Yevgen Sevostyanov (Donetsk, Ukraine)

ANALOG OF MINIOWITZ THEOREM FOR SOME CLASS OF MAPPINGS WITH NON–BOUNDED CHARACTERISTICS

Let D be a domain in \mathbb{R}^n , $n \geq 2$, and $f: D \to \mathbb{R}^n$ be a continuous mapping. In what follows, m be the Lebesgue measure in \mathbb{R}^n , $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ be the one-point compactification of \mathbb{R}^n , and M be the conformal modulus of families of curves, $M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma_{\mathbb{R}^n}} \rho^n(x) dm(x)$, where inf is taken over all nonnegative Borel functions $\rho: D \to [0,\infty]$ with $\int_{\gamma} \rho(x) |dx| \geq 1$ for each $\gamma \in \Gamma$ (that is can be written as $\rho \in \operatorname{adm} \Gamma$). A mapping $f: D \to \mathbb{R}^n$ is said to be a *discrete* if the preimage $f^{-1}(y)$ of every point $y \in \mathbb{R}^n$ consists of isolated points, and an *open* if the image of every open set $U \subset D$ is open in \mathbb{R}^n . Given a domain D and two sets E and F in $\overline{\mathbb{R}^n}$, $n \geq 2$, $\Gamma(E, F, D)$ denotes the family of all paths $\gamma: [a, b] \to \overline{\mathbb{R}^n}$ which join E and F in D, i.e., $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in D$ for a < t < b. Denote by $S(x_0, r_1)$ and $S(x_0, r_2)$ the corresponding boundaries of the spherical ring $A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n: r_1 < |x - x_0| < r_2\}$ and let $S_i = S(x_0, r_i), i = 1, 2$. Given a (Lebesgue) measurable function $Q: D \to [0, \infty]$, a mapping $f: D \to \mathbb{R}^n$ is called *ring* Q-mapping at a point $x_0 \in D$ if the conformal modulus satisfies the following inequality

$$M\left(f(\Gamma(S_1, S_2, A(x_0, r_1, r_2)))\right) \le \int_{A(x_0, r_1, r_2)} Q(x) \cdot \eta^n(|x - x_0|) \ dm(x)$$
(1)

for any $A(x_0, r_1, r_2)$, $0 < r_1 < r_2 < r_0 = \operatorname{dist}(x_0, \partial D)$, and for every Lebesgue measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that $\int_{r_1}^{r_2} \eta(r) dr \ge 1$. It is known that a conformal mapping f satisfies the (1) with $Q \equiv 1$, and quasiconformal mapping satisfies the (1) with $Q \equiv K = const$. We say that a function $\varphi : D \to \mathbb{R}$ has finite mean oscillation at a point $x_0 \in D$ if

$$\limsup_{\varepsilon \to 0} \frac{1}{\Omega_n \cdot \varepsilon^n} \int_{B(x_0, \varepsilon)} |\varphi(x) - \widetilde{\varphi_{\varepsilon}}| dm(x) < \infty$$

where $\widetilde{\varphi_{\varepsilon}} = \frac{1}{\Omega_{n} \cdot \varepsilon^{n}} \int_{B(x_{0}, \varepsilon)} \varphi(x) dm(x)$. In the extended space $\overline{\mathbb{R}^{n}} = \mathbb{R}^{n} \bigcup \{\infty\}$, we use a *spherical (chordal)* distance $h(x, y) = |\pi(x) - \pi(y)|$, where π is a stereographical projection of $\overline{\mathbb{R}^{n}}$ onto the sphere $S^{n}(\frac{1}{2}e_{n+1}, \frac{1}{2})$ in \mathbb{R}^{n+1} :

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \quad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}}, \quad x \neq \infty \neq y.$$

The following result takes a place.

Theorem. A family of all discrete open ring Q-mappings $f : D \to \overline{\mathbb{R}^n}$ at the point $x_0 \in D$ with $Q \in FMO(x_0)$ is equicontinuous at the point $x_0 \in D$ if and only if there exist p = p(n, Q) > 0, $C_n > 0$ and $\varepsilon_0(x_0) > 0$ such that

$$h(f(x), f(x_0)) \le C_n \left\{ \frac{1}{\log \frac{1}{|x - x_0|}} \right\}^p \qquad \forall x \in B(x_0, \varepsilon_0).$$