E.P. Dolzhenko (Moscow, Russia)

Estimates for modulus of continuity of conformal mappings of Jordan domains

1. General case

For a Jordan curve L define its modulus of oscillation by $d(L; \delta) := \sup\{d(L; z, t) : z, t \in L, |z-t| \leq \delta\}$ ($\delta \geq 0$), where d(L; z, t) denotes diameter of the arc $L(z, t) \subset L$ with endpoints z, t — in the case of unclosed curve L or the least of the diameters of two arcs $L(z,t) \subset L$ with endpoints z, t — in the case of the closed curve L. The definition of the modulus of rectifiability $m(L; \delta)$ of the curve L can be obtained by replacing here the diameter d(L; z, t) of the arc L(z, t) by its length |L(z, t)|. A rectifiable Jordan curve L is called **Lavrentiev** one if $m(L; \delta) \leq c\delta \forall \delta \geq 0$ for some $c = \text{const} \geq 1$. It is obvious that convex curves are Lavrentiev ones.

Let g(x) be a nondecreasing function for $x \ge 0$, $g(x) \ge x$, g(0) = g(0+) = 0.

Define four classes of Jordan curves L (in the sequel $\varepsilon = \text{const} > 0$). We say that $L \in J(g)$ (or that $L \in J(g, \varepsilon)$) if $d(L; \delta) \leq g(\delta) \ \forall \delta \geq 0$ ($\forall \delta \in [0, \varepsilon]$, respectively), and that $L \in J_0(g)$ (or that $L \in J_0(g, \varepsilon)$) if $m(L; \delta) \leq g(\delta) \ \forall \delta \geq 0$ ($\forall \delta \in [0, \varepsilon]$, respectively). Note that the following relations hold: $J(g) \subset J(g, \varepsilon), \ J_0(g) \subset J_0(g, \varepsilon)$ ($\forall \varepsilon > 0$). Note also that every Jordan curve belongs to some class J(g); in the case of recifiability of L this curve belongs also to some class $J_0(g)$.

In what follows $w = \varphi(z)$ is a univalent conformal mapping of a simply connected domain G of the complex plane onto the disk $D := \{z : |z| < 1\}$, ψ is the inverse mapping, $\omega(f, E, \delta)$ is the usial modulus of continuity of f on E. Let $d_g(x) := (\pi^2/4)g^2(\sqrt{x}) + x/2$, $m_g(x) := (g(\sqrt{x}) + \sqrt{x})^2/4$, $d_g^{-1}(y)$ is the function inverse to d_g , and $m_g^{-1}(y)$ is the function inverse to m_g . Let $D_g(X) := \int_1^x dy/d_g^{-1}(y)$, $M_g(X) := \int_1^x dy/m_g^{-1}(y)$, rnd let $D_g^{-1}(Y)$ and $M_g^{-1}(Y)$ be functions inverse to these ones, respectively.

Theorem 1. $\partial G \in J(g,\varepsilon) \Rightarrow \omega(\varphi,\overline{G},\delta) \leq A\sqrt{g(\delta)}.$

Theorem 2. $\partial G \in J(g,\varepsilon) \Rightarrow \omega(\psi,\overline{D},\delta) \leq B g(\sqrt{D_g^{-1}(\log \delta)}),$

$$\partial G \in J_0(g,\varepsilon) \Rightarrow \omega(\psi,\overline{D},\delta) \le B_0 g(\sqrt{M_g^{-1}(\log \delta)}).$$

Theorem 3. $\partial G \in J_0(g, \varepsilon) \& g(x) \le cx \forall x \ge 0 \Rightarrow$

$$\begin{split} & \omega(\psi,\overline{D},\delta) \leq B_1 \, \delta^{\alpha(c)}, \quad \alpha(c) = (2/\pi) \operatorname{arcctg}(4B(c)), \\ B(c) &= c^2(\beta(c) - \sin\beta(c))/(2\beta^2(c)) \quad (B(1) = 0), \ \beta(c) \in [0,\pi] \text{ is the root of the} \end{split}$$

equation $(\beta/2)/\sin(\beta/2) = c$.

Here positive numbers A, B, B_0 , and B_1 do not depand on $\delta \ge 0$. These theorems are proved in [1].

The results of the next sections are obtained jointly with S. V. Kolesnikov.

2. Convex domains

It was proved in [2] that every conformal mapping $w = \varphi(z)$ of an arbitrary convex domain G of the complex plane onto the disk D has the bounded derivative $\varphi'(z)$ on \overline{G} (hence $\varphi \in \text{Lip 1 on } \overline{G}$) and a criterion of continuity of $\varphi'(z)$ ($z \in \overline{G}$) at points $z_0 \in \partial G$ is established.

3. Domains with smooth boundaries

Let G be a simply connected domain on the complex plane, Γ a smooth open Jordan curve of its boundary ∂G accessible from G by means of a Jordan domain $\Omega(G,\Gamma) \subset G$ (in particular $\Gamma = \partial G$, $\Omega(G,\Gamma) = G$), D(t,r) an open disk or radius r > 0 centered at $t \in \Gamma$. Let a number $R_0 = R_0(t) > 0$ be chosen such that for every $r \in (0, R_0]$ the boundary circle C(t, r) of the disk D(t, r) intersects Γ exactly at two points and has no other points of intersection with the boundary of the domain $\Omega(G, \Gamma)$. The open arc of the circle C(t, r) with ends at these points which lies in the domain $\Omega(G, \Gamma)$ will be denoted by $\Gamma(t, r)$. By l(t, r) we denote the length of the arc $\varphi(\Gamma(t, r)), G(t, r) = \Omega(G, \Gamma) \cap D(t, r)$. Let

$$p(t,r) := 1 - \sqrt{\frac{\operatorname{mes} D(t,r)/2}{\operatorname{mes} G(t,r)}},$$
$$F(t,R) := \frac{2}{\pi R^2} \iint_{G(t,R)} |\varphi'(x+iy)| dx dy.$$

Theorem 4. If $t \in \Gamma$, $z \in \Omega(G, \Gamma)$ and $|z - t| \le R_0/2$, then

$$\begin{aligned} |\varphi(z) - \varphi(t)| &\leq 2\pi F(t, R_0) H(t, R_0; |z - t|) \cdot |z - t|, \\ H(t, R_0; u) &:= \exp\left\{2\int_{2u}^{R_0} \frac{p(t, r)}{r} \, dr\right\} \ (u \in (0, R_0/2]). \end{aligned}$$

Theorem 5. Let $t \in \Gamma$, $R \in (0, R_0]$ and $I(t, R) := \int_R^{R_0} (p(t, r)/r) dr$. The following is true:

1) if the $\lim_{R\to 0+} I(t,R)$ exists and is finite, then $\varphi'(z)$ has at the point t a finite angular limit;

2) if $\varphi'(z)$ has at the point t a finite angular limit that does not equal to 0, then there exist $\lim_{R \to 0+} I(t,R) > -\infty$.

Hence, if the integral I(t, R) is bounded for $(0, R_0]$, then the function $\varphi'(z)$ has at the point t a finite angular limit if and only if the $\lim_{R \to 0+} I(t, R)$. exists

Theorem 4 implies the following result.

Theorem 6. If for some a > 0 the integral $\int_{R}^{a} (p(t, r)/r) dr$ is uniformly bounded from above for $t \in \Gamma$ and $R \in (0, a]$, then for every fixed point $t \in \Gamma$ there exist its some one-sided neighbourhood $D(t, R) \cap \Omega(G, \Gamma)$ in which the function $\varphi'(z)$ is bounded.

Corollary. If under the condition of Theorem 6 Γ is a smooth rectifiable boundery of a simply connected bounded domain G, then the function $\varphi'(z)$ is bounded on G.

References

[1] Dolzhenko E.P. On the boundary smothness of conformal mappings with arbitrary Jordan domains // Math. Sbornik. 2011. V. 202, N 12. 57–106.

[2] Dolzhenko E.P., KOlesnikov S.V. On the behavior of conformal mappings of domains near its convex boundary arcs // Math. Notes. 2011. V. 90, N 4. 501–516.

[3] Dolzhenko E.P., Kolesnikov S.V. On the boundary behavior of derivatives of conformal mappings with smooth boundaries // Moscow Umoversity Bulletin. Ser. 1. Mathematics. Mechanics. (To appear)