ON ELLIPTIC PROBLEMS IN HÖRMANDER SPACES A. V. Anop, A. A. Murach

Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine ahlv@ukr.net, murach@imath.kiev.ua

We discuss applications of certain Hörmander function spaces of generalized smoothness to elliptic boundary-value problems. These spaces form the extended Sobolev scale $\{H^{\varphi} : \varphi \in \mathrm{RO}\}\)$, where the smoothness index $\varphi : [1, \infty) \to (0, \infty)$ is a Borel measurable function ROvarying at $+\infty$ in the sense of V. G. Avakumović. The latter property means that the exist numbers a > 1 and $c \ge 1$ such that $c^{-1} \le \varphi(\lambda t)/\varphi(t) \le c$ for every $t \ge 1$ and $\lambda \in [1, a]$ (a and c may depend on φ).

The extended Sobolev scale over \mathbb{R}^n consists of all Hilbert spaces

$$H^{\varphi}(\mathbb{R}^n) := \left\{ w \in \mathcal{S}'(\mathbb{R}^n) : \|w\|_{\varphi}^2 := \int_{\mathbb{R}^n} \varphi^2(\langle \xi \rangle) \, |(Fw)(\xi)|^2 \, d\xi < \infty \right\}$$

and then is defined in the standard way over Euclidean domains and smooth compact manifolds. Here $\langle \xi \rangle := (1 + |\xi|^2)^{1/2}$, and Fw is the Fourier transform of a tempered distribution w. In the special case where $\varphi(t) \equiv t^s$ we have the inner product Sobolev space $H^{(s)} = H^{\varphi}$ of order $s \in \mathbb{R}$.

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with boundary $\Gamma \in C^{\infty}$. We consider a general elliptic boundary–value problem

$$Au = f$$
 in Ω , $B_j u = g_j$ on Γ , with $j = 1, \dots, q$. (1)

Here A = A(x, D), $x \in \overline{\Omega}$, and all $B_j = B_j(x, D)$, $x \in \Gamma$, are linear partial differential expressions. Their coefficients are complex-valued and infinitely smooth; ord A = 2q, with $q \in \mathbb{N}$, and $m_j := \operatorname{ord} B_j \leq 2q - 1$.

We discuss properties of the elliptic problem (1) considered on the extended Sobolev scale. Put $B := (B_1, \ldots, B_q)$ and $\rho(t) := t$ for $t \ge 1$.

Theorem. Let an increasing function parameter $\varphi \in \text{RO}$ be arbitrary. Then the mapping $u \to (Au, Bu)$, with $u \in C^{\infty}(\overline{\Omega})$, extends uniquely (by continuity) to a bounded operator

$$(A,B): H^{\varphi \rho^{2q}}(\Omega) \to H^{\varphi}(\Omega) \oplus \bigoplus_{j=1}^{q} H^{\varphi \rho^{2q-m_j-1/2}}(\Gamma).$$

$$(2)$$

This operator is Fredholm; its kernel and index do not depend on φ .

Among various applications of this theorem are the following:

- a theorem on isomorphisms generated by (2);
- a priori estimates for solutions to the problem (1);
- a theorem on local increasing in regularity of the solutions;
- new sufficient conditions for the weak solutions to be classical.