Skaskiv O.B., Kuryliak A.O. (Lviv, Ukraine)

BAIRE CATEGORIES AND WIMAN'S INEQUALITY FOR THE ANALYTIC FUNCTIONS

Let $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ $(z \in \mathbb{C})$ be an analytic function in the unit disk and f_t be an analytic function of the form $f_t(z) = \sum_{n=0}^{+\infty} a_n e^{i\theta_n t} z^n$, where $t \in \mathbb{R}$, $\theta_n \in \mathbb{N}$, and h be a positive continuous on (0,1) function increasing to $+\infty$ and such that $\int_0^1 h(r) dr = +\infty$. If the sequence $(\theta_n)_{n \geq 0}$ satisfies the inequality

(1)
$$\gamma(\theta) = \overline{\lim}_{n \to +\infty} \frac{1}{\ln n} \ln \frac{\theta_n}{\theta_{n+1} - \theta_n} \le \delta \in [0, 1/2),$$

then for every analytic functions f almost surely for t there exists a set $E=E(\delta,t)\subset (0,1)$ such that $\int_E h(r)dr<+\infty$ and

$$\overline{\lim_{\substack{r \to 1 - 0 \\ r \neq E}}} \Delta_h(r, f_t) = \overline{\lim_{\substack{r \to 1 - 0 \\ r \neq E}}} \frac{\ln M_f(r, t) - \ln \mu_f(r)}{2 \ln h(r) + \ln \ln \{h(r)\mu_f(r)\}} \le \frac{1 + 3\delta}{4 + 2\delta},$$

where $M_f(r,t) = \max\{|f_t(z)|\colon |z| = r\}, \, \mu_f(r) = \max\{|a_n|r^n\colon n\geq 0\} \text{ for } r\in [0,1).$

Let $\theta = (\theta_n)_{n \geq 0}$ be a fixed sequence satisfying condition (1), such that $\gamma(\theta) \leq \delta$. We define the following sets

$$F_{1h}(f,\theta,E) = \left\{ t \in \mathbb{R} : \lim_{\substack{r \to 1-0 \\ r \notin E}} \Delta_h(r,f_t) \le \frac{1+3\delta}{4+2\delta} \right\},\,$$

$$F_{2h}(f,\theta) = \Big\{ t \in \mathbb{R} : \underset{r \to 1-0}{\underline{\lim}} \Delta_h(r, f_t) \le \frac{1+3\delta}{4+2\delta} \Big\}.$$

We conclude that for analytic functions in \mathbb{D} there exists the set E(f) of finite h-measure such that the set $F_{1h}(f,\theta)$ is "large" in the sense of Lebesque measure. Therefore, we obtain some information on set $F_{2h}(f,\theta)$.

The following question arises naturally: does there exists a set E = E(f) of the finite h-measure such that the set $F_{1h}(f, \theta, E)$ is residual in \mathbb{R} for every analytic function f?

We recall that a set $B \subset \mathbb{R}$ is called residual in \mathbb{R} , if its complement $\overline{B} = \mathbb{R} \setminus B$ is a set of the first Baire category in \mathbb{R} . It is clear, that if the answer to the question is affirmative, then the set $F_{2h}(f,\theta)$ are residual in \mathbb{R} . However for some analytic function the set $F_{1h}(f,\theta,E)$ is a set of the first Baire category. It follows from the following theorem.

Theorem 1. Let a sequence $(\theta_n)_{n\geq 0}$ such that for any $n \in \mathbb{N}$: $\theta_{n+1}/\theta_n \geq q > 1$, $f(z) = \sum_{n=0}^{+\infty} e^{n^{\varepsilon}} z^n$, $\varepsilon \in (0,1)$, and $h(r) = (1-r)^{-1}$. Then there exists a constant $C = C(\theta, \varepsilon) > 0$ such that for all sequences $(r_n)_{n\geq 0}$ increasing to 1 the set

$$F_3 = \left\{ t \in \mathbb{R} \colon \overline{\lim}_{n \to +\infty} \frac{M_{f_t}(r_n)}{h(r_n)\mu_f(r_n) \ln^{1/2} \{h(r_n)\mu_f(r_n)\}} \le C \right\}$$

is a set of the first Baire category.

Theorem 2. If sequence $(\theta_n)_{n\geq 0}$ satisfies condition (1) and $h\in H$, then for every analytic function f the set $F_{2h}(f,\theta)$ is residual in \mathbb{R} .

1