E. I. Olefir (Odessa, Ukraine)

LINEAR-FRACTIONAL TRANSFORMATIONS OF INNER MATRIX-VALUED FUNCTIONS AND THEIR APPLICATION

Let θ be an inner in upper halfplane \mathbb{C}_+ matrix-valued function of order $n \ge 1$. Then the matrix-valued function

$$\Pi(z) := (\overline{\delta}E + \theta(z)(E + \delta\theta(z))^{-1}, z \in \mathbb{C}_+$$

is analytic in \mathbb{C}_+ for any $\delta \in \mathbb{C}, |\delta| < 1$. If θ is a scalar function (n = 1), then Frostman proved that $\Pi(z)$ is Blaschke product for all δ with the possible exception of a set of zero logarithmic capacity. Ginzburg Y.P. extended this result to the matrix-valued functions θ with the same description of excepting values δ . In this case Π is matrix Blaschke product, i.e. det $\Pi(z)$ is scalar Blashke product. If the matrix-valued function θ is entire, then Frostman-Ginzburg theorem admits correction.

Theorem. Let θ be an arbitrary entire inner in \mathbb{C}_+ matrix-valued function of order n. Then the linear-fractional transformation Π is matrix Blaschke product for all $\delta(\delta \neq 0, |\delta| < 1)$ with the possible exception of at most n - 1 values of δ .