SEMIGROUPS OF CONFORMAL MAPPINGS WITH GIVEN FIXED POINTS Victor V. Goryainov

(Volzhsky Institute of Humanities (branch) of the Volgograd State University) goryainov vv@hotmail.com

Let \mathfrak{P} be the set of all functions f holomorphic in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and taking values in \mathbb{D} . It is impotent in many areas of analysis and applications that \mathfrak{P} forms a topological semigroup with respect to the operation of composition and the topology uniform convergence in \mathbb{D} . In particularly, one-parameter semigroups of analytic functions are often used to describe the dynamics of some processes. Treating $\mathbb{R}^+ = \{t \in \mathbb{R} : t \ge 0\}$ as an additive semigroup endowed with the standard topology of the real number line, we understand a one-parameter semigroup in \mathfrak{P} to be a continuous homomorphism $t \mapsto f^t$ acting from \mathbb{R}^+ into \mathfrak{P} . Synthesis of algebraic and topological properties leads to the infinite differentiability with respect to t of the family of functions $f^t(z)$ of a one-parameter semigroup $t \mapsto f^t$ in \mathfrak{P} (see, for example, [1]). The derivative

$$\left. \frac{\partial}{\partial t} f^t(z) \right|_{t=0} = \lim_{t \to 0} \frac{f^t(z) - z}{t} = v(z)$$

is an analytic function in \mathbb{D} and characterizes completely the one-parameter semigroup $t \mapsto f^t$. We call this function the infinitesimal generator of the one-parameter semigroup $t \mapsto f^t$. The form of v depends on the set of fixed points of f^t , $t \ge 0$. Note that if $f \in \mathfrak{P}$ is not a fractional linear transformation of the unit disk \mathbb{D} onto itself, then there exists a unique point q, $|q| \le 1$, such that the sequence of positive-integer iterates f^n , $n = 1, 2, \ldots$, converges to q locally uniformly in \mathbb{D} . Furthermore, if |q| = 1, then there exist the angular limits

$$\lim_{z \to q} f(z) = f(q) \qquad \lim_{z \to q} f'(z) = f'(q)$$

and f(q) = q, $0 < f'(q) \le 1$. In the literature, q is called the Denjoy–Wolff point of the function f. If $q \in \mathbb{D}$, then f(q) = q and $|f'(q)| \le 1$. Moreover, if $f(z) \not\equiv z$, then f has no fixed points in the interior of \mathbb{D} other than the Denjoy–Wolff point. On the other hand, it can have fixed points on the boundary \mathbb{T} of the unit disk \mathbb{D} (in the sense of the angular limits).

Let $|q| \leq 1$ and a_1, \ldots, a_n be pairwise distinct points on \mathbb{T} . Denote by $\mathfrak{P}[q; a_1, \ldots, a_n]$ the set of functions f in \mathfrak{P} such that q is a Denjoy–Wolff point for f and a_1, \ldots, a_n are fixed points at which the function f has finite angular derivatives. $\mathfrak{P}[q; a_1, \ldots, a_n]$ is a subsemigroup of \mathfrak{P} . Note that [1] a function v holomorphic in \mathbb{D} to be infinitesimal generator of a one-parameter semigroup $t \mapsto f^t$ in $\mathfrak{P}[q; a_1, \ldots, a_n]$ if and only if it admits a representation in the form

$$v(z) = \frac{(q-z)(1-\overline{q}z)}{\sum_{k=1}^{n} \lambda_k \frac{1+\overline{a}_k z}{1-\overline{a}_k z} + p(z)},$$

where $\lambda_k > 0$, k = 1, ..., n, and p is a holomorphic function in \mathbb{D} with non-negative real part.

We study evolution families in semigroup $\mathfrak{P}[q; a_1, \ldots, a_n]$ and obtain a parametric representation of some subsemigroups of $\mathfrak{P}[q; a_1, \ldots, a_n]$ consisting of conformal mappings.

1. Goryainov V. V. Semigroups of analytic functions in analysis and applications, Russian Math. Surveys, 2012, 67:6, 975–1021.