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AVERAGING ASYMPTOTICS OF SOLUTIONS TO THE
NAVIER-STOKES EQUATIONS

Turbulent regimes are arisen under a small viscosity (or equivalently under a
high Reynolds number) and are associated with rapidly oscillating fluid dynam-
ics. Moreover, in mathematical and numerical modeling it is known that rapidly
oscillation effects arise under computer simulations of solutions of Navier-Stokes
equations with a vanishing viscosity. But reasons of the effects are not clear, since
the effects may be turbulent regimes or the numerical simulations may be incorrect.
Some averaging results in the direction will be presented in the report.

Average of Navier-Stokes equations with periodic rapidly oscillating initial data
and the vanishing viscosity will be discussed. We give averaging (homogenized)
equations whose solutions determine approximations of solutions of the equations
under consideration and estimate the accuracy of the approximations. These ap-
proximations and estimates shed light on the following interesting property of the
solutions of the equations. When the viscosity is not too small, the approxima-
tions contain no rapidly oscillating terms, and the equations under consideration
asymptotically smooth the rapid oscillations of the data; thus, the equations are
asymptotically parabolic. If the viscosity is very small, the approximations can con-
tain rapidly oscillating terms with zero means, and the equations are hyperbolic.

As an example, we remark a precise result. Let ε be a small positive parameter
and (u, p) be a weak solution of the initial-boundary value problem for nonstation-
ary Navier-Stokes equations

u′t − ν∆u + u ·∇u + ∇p = Fε in Ω× (0, T ),

divu = 0 in Ω× (0, T ), (1)

u
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= 0 in Ω, u = 0 on ∂Ω× (0, T ),

where Fε = F (t, x, x/ε), F (t, x, y) ∈ L2(0, T ;L2(Ω;L∞per(Y )/R)n), Ω ⊂ Rn is
a bounded domain with a smooth boundary, T is a given positive number, and
2 ≤ n ≤ 4. Here, a subscript per means 1-periodicity with respect to y ∈ Rn and
Y = [0, 1]n is a periodicity cell. Thus, by definition F (t, x, y) is 1-periodic in y,∫
Y
F (t, x, y) dy = 0 for a. e. (t, x) ∈ (0, T )×Ω, and the restriction of F (t, x, y) to

Y is an element of L2(0, T ;L2(Ω;L∞(Y ))n).

Theorem. Let ∇x F ∈L1(0, T ;L2(Ω;L∞per(Y )/R)n×n) and (u, p) is a solution
of problem (1). Then, there are positive ε0 and ν0 such that

‖u ‖2L∞( 0,T ;L2(Ω)n) + ν ‖∇u ‖2L2( 0,T ;L2(Ω)n×n) ≤ C ( ε2 + ε2 ν−1 ),

and
‖ p ‖W−1,∞(0,T ;L2(Ω)/R) ≤ C ( ε + ε2 ν−1−n/4 ),

where C is independent of ε and ν whenever 0 < ε ≤ ε0 and 0 < ν ≤ ν0.

Asymptotic and homogenization methods are used for the consideration accord-
ing to [1] and [2]. The results are applicable to some Kolmogorov flows.
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