Ganenkova Ekaterina (Petrozavodsk, Russia)

AMBIGUOUS POINTS OF FUNCTIONS, DEFINED IN DOMAINS IN \mathbb{R}^n

Let g be any function defined in $E \subset \mathbb{R}^n$ with values in $\overline{\mathbb{C}}$, $A \subset E$, $\zeta \in \partial E \cap \overline{A}$. The cluster set $C(g, \zeta, A)$ of g along A consists of all $w \in \overline{\mathbb{C}}$, such that, for some sequence $z_N \in A$, $z_N \xrightarrow[N \to \infty]{} \zeta$, we have $g(z_N) \xrightarrow[N \to \infty]{} w$.

Let f be any function, defined in the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Point $\zeta \in \partial \Delta$ is an ambiguous point of a function f if there exist two Jordan arcs Γ_1 and Γ_2 , lying in the Δ , except the endpoint ζ , such that $C(f, \zeta, \Gamma_1) \cap C(f, \zeta, \Gamma_2) = \emptyset$. In 1955 F. Bagemihl [1] proved that an arbitrary function in Δ can have at most countable set of ambiguous points.

Examples have been given in [2], [3], [4] to show that this theorem fails for functions in the unit Euclidean ball $\mathbb{B}^n \subset \mathbb{R}^n$, $n \geq 3$. Moreover it shows that Bagemihl's theorem is not true even for continuous, harmonic or homeomorphic in \mathbb{B}^n functions.

This problem was solved by P.J. Rippon in [5] with changing the definition of ambiguous point. The Jordan arcs Γ_1 and Γ_2 from Bagemihl's definition were replaced by

1) a subdomain D of \mathbb{B}^n with $\partial D \cap \partial \mathbb{B}^n = \{\zeta\},\$

2) an Jordan arc lying in D with endpoint ζ at $\partial \mathbb{B}^n$, such that

$$C(f,\zeta,\partial D \setminus \{\zeta\}) \cap C(f,\zeta,\Gamma) = \emptyset.$$

This definition remains Bagemihl's theorem true for functions in \mathbb{B}^n : the set of a such points ζ is at most countable.

We have generalized the Rippon's theorem. In our case conditions on domain D are weaker, the intersection $\partial D \cap \partial \mathbb{B}^n$ can be an infinite set.

Theorem 1. Let f be a function in \mathbb{B}^n , M is a fixed subset of $\partial \mathbb{B}^n$. Let $\zeta \in M$ such that there exist

1) a domain $D \subset \mathbb{B}^n$, $\partial D \cap M = \{\zeta\}$,

2) a Jordan arc $\Gamma \subset D$ with endpoint ζ ,

 $C(f,\zeta,\partial D \cap \mathbb{B}^n) \cap C(f,\zeta,\Gamma) = \emptyset.$

Then the set of such points ζ is at most countable.

The Theorem 1 remains true if $\partial D \cap M$ is a finite set and it doesn't if $\partial D \cap M$ is an infinite set.

This work was supported by the programm of strategic development of the PetrSU and Russian Foundation for Basic Research (project N 11-01-00952-a).

References

- Bagemihl F. Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 41 (6), 379-382 (1955).
- [2] Piranian G. Ambiguous points of a function continuous inside a sphere, Michigan Math. J. 4 (2), 151-152 (1957).
- [3] Bagemihl F. Ambiguous points of a function harmonic inside a sphere, Michigan Math. J. 4 (2), 153-154 (1957).
- [4] Church P.T. Ambiguous points of a function homeomorphic inside a sphere, Michigan Math. J. 4 (2), 155-156 (1957).
- [5] Rippon P.J. Ambiguous points of functions in the unit ball of euclidean space, Bull. Lond. Math. Soc. 15 (4), 336-338 (1983).