∫
�

F(x, y, z) dzdx : =
∫
G

F
(

x1(u, v), y1(u, v), z1(u, v)
)

B1 dudv

−
∫
G

F
(

x2(u, v), y2(u, v), z2(u, v)
)

B2 dudv, (4)

∫
�

F(x, y, z) dxdy : =
∫
G

F
(

x1(u, v), y1(u, v), z1(u, v)
)

C1 dudv

−
∫
G

F
(

x2(u, v), y2(u, v), z2(u, v)
)

C2 dudv (5)

with the Jacobians Ak, Bk, Ck of mapping fk of the form (1) for k = 1, 2.
It is easy to check up that the definitions (3)–(5) are correct. Indeed, values of integrals

on the right-hand sides of equalities (3)–(5) are the same for all parameterizations f1, f2 for
which the areas L(�1), L(�2) are expressed by the equalities of the form (2), and values of
integrals on the left-hand sides of equalities (3)–(5) do not depend on a choice of a rectifiable
curve γ which divides � into two parts.
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Complex Variables and Elliptic Equations 113

Lemma 3.1 If � is a closed quadrable surface, then
∫
�

dydz =
∫
�

dzdx =
∫
�

dxdy = 0. (6)

Proof By definition,
∫
�

dydz =
∫
G

A1 dudv −
∫
G

A2 dudv. (7)

It follows from the Radó results [9, V.2.64 (i i i), IV.4.21 (i i i3)] that for the surfaces �1, �2
the following equalities are true:

∫
G

Ak dudv =
∫
∂G

ydz, k = 1, 2, (8)

where the integral on the right-hand side is understood as a Lebesgue – Stieltjes integral
and is took along the boundary ∂G of the square G into a positive direction. Now, we obtain
from the equalities (7), (8) that the first integral of (6) is equal to zero. The other equalities
(6) are proved by analogy. �

4. Hyperholomorphic functions in a commutative Banach algebra

Let A be a commutative associative Banach algebra over the field of complex numbers C

with the basis {ek}n
k=1, 3 ≤ n < ∞.

Let us single out the linear span E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} generated
by the vectors e1, e2, e3. Associate with a set 	 ⊂ R

3 the set 	ζ := {ζ = xe1 + ye2 + ze3 :
(x, y, z) ∈ 	} in E3.

Consider a function 
 : 	ζ → A of the form


(ζ) =
n∑

k=1

Uk(x, y, z)ek + i
n∑

k=1

Vk(x, y, z)ek, (9)

where (x, y, z) ∈ 	 and Uk : 	 → R, Vk : 	 → R.
We shall say that a function of the form (9) is hyperholomorphic in a domain 	ζ if its

real-valued components Uk, Vk are differentiable in 	 and the following equality is fulfilled
in every point of 	ζ :

∂


∂x
e1 + ∂


∂y
e2 + ∂


∂z
e3 = 0. (10)

In the scientific literature, the different denominations are used for functions satisfying
equations of the form (10). For example, in the papers [7,13,14] they are called regular
functions, and in the papers [2,15,16] they are called monogenic functions. We use the
terminology of the papers [1,8,17].
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114 S.A. Plaksa and V.S. Shpakivskyi

5. Auxiliary results

Let 	 be a bounded closed set in R
3. For a continuous function 
 : 	ζ → A of the form

(9), we define a volume integral by the equality

∫
	ζ


(ζ )dxdydz :=
n∑

k=1

ek

∫
	

Uk(x, y, z)dxdydz + i
n∑

k=1

ek

∫
	

Vk(x, y, z)dxdydz.

Let � be a closed quadrable surface in R
3. For a continuous function 
 : �ζ → A of

the form (9), where (x, y, z) ∈ � and Uk : � → R, Vk : � → R, we define a surface
integral on �ζ with the differential form σ := dydze1 + dzdxe2 + dxdye3 by the equality

∫
�ζ


(ζ )σ : =
n∑

k=1

e1ek

∫
�

Uk(x, y, z)dydz +
n∑

k=1

e2ek

∫
�

Uk(x, y, z)dzdx

+
n∑

k=1

e3ek

∫
�

Uk(x, y, z)dxdy + i
n∑

k=1

e1ek

∫
�

Vk(x, y, z)dydz

+ i
n∑

k=1

e2ek

∫
�

Vk(x, y, z)dzdx + i
n∑

k=1

e3ek

∫
�

Vk(x, y, z)dxdy,

where the integrals on the right-hand side of equality are defined by the equalities (3)–(5).
The next lemma is a result of Lemma 3.1 and the definition of σ .

Lemma 5.1 If � is a closed quadrable surface, then

∫
�ζ

σ = 0. (11)

Let us introduce the Euclidian norm ‖a‖ := (∑n
k=1 |ak |2

)1/2 in the algebra A, where
a = ∑n

k=1 akek and ak ∈ C for k = 1, n.
Let � be a closed quadrable surface in R

3. For a continuous function U : �ζ → R, we
define a surface integral on �ζ with the differential form ‖σ‖ by the equality

∫
�ζ

U (xe1 + ye2 + ze3)‖σ‖

:=
∫
G

U
(

x1(u, v)e1 + y1(u, v)e2 + z1(u, v)e3

)√
A2

1 + B2
1 + C2

1 dudv

−
∫
G

U
(

x2(u, v)e1 + y2(u, v)e2 + z2(u, v)e3

)√
A2

2 + B2
2 + C2

2 dudv.

Lemma 5.2 If � is a closed quadrable surface and a function 
 : �ζ → A is continuous,
then
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Complex Variables and Elliptic Equations 115

∥∥∥∥
∫
�ζ


(ζ )σ

∥∥∥∥ ≤ 3nM
∫
�ζ

‖
(ζ)‖‖σ‖

with M := max
1≤m,s≤n

‖emes‖.

Proof Using the representation (9), where (x, y, z) ∈ �, we obtain∥∥∥∥
∫
�ζ


(ζ )σ

∥∥∥∥ ≤
n∑

k=1

‖e1ek‖
∫
�

∣∣Uk(x, y, z) + i Vk(x, y, z)
∣∣ dydz

+
n∑

k=1

‖e2ek‖
∫
�

∣∣Uk(x, y, z) + i Vk(x, y, z)
∣∣ dzdx

+
n∑

k=1

‖e3ek‖
∫
�

∣∣Uk(x, y, z) + i Vk(x, y, z)
∣∣ dxdy ≤ 3nM

∫
�ζ

‖
(ζ)‖‖σ‖ .

�

If a simply connected domain 	 ⊂ R
3 have a closed piece-smooth boundary ∂	 and

a function 
 : 	ζ → A is continuous together with partial derivatives of the first-order
up to the boundary ∂	ζ , then the following equality follows from the classical Gauss –
Ostrogradskii formula:∫

∂	ζ


(ζ )σ =
∫
	ζ

(
∂


∂x
e1 + ∂


∂y
e2 + ∂


∂z
e3

)
dxdydz . (12)

We prove the next theorem similarly to the proof of Theorem 9 [7] and Theorem 1 [8],
where functions taking values in the quaternion algebra was considered.

Theorem 5.3 Let ∂ P be the boundary of a closed cube P that is contained in a domain
	 and a function 
 : 	ζ → A be hyperholomorphic in the domain 	ζ . Then, the following
equality holds: ∫

∂ Pζ


(ζ )σ = 0.

Proof Suppose that
∥∥∫

∂ Pζ

(ζ )σ

∥∥ = K .

Denote by S the area of surface ∂ P . Divide P into eight equal cubes and denote by P1

such a cube, for which
∥∥∫

∂ P1
ζ


(ζ )σ
∥∥ ≥ K/8. Clearly, the surface ∂ P1 have the area S/4.

Continuing this process, we obtain a sequence of embedded cubes Pm with the areas
S/4m of the surfaces ∂ Pm , that satisfies the inequalities∥∥∥∥

∫
∂ Pm

ζ


(ζ )σ

∥∥∥∥ ≥ K/8m . (13)

By the Cantor principle, there exists the unique point ζ0 := x0e1 + y0e2 + z0e3 common
for all cubes Pm . Inasmuch as the function 
 is of the form (9) and the real-valued
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116 S.A. Plaksa and V.S. Shpakivskyi

components Uk, Vk are differentiable in 	, in a neighbourhood of the point ζ0 we have
the expansion


(ζ) = 
(ζ0) + �x
∂
(ζ0)

∂x
+ �y

∂
(ζ0)

∂y
+ �z

∂
(ζ0)

∂z
+ δ(ζ, ζ0)ρ,

where �x := x − x0, �y := y − y0, �z := z − z0, and δ(ζ, ζ0) is an infinitesimal function
as ρ := ‖ζ − ζ0‖ → 0.

Therefore, for all sufficiently small cubes, we have∫
∂ Pm

ζ


(ζ )σ = 
(ζ0)

∫
∂ Pm

ζ

σ + ∂
(ζ0)

∂x

∫
∂ Pm

ζ

�xσ + ∂
(ζ0)

∂y

∫
Pm

ζ

�yσ

+∂
(ζ0)

∂z

∫
∂ Pm

ζ

�zσ +
∫

∂ Pm
ζ

δ(ζ, ζ0)ρ σ =
5∑

r=1

Ir .

By the formula (12), I1 = 0. Using (12) and taking into account the equality (10), we
obtain

I2 + I3 + I4 = ∂
(ζ0)

∂x
e1Vm + ∂
(ζ0)

∂y
e2Vm + ∂
(ζ0)

∂z
e3Vm = 0,

where by Vm we have denoted the volume of cube Pm .
Note that for an arbitrary ε > 0 there exists the number m0 such that the inequality

‖δ(ζ, ζ0)‖ < ε is fulfilled for all cubes Pm with m > m0. Note also that ρ is not greater
than the diagonal of Pm , i.e. ρ ≤

√
S

2m
√

2
. Therefore, using Lemma 5.2 and the mentioned

inequalities for δ(ζ, ζ0) and ρ, we obtain
∥∥∥∥

∫
∂ Pm

ζ


(ζ )σ

∥∥∥∥ = ‖I5‖ ≤ 3nM
∫

∂ Pm
ζ

ρ ‖δ(ζ, ζ0)‖ ‖σ‖ ≤ 3nM

√
S

2m
√

2

S

4m
ε . (14)

It follows from the relations (13) and (14) that K ≤ c ε, where the constant c does not
depend on ε. Passing to the limit in the last inequality as ε → 0, we obtain the equality
K = 0, and the theorem is proved. �

6. Main result

Let us establish an analogue of Cauchy integral theorem for the surface integral on the
boundary ∂	ζ in the case where the function 
 : 	ζ → A is hyperholomorphic in a
domain 	ζ and continuous in the closure 	ζ of this domain.

For such a function consider the modulus of continuity

ω 	ζ
(
, δ) := sup

ζ1,ζ2∈	ζ ,‖ζ1−ζ2‖≤δ

‖
(ζ1) − 
(ζ2)‖.

The two-dimensional upper Minkowski content (see, e.g. [18, p.79]) is

M∗(∂	) := lim sup
ε→0

V (∂	ε)

2ε
,
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Complex Variables and Elliptic Equations 117

where V (∂	ε) denotes the volume of ∂	ε.

Theorem 6.1 Suppose that the boundary ∂	 of a simply connected domain 	 ⊂ R
3

is a closed quadrable surface for which M∗(∂	) < ∞, and 	 has Jordan measurable
intersections with planes perpendicular to coordinate axes. Suppose also that a function

 : 	ζ → A is hyperholomorphic in the domain 	ζ and continuous in the closure 	ζ of
this domain. Then the following equality holds:

∫
∂	ζ


(ζ )σ = 0. (15)

Proof Inasmuch as M∗(∂	) < ∞, there exists ε0 > 0 such that for all ε ∈ (0, ε0) the
following inequality holds:

V (∂	ε) ≤ c ε, (16)

where the constant c does not depend on ε.
Let us take ε < ε0/

√
3. Let us make a partition of the space R

3 onto cubes with an edge
of the length ε by planes perpendicular to the coordinate axes. Then, we have the equality

∫
∂	ζ


(ζ ) σ =
∑

j

∫

∂(	ζ ∩K j
ζ )


(ζ ) σ +
∑

k

∫

∂K k
ζ


(ζ ) σ, (17)

where the first sum is applied to the cubes K j for which K j ∩ ∂	 �= ∅, and the second
sum is applied to the cubes K k for which K k ⊂ 	. By Theorem 5.3, the second sum is
equal to zero.

To estimate an integral of the first sum we take a point ζ j ∈ 	ζ ∩ K j
ζ . Note that

the diameter of set 	 ∩ K j does not exceed ε
√

3. Inasmuch as 	 has Jordan measurable
intersections with planes perpendicular to coordinate axes, the Lebesgue measure of the
boundaries of mentioned intersections is equal to 0, and consequently, the set ∂(	ζ ∩ K j

ζ )

consists of closed quadrable surfaces. Therefore, taking into account the equality (11) and
using Lemma 5.2, we obtain

∥∥∥∥
∫

∂(	ζ ∩K j
ζ )


(ζ )σ

∥∥∥∥ =
∥∥∥∥

∫

∂(	ζ ∩K j
ζ )

(
(ζ ) − 
(ζ j ))σ

∥∥∥∥

≤ 3nM
∫

∂(	ζ ∩K j
ζ )

‖
(ζ) − 
(ζ j )‖‖σ‖ ≤ 3nM ω 	ζ
(
, ε

√
3)

∫

∂(	ζ ∩K j
ζ )

‖σ‖.

(18)
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118 S.A. Plaksa and V.S. Shpakivskyi

Thus, the following estimate is a result of the equality (17) and the inequality (18):∥∥∥∥
∫

∂	ζ


(ζ ) σ

∥∥∥∥ ≤ 3nMω 	ζ
(
, ε

√
3)

∑
j

∫

∂(	ζ ∩K j
ζ )

‖σ‖

≤ 3nMω 	ζ
(
, ε

√
3)

( ∫
∂	ζ

‖σ‖ + 6
∑

j

ε2
)

. (19)

Inasmuch as
⋃

j K j ⊂ ∂	ε
√

3, taking into account the inequality (16), we obtain the
estimation ∑

j

ε3 ≤ V
(
∂	ε

√
3
)

≤ cε
√

3 ,

from which it follows that ∑
j

ε2 ≤ c
√

3. (20)

Finally, the following inequality is as a result of the estimations (19) and (20):∥∥∥∥
∫

∂	ζ


(ζ )σ

∥∥∥∥ ≤ c1 ω 	ζ
(
, ε

√
3) (21)

where the constant c1 does not depend on ε.
To complete the proof, note that ω 	ζ

(
, ε
√

3) → 0 as ε → 0 due to the uniform

continuity of the function 
 on 	ζ . �

Theorem 6.1 generalizes Theorem 1 [19] that was proved in a three-dimensional com-
mutative algebra for functions which generate solutions of the three-dimensional Laplace
equation.

7. Remarks

Note that for a surface � in R
3, there exists positive constants c1 and c2, such that

c1ε
3 N�(ε) ≤ V (�ε) ≤ c2ε

3 N�(ε) , (22)

where N�(ε) is the least number of ε-balls needed to cover � (see [20]).
It is evidently follows from (22) that the inequality (16) is equivalent to the inequality

of the form
N�(ε) ε2 ≤ c, (23)

where the constant c does not depend on ε.
Taking into account that a rectifiable surface � is a Lipschitz image of the square G

and the inequality of the form (23) is fulfilled for G, it is easy to prove the inequality (23)
for �.

For a surface � in R
3 that has a finite two-dimensional Hausdorff measure H2(�), if

there exists a positive constant c, such that

cε2 ≤ H2(� ∩ B(x, ε)
) ∀ x ∈ � ∀ ε ∈ (0; diam �] , (24)
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where diam � is the diameter of �, and B(x, ε) denotes the open ball with centre x and
radius ε, then the inequalities P�(ε)ε2 ≤ c1H2(�) < ∞ is fulfilled, where P�(ε) is the
greatest number of disjoint ε-balls with centres in � and the constant c1 does not depend
on ε (see [21, p.309]). Taking into account the inequality N�(2ε) ≤ P�(ε) (see [18, p.78]),
we obtain the inequality (23) for a surface � satisfying the condition (24).
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