Olena Karlova (Chernivtsi, Ukraine)

On extension of Baire mappings and Lebesgue α -triples

A. Lebesgue [3] proved that each separately continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ is of the first Baire class. In honour of this theorem we call a collection (X, Y, Z) of topological spaces a Lebesque α -triple, or, briefly, α -triple, if any mapping $f: X \times Y \to Z$ which is continuous with respect to the first variable and of the α 'th Baire class with respect to the second one belongs to the $(\alpha + 1)$ 'th Baire class, where $0 \le \alpha < \omega_1$.

Remark that α -triples were studied by a couple of mathematicians (see [2] and the references given there). Among others we indicate the result of W. Rudin [5] who showed that (X, Y, Z) is an α -triple for every $\alpha > 0$ if X is a metrizable space, Y is a topological space and Z is a locally convex space. It is well-known that a union of several metrizable spaces is not necessary metrizable. That's why it is naturally to ask: is (X, Y, Z) an α -triple if $X = \bigcup_{n=1}^{N} X_n$, where $2 \le N \le +\infty$ and (X_n, Y, Z) is an α -triple free deal α .

 (X_n, Y, Z) is an α -triple for each n?

Theorem 1. Let $1 \leq \alpha < \omega_0$, X be a completely regular space, $E \subseteq X$ be a set of the functionally multiplicative class α and let Y be a Polish arcwise connected and locally arcwise connected space. If one of the following conditions hold

- (1) X is perfectly normal,
- (2) E is Lindelöf,
- (3) X is normal and E is F_{σ} ,

then (X, E, Y) has the B_{α} -extension property.

Applying Theorem 1 we may prove the following classification theorem.

Theorem 2. Let $1 \le \alpha < \omega_0$, $\alpha \le \beta < \omega_1$, $X = \bigcup_{n=1}^{\infty} X_n$ a completely regular space, Y a topological space and let Z be a Polish contractible locally connected space such that for each n the following conditions hold:

- (1) (X_n, Y, Z) is a β -triple;
- (2) X_n is a set of the multiplicative class α in X_{n+1};
 (3) X_n × Y is Lindelöf or X × Y is perfectly normal.

Then (X, Y, Z) is β -triple.

References

- [1] Kalancha A., Maslyuchenko V., Mykhaylyuk V., Applications of the Dugunji Theorem to Baire classification of vector-valued mappings, Mat. methody and fiz.-mech. polya, 43 (4) (2000), 12-17.
- [2] Karlova O., Maslyuchenko V., Mykhaylyuk V., Equiconnected spaces and Baire classification of separately continuous functions and their analogs, Cent. Eur. J. Math., 2012, 10(3), 1042-1053.
- [3] Lebesgue H., Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278-287.
- Maslyuchenko V., Sobchuk O., Baire classification and σ -metrizable spaces, Mat.Studii 3 (1994), 95–101 (in Ukrainian).
- [5] Rudin W., Lebesgue first theorem, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies 78, Academic Press (1981), 741-747.