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ON PSEUDOREGULAR SOLUTIONS OF THE DIRICHLET
PROBLEM FOR DEGENERATE BELTRAMI EQUATIONS

Here it is formulated criteria for the existence of solutions of the Dirichlet prob-
lem to degenerate Beltrami equations in the case of arbitrary finitely connected
domains. Let D be a domain in the complex plane C and let µ : D → C be
a measurable function with |µ(z)| < 1 a.e. (almost everywhere). The Beltrami
equation is the equation of the form fz = µ(z)fz where fz = (fx + ify)/2, fz =
(fx − ify)/2, z = x + iy, and fx and fy are the partial derivatives of f with re-
spect to x and y, respectively. Set Kµ(z) = (1 + |µ(z)|)/(1− |µ(z)|). The Beltrami
equation is called degenerate if Kµ is essentially unbounded, i.e., Kµ /∈ L∞(D).

A pseudoregular solution of the Dirichlet problem for the Beltrami equation in
a bounded domain D in C is a mapping f : D → C which is continuous in C,
discrete, open and f ∈ W 1,1

loc outside of isolated poles in D with Jacobian Jf (z) =
|fz|2 − |fz|2 6= 0 a.e. satisfying the Beltrami equations a.e. and the boundary
condition lim

z→p
Ref(z) = ϕ(p) ∀p ∈ ΠD for a given continuous function ϕ : ΠD → R.

Here ΠD is the set of prime ends of D, see, e.g., [1]. Recall that a mapping
f : D → C is called discrete if the preimage f−1(z) of every point z ∈ C consists of
isolated points and open if the image of any open set U ⊆ D is an open set in C.

The Dirichlet problem is well studied for uniformly elliptic systems (see, e.g.,
[2] and [3]). The Dirichlet problem for degenerate Beltrami equations in domains
bounded by a finite number of mutually disjoint Jordan curves studied in [4].

Theorem 1. Let D be a bounded domain in C whose boundary has s ≥ 2
connected components and let µ : D → C be a measurable function with |µ(z)| < 1
a.e. such that ∫

D

Φ(Kµ(z))dz < ∞

where Φ : [0,∞] → [0,∞] is a nondecreasing convex function satisfying the condition
∞∫

δ

dτ

τΦ−1(τ)
= ∞

for some δ > Φ(0). Then the Beltrami equation has a pseudoregular solution of
the Dirichlet problem for any continuous function ϕ : ΠD → R, ϕ(p) 6≡ const, with
poles at p ≥ s− 1 prescribed inner points in D.
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