Artem S. Yefimushkin, Vladimir I. Ryazanov

(Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine, Donetsk)

On the Riemann-Hilbert problem for the Beltrami equations

art.89@bk.ru, vl.ryazanov1@gmail.com

Let D be a domain in the complex plane \mathbb{C} , i.e., a connected open subset of \mathbb{C} , and let $\mu : D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. (almost everywhere) in D. A **Beltrami equation** in D is an equation of the form

(1)
$$f_{\bar{z}} = \mu(z)f_z$$

where $f_{\bar{z}} = \bar{\partial}f = (f_x + if_y)/2$, $f_z = \partial f = (f_x - if_y)/2$, z = x + iy, and f_x and f_y are partial derivatives of f in x and y, correspondingly. The function μ is called the **complex coefficient** and $K_{\mu}(z) = \frac{1+|\mu(z)|}{1-|\mu(z)|}$ the **dilatation quotient** of the equation (1). The equation (1) is said to be **degenerate** if esssup $K_{\mu}(z) = \infty$.

The **Riemann-Hilbert problem** for the Beltrami equation (1) in a Jordan domain D in \mathbb{C} , is the problem on the existence of a continuous function $f: \overline{D} \to \mathbb{C}$ having partial derivatives of the first order a.e. in D, satisfying (1) a.e. and such that

(2)
$$Re[\overline{\lambda(z)}f(z)] = \gamma(z) \quad \forall z \in \partial D$$

with continuous functions $\gamma : \partial D \to \mathbb{R}$ and $\lambda : \partial D \to \mathbb{C}$ such that $|\lambda(z)| \equiv 1$ on ∂D . In particular, if $\lambda(z) \equiv 1$, then we have the Dirichlet problem, see, e.g., [1]-[2].

A regular (pseudoregular) solution of the Riemann-Hilbert problem, under $\gamma(z) \not\equiv const$, is a continuous in $\mathbb{C}(\overline{\mathbb{C}})$, discrete and open mapping $f: D \to \overline{\mathbb{C}}$ in the class $W_{loc}^{1,1}$ (outside of isolated poles) with the Jacobian $J_f(z) = |f_z|^2 - |f_{\bar{z}}|^2 \neq 0$ a.e. satisfying (1) a.e. and the condition (2). Further, the integer $\varkappa = \frac{1}{2\pi} \Delta_{\partial \mathbb{D}} \arg \lambda \circ \omega$ denotes the index of the Riemann-

Further, the integer $\varkappa = \frac{1}{2\pi} \Delta_{\partial \mathbb{D}} \arg \lambda \circ \omega$ denotes the **index of the Riemann-Hilbert problem** where $\omega : \mathbb{D} \to D$ is the Riemann conformal mapping from the unit disk \mathbb{D} onto D and $\Delta_{\partial \mathbb{D}} \arg \lambda \circ \omega(t)$ is the increment of argument of the function $\lambda \circ \omega(t)$ as the point t runs through $\partial \mathbb{D}$ one time with \mathbb{D} from the left.

Theorem 1. Let D be a Jordan domain in \mathbb{C} and $\mu : D \to \mathbb{C}$ be a measurable function such that $|\mu(z)| < 1$ a.e., and

(3)
$$\overline{\lim_{\varepsilon \to 0}} \frac{1}{|B(z_0,\varepsilon)|} \int_{B(z_0,\varepsilon)} K_{\mu}(z) \, dm(z) < \infty \qquad \forall z_0 \in \overline{D}.$$

If $\varkappa \geq 0$, then the problem (2) for the equation (1) has a regular solution under every continuous function $\gamma : \partial D \to \mathbb{R}, \gamma(z) \not\equiv \text{const};$ otherwise, if $\varkappa < 0$, then the problem has a pseudoregular solution with poles at $-\varkappa$ prescribed points in D.

In (3) we assume that K_{μ} is extended by zero outside of the domain D.

1. Vekua I.N., Generalized analytic functions.-London:Pergamon Press, 1962.

2. Kovtonyuk D., Petkov I., Ryazanov V., On the Dirichlet problem for Beltrami equations in finitely connected domains // Ukr.Math.J.-2012.-64,7.-P.1064-1077.