
Mizel‘s problem on a circle
Maxim V. Tkachuk

Institute of Mathematics of the National Academy of Sciences of Ukraine
mvtkachuk@mail.ru

The problem is known in literature as Mizel’s problem(A characterization of the circle):
A closed convex curve such that, if three vertices of any rectangle lie on it, so does the fourth,
must be a circle.

In 1961 A.S. Besicovitch [1] solved this problem. Later, a modified proof of this statement
was presented by L.W. Danzer, W.H. Koenen, C. St. J. A. Nash-Williams, A.G.D. Watson [2,
3, 4, 5].

In 1989 T. Zamfirescu [6] proved a similar result for a Jordan curve (not convex a priory)
and for a rectangle with the infinitesimal relation between its sides:∣∣∣a

b

∣∣∣ ≤ ε > 0,

where a and b are sidelengths of a rectangle.
In 2006 M. Tkachuk [7] obtained the most general result in this area for any arbitrary

compact set C ⊂ R2, where the complement R2\C is not connected.
T. Zamfirescu proved that every analytic curve of constant width satisfying the infinitesimal

rectangle property is a circle. Our aim is to prove the theorem for a convex curve without the
analyticity condition(Theorem 1 [6]) and to discuss new unsolved problems concerning Mizel’s
problem.

Theorem.[9] Any convex curve of constant width satisfying the infinitesimal rectangular
condition is a circle.
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