N. S. Semochko (Lviv, Ukraine)

An estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function

Let $h \in L(0, a)$, a > 0. The Riemann-Liouville fractional integral of order $\alpha > 0$ for h is defined as

$$D^{-\alpha}h(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1}h(t)dt, \quad x \in (0,a),$$

where $\Gamma(\alpha)$ is the Gamma function.

Define

$$\mathcal{I}_{\alpha}[f](r) = \int_{0}^{2\pi} D^{\alpha-1} \frac{|f'(re^{i\varphi})|}{|f(re^{i\varphi})|} d\varphi, \quad \alpha \in (0,1).$$

Theorem. Let f be a meromorphic function in \mathbb{C} , $f(0) \neq 0, \infty$, $\{c_q\}$ be the sequence of its zeros and poles, $\alpha \in (0,1)$, $\beta \in (1 + \infty)$. Then for some $r_0 > 0$, a constant $C(\alpha, \beta)$, and for all $r \geq r_0$,

$$\mathcal{I}_{\alpha}[f](r) = \int_{0}^{2\pi} D^{\alpha-1} \frac{|f'(re^{i\varphi})|}{|f(re^{i\varphi})|} d\varphi \le C(\alpha,\beta) \left(\frac{T(\beta r,f)}{r^{\alpha}} + \frac{1}{r^{\alpha-1}} \int_{0}^{\frac{1}{2}} \frac{n(t,0,\infty,f)}{t^{2}} dt\right),$$

where $n(t, 0, \infty, f)$ is the counting function of $\{c_q\}, T(r, f)$ is the Nevanlinna characteristic of f.

Moreover, $C(\beta, \alpha) = O(\frac{1}{(\beta-1)(1-\alpha)})$ as $\beta \to 1+, \alpha \to 1-$. In particular, for every $\varepsilon > 0$ we have $I_{\alpha}[f](r) = O(r^{(\rho-\alpha+\varepsilon)^+})$ as $r \to +\infty$, where ρ is the order of f.

Joint work with Igor Chyzhykov.