On uniform boundedness of L^p - norms of canonical products in the unit disc

I.E. Chyzhykov, S.R. Skaskiv Ivan Franko National University of L'viv

chyzhykov@yahoo.com, skaskiv@bigmir.net

For an analytic function $f(z), z \in \mathbb{D}$, where \mathbb{D} is the unit disc and $p \ge 1$ define

$$m_p(r, \ln|f|) = \left(\frac{1}{2\pi} \int_0^{2\pi} \left|\ln|f(re^{i\theta})|\right|^p d\theta\right)^{1/p}$$

Growth of $m_p(r, \ln |f|)$ was studied by C.N. Linden in [1].

It is well known that the Dzrbashian-Naftalevich-Tsuji canonical product

$$P(z, \{z_k\}, s) = \prod_{k=1}^{\infty} E\left(\frac{1 - |z_k|^2}{1 - \bar{z_k}z}, s\right),$$

where $E(w,s) = (1-w) \exp\{w + w^2/2 + ... + w^s/s\}, s \in \mathbb{Z}_+$ is an analytic function with the zero sequence $\{z_k\}$, provided that $\sum_k (1-|z_k|)^{s+1} < +\infty$.

Let $S(\varphi, \delta) = \{\zeta = \rho e^{i\theta}, 1 - \delta \leq \rho < 1, \varphi - \pi \delta \leq \theta < \varphi + \pi \delta\}.$ Suppose that $\{z_k\}$ satisfies the following condition $\exists \gamma \in (0, s + 1]$, such that

$$\sum_{z_k \in S(\varphi, \delta)} \left(1 - |z_k|\right)^{s+1} = O(\delta^{\gamma}), \delta \downarrow 0.$$
(1)

Theorem.

If (1) is true, then:

i)
$$m_p(r, \ln |P|) < L \frac{1}{(1-r)^{s-\gamma+1}} \log \frac{1}{1-r}$$
 if $0 < \gamma < s+1$;

ii)
$$m_p(r, \ln |P|) < L \log^2 \frac{1}{1-r}$$
 if $\gamma = s+1$.

 Linden C.N., Integral logarithmic means for regular functions, Pacific J. of Math., 1989, 138, no.1, 119– 127.