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TAMRAZOV Promarz Melikovich
(17.06.1933 — 11.02.2012)

Professor Promarz Melikovich Tamrazov is an outstanding and
leading specialist in complex analysis, potential theory and related
fields of mathematics.
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P.M. Tamrazov was born on 17.06.1933 in Kiev. His parents Melik
and Shoushan were Assyrians.

His mathematical faculties appeared very early.

According to his own words, he liked being a primary schooler to
play under a table, where his elder brother Zhora was solving
mathematical school problems under the supervision of parents.
And when Zhora could not find an answer to the next problem, little
boy Proma loudly gave a correct answer below.

After beginning the Second World War he remained in Kiev
together with family. After the occupation of Kiev by the fascist army,
the family was transported to Germany in 1942, but they succeeded
to escape on the road. In 1944 the family has came back to Kiev,
where Proma has renewed the school training.
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Being in high school, Promarz wins the Kiev competition in
Mathematics among the schoolboys. In 1951 he finished high
school with Gold Medal honor.

Kiev, 2018 – p. 4/58



From 1951 he studied at Kiev Polytechnic Institute. Professor
Valentin Anatolievich Zmorovich gave enthusiastically lectures of
higher mathematics for students of the first year. These lectures
have made a deep impression on the young P. Tamrazov. He
became a member of a mathematical study group supervised by
V.A. Zmorovich. Lessons at this group has strengthened
Tamrazov’s interest to mathematics.

In 1956 P. Tamrazov graduated with honor in Mechanical and Heat
Engineering and received an engineer degree (Soviet equivalent of
Master degree). Between 1956 and 1963 he worked in Kiev
Polytechnic Institute and institutes of Ukrainian Academy of
Sciences as engineer and assistant professor.
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V.A. Zmorovich
(1909 – 1994)

In 1958 — 61 P. Tamrazov under-
took post-graduate studies in Mathe-
matics under the guidance of Professor
V.A. Zmorovich. For his Ph.D./Candidate
thesis V.A. Zmorovich has offered
a theme closely related to original
Grötzsch’s ideas in the geometric func-
tion theory of the complex variable. Hav-
ing deeply understood Grötzsch’s ideas,
P. Tamrazov has developed the theory of
extremal length and has solved a series
of extremal problems for conformal map-
pings of multiply and infinitely connected
domains. These extremal problems are
associated with multipole quadratic dif-
ferentials.
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After proving a Ph.D./Candidate thesis
in 1963 P.M. Tamrazov has prepared
a brilliant Doctor Sciences thesis that
was proved on 29.01.1966 in Institute
of Mathematics of Ukrainian Academy of
Sciences, Kiev.
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P.M. Tamrazov and his wife Janna
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From 1963 P.M. Tamrazov worked in Institute of Mathematics of
Ukrainian Academy of Sciences as a research fellow and from 1983
as a head of laboratory. He got the title of Professor in 1982.

In 1989 — 2003 he was the head of Department of Complex
Analysis and Potential Theory and from 2003 a leading research
fellow of the mentioned department.

In 2006 P.M. Tamrazov was elected to the National Academy of
Science of Ukraine its Corresponding member.

He was an active participant on many international congresses and
conferences. He was awarded by many grants.

P.M. Tamrazov was a member of ISAAC Board (1998 — 2002) and
a member of ISAAC Award Committee (1999).
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P.M. Tamrazov is the author of more than 200 research papers and
of monograph “Smoothnesses and polynomial approximations”,
Naukova Dumka, Kiev, 1975. He was the supervisor of 13 Ph D and
4 Doctor of Sciences theses.
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Promarz Tamrazov: Ph.D. – 1963 , Doctor Sciences – 1966
Volodymyr Gorbaichuk: Ph.D. – 1972
Aleksandr Bakhtin: Ph.D. – 1975 , Doctor Sciences – 2007

A. Targonskyi, V. Viun, I. Vygovska, I. Denega, Ja. Zabolotnyi
Galina Bakhtina: Ph.D. – 1975
Elena Karupu: Ph.D. – 1978
Viacheslav Bardzinskii: Ph.D. – 1978
Oleg Gerus: Ph.D. – 1980
Natalia Zorii: Ph.D. – 1981 , Doctor Sciences – 1992
Varazdat Navoyan: Ph.D. – 1984
Anatolii Shchekhorskii: Ph.D. – 1984
Tahir Azeroglu Aliyev: Ph.D. – 1986
Sergiy Plaksa: Ph.D. – 1989 , Doctor Sciences – 2006

S. Gryshchuk, Ju. Kudiavina, V. Shpakivskyi, R. Pukhtairvych
Vladimir Kudiavin: Doctor Sciences – 1992

Anatoliy Golberg: Ph.D. – 1993
Aleksandr Sarana: Ph.D. – 1995
Serhii Okhrimenko: Ph.D. – 2003
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P.M. Tamrazov solved many open problems which were posed and
tackled by other scientists. In particular:

he developed the theory of complex finite-difference
smoothnesses of any order on general sets in the complex
plane and solved the difference contour-solid problems for
holomorphic functions posed by W.E. Sewell in 1942, and
developed a general contour-solid theory for holomorphic and
meromorphic and subharmonic functions. The obtained
results enabled to solve open problems of approximation
theory on complex sets;

he solved Gonchar’s extremal problem on capacities of
condensers and for this purpose he developed a method
based on mixing signed measures or charges;
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he investigated general properties of extremal lengths and
extremal metrics, and solved problems concerning finding
extremal metrics and moduli of some nonorientable and
twisted Riemannian manifolds, including the problem for
Möbius strip that had been tackled by P.M. Pu in 1952 but not
solved ;

he solved extremal problems for conformal mappings
associated with multipole quadratic differentials.

His fundamental results gave rise to fruitful investigations of many
mathematicians.

Let us remember some P.M. Tamrazov’s mathematical ideas and
results.
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1. Extremal length and extremal metrics
The investigation of geometrical properties of mappings had
promoted a search of conformal invariants that could be used for
developing effective methods of studying wide classes of mappings.
The Ahlfors – Beurling (1950) extremal length and the module of
curves family are conformal invariants suitable to this goal.

Let Γ be a family of curves contained in a domain D ⊂ R
n. The

module of Γ is defined by the formula:

M(Γ) := inf
ρ∈admΓ

∫

D

ρn(x) dm(x) ,(1)

where m is the Lebesgue mesure in R
n, and the infimum is taken

over all admissible functions (metrics) ρ : Rn → [0,∞] such that∫

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ .(2)

(M(Γ))−1 is called the extremal length of Γ.
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1. Extremal length and extremal metrics

The Ahlfors – Beurling module M(Γ) generalized the Faber (1922)
"length–area method" and the Grötzsch (1928) stripes method.

H. Renggli (1952) discovered an enough simple proof of unique-
ness of the extremal metric ρ. The proof is based on monotony of
module that is not fulfilled for the Ahlfors – Beurling module in truth.
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1. Extremal length and extremal metrics
J. Hersch (1952) made an attempt to alter the module definition. He
gave up a claim of integrability of admissible metrics and suggested
to understand the integral

M(Γ) := inf
ρ∈admΓ

∫

D

ρn(x) dm(x)(1)

in the upper Darboux sense and the integral
∫

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ(2)

in the lower Darboux sense. But in this case, the uniqueness of
extremal metric was lost as well as advantages of the Lebesgue
integral.
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1. Extremal length and extremal metrics
B. Fuglede (1957) suggested to consider Borelean metrics ρ in

M(Γ) := inf
ρ∈admΓ

∫

D

ρn(x) dm(x) ,(1)

∫

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ(2)

and local rectifiable curves γ in (2). In such a case the monotony of
module holds and the uniqueness of extremal metric is attainable.
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1. Extremal length and extremal metrics
In Ph.D. thesis, P.M. Tamrazov (1963) suggested a more general
and universal approach. This approach is based on the definition in
which the volume integral

M(Γ) := inf
ρ∈admΓ

∫

D

ρn(x) dm(x)(1)

is taken in the Lebesgue sense while the linear integral
∫

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ(2)

is taken in the lower Darboux sense. It allowed to take into
consideration all metrics L-measurable in space sense and all
curves without requirement of local rectifiability. This approach
provides many advantages and applications.
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1. Extremal length and extremal metrics
P.M. Tamrazov investigated general properties of extremal lengths
and extremal metrics:
- he proved a monotony of the module introduced by him and gave
a correct proof of uniqueness of the extremal metric;
- he established the local extremal property of extremal metrics;
- he introduced a general limit modulus problem and proved the
uniqueness of extremal metric for this problem.
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1. Extremal length and extremal metrics

1.2. Extremal metric and modulus problems on nonorientable
and twisted Riemannian manifolds

P.M. Tamrazov and V.Kh. Navoyan (1983) solved problems
concerning finding extremal metrics and moduli of some
nonorientable and twisted Riemannian manifolds.
P.M. Tamrazov (1988) solved also the problem concerning finding
extremal metrics for Möbius strip that was tried by P.M. Pu in 1952
but not solved correctly then.
P.M. Tamrazov and S.A. Okhrimenko (1999) obtained estimations
for products of moduli of families of curves on a Riemannian
Möbius strip.
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1. Extremal length and extremal metrics

1.3. Applications to problems of geometric function theory
and potential theory

P.M. Tamrazov gave various applications of general properties of
extremal lengths and extremal metrics to conformal mappings of
multiply (and infinitely) connected domains and problems of the
potential theory.
On such a way, he studied a problem (posed by I.P. Mitjuk) on
behavior of conformal modulus of multiply connected domains
under symmetrization (1971) and a problem (posed by
G.D. Suvorov) on boundary behavior of conformal mapping (1974)
and other problems.
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1. Extremal length and extremal metrics

P.M. Tamrazov wielded masterly the method of extremal lengths
and applied skilfully it in the most unexpected situations.

Let us remember a problem on plurisubharmonic extension of
functions in complex topological vector spaces.

The classical M. Brelot theorem: Suppose that E is a closed set in
an open set D ⊂ Rn and CapE = 0. Suppose also that a function u

is subharmonic in D \ E and bounded above on every compact
subset of D. Then u can be uniquely continued to a subharmonic
function on D.
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The classical M. Brelot theorem: Suppose that E is a closed set in
an open set D ⊂ R

n and CapE = 0. Suppose also that a function u

is subharmonic in D \ E and bounded above on every compact
subset of D. Then u can be uniquely continued to a subharmonic
function on D.

P. Lelong (1957) replaced the requirement about boundedness
above of the function u on every compact subset of D by the
condition of existence of a subharmonic in D function v such that
for every fixed ε > 0 the function u(x) + εv(x)→ −∞ when
D \E 3 x→ y for all y ∈ E. Lelong’s proof appealed essentially to a
subharmonicity of the superior limit of a sequence of subharmonic
in D functions bounded above uniformly on every compact subset
of D. But the required uniform boundedness above (an essential
step on the way to the result) was not proved actually.
P.M. Tamrazov (1988) proved this fact (and more general
statements) but the proof was found rather delicate.
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1. Extremal length and extremal metrics
A statement similar to Lelong’s statement was announced in 1969
for plurisubharmonic functions in topological complex vector spaces
but was not proved completely as well as Lelong’s statement.

P.M. Tamrazov has understood that his proof suitable for
finite-dimensional spaces does not pass in infinitely dimensional
spaces. And then P.M. Tamrazov (1989) found another elegant way
of the proof using extremal lengths.

V.S. Kudiavin (1992) applied the method of extremal lengths to
researching properties of mappings of Sobolev classes in the plane
and multidimensional Euclidean space as well.
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2. Contour-solid problems

2.1. The Warschawski – Walsh – Sewell contour-solid
problem for holomorphic functions

Let E ⊂ C, f : E → C and z0 ∈ E.

ωE(f, z0, δ) := sup
z∈E,|z−z0|≤δ

|f(z)− f(z0)| is a local centered module

of continuity;

ωE(f, δ) := sup
z1,z2∈E,|z2−z1|≤δ

|f(z2)− f(z1)| is a global module of

continuity.

Let G ⊂ C be an open bounded set,
f(z) be a function continuous on G and holomorphic in G;
z0 ∈ ∂G.
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2. Contour-solid problems
Problem: G — ? µ(δ) — ? for which:
1) ω∂G(f, δ) ≤ µ(δ)=⇒ωG(f, δ) ≤ c µ(δ), c = const.

2) ω∂G(f, z0, δ) ≤ µ(δ)=⇒ωG(f, z0, δ) ≤ c µ(δ), c = const.

3) ∃f ′
∂G(z0) := lim

z→z0,z∈∂G

f(z)−f(z0)
z−z0

=⇒∃f ′
G
(z0) := lim

z→z0,z∈G

f(z)−f(z0)
z−z0

.

4) f ′
∂G(z) is continuous on ∂G and ω∂G(f, δ) ≤ const δ=⇒f ′

G
(z) is

continuous on G.

In the case where G is a Jordan domain:
S.E. Warschawski (1934) proved assertion 2 for µ(δ) = δα, α > 0;
J.L. Walsh and W.E. Sewell (1940) proved the assertion 1 for
µ(δ) = δα, α > 0, with c = 1;
W.E. Sewell (1942) proved the assertion 1 for µ(δ) = δ| log δ|;
J.L. Walsh and W.E. Sewell (1940) proved the assertion 4 and the
assertion 3 (under the additional condition ω∂G(f, z0, δ) ≤ const δ ).
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2. Contour-solid problems

In this relation W.E. Sewell (1942) formulated the problems:
A. To extend Warschawski – Walsh – Sewell results to domains
more general than Jordan domains.
B. To prove the assertions 1, 2 for majorants µ(δ) 6= δα and
µ(δ) 6= δ| log δ|.
C. What is the most general majorant µ(δ) for which the assertion 1
is true in the case where G is a Jordan domain?

The problems A, B, C amount to the unified problem on
contour-solid properties of holomorphic functions. It is justified to
name this problem by the Warschawski – Walsh – Sewell problem.
During subsequent 30 years partial results were received by many
authors.
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2. Contour-solid problems

P.M. Tamrazov (1972) proved the assertions 1 — 4, in particular, for
any bounded open set G with connected complement and any
majorant µ(δ) of the type of module of continuity (i.e. µ(δ) > 0 for all
δ > 0, µ(+0) = 0, µ(δ) is a nondecreasing and semiadditive
function).
He proved that the concavity of function ν(t) := log µ(exp t) is
necessary and sufficient condition for the truth of assertion
2)1 ω∂G(f, z0, δ) ≤ µ(δ)=⇒ωG(f, z0, δ) ≤ µ(δ) ,

and sufficient condition for the truth of assertion
1)1 ω∂G(f, δ) ≤ µ(δ)=⇒ωG(f, δ) ≤ µ(δ) .

(i.e. with c = 1 in solid estimates).
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2. Contour-solid problems
The developed methods have allowed essentially to expand
statements of problems. In particular, in P.M. Tamrazov’s papers:

a) the domain G is considered to be unbounded, multiply-con-
nected (including infinitely connected) and, in general case, G is
an open set of very general nature;

b) µ(δ) is more general majorant named by normal, i.e. µ(δ) is a
nondecreasing function for which there exist the constants σ ≥ 1

and γ ≥ 0 such that

µ(tδ) ≤ σ tγµ(δ) ∀ δ > 0 ∀ t > 1

(generally speaking, µ(δ) is discontinuous and is not semiadditive
and do not satisfy the condition µ(+0) = 0 ).

Yu.Yu. Trokhimchuk (2010) proved the equality ωG(f, δ) = ω∂G(f, δ)

in the case where G is compact.
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2.2. Complex finite-difference smoothnesses

The problem of defining finite-difference smoothnesses of functions
in complex domains attacked by many mathematicians during a
long time.

P.M. Tamrazov introduced moduli of smoothness of orders
k = 2, 3, . . . which are well defined for any set in the complex plane
and enable to solve basic problems of the theory of finite-difference
smoothnesses in a general form, under wide assumptions upon
sets, majorants and functions. These moduli are free of any
approximational features, are uniform with respect to inner and
boundary points of sets. They are axiomatically defined on the
basis of the notion of localization.
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2.2. Complex finite-difference smoothnesses

A localization l is a rule (mapping) under which to each ordered
collection (k,E, z, δ) (where k is a nonnegative integer, E ⊂ C,
z ∈ C, δ > 0) there corresponds a unique set l(k,E, z, δ) ⊂ Ek+1

each point (z0, z1, . . . , zk) of which is simple, i.e. zp 6= zq for all p 6= q.

Local and global moduli of smoothness corresponding to a given
localization l are defined by formulas
ωk,E,f,z(δ) := sup

(z0,z1,...,zk)∈l(k,E,z,δ)

∣∣∣[z0, z1, . . . , zk; f, z0]
∣∣∣ (local

module),

ωk,E,f (δ) := sup
z∈E

ωk,E,f,z(δ) (global module),

where [z0, z1, . . . , zk; f, z0] :=
k∏

j=1
(z0 − zj)

k∑
q=0

f(zq)
k∏

r=0,r 6=q

(zq − zr)
−1

is the finite difference of a function f(z).
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2.2. Complex finite-difference smoothnesses

Giving different localizations l, it is possible to introduce different
types of moduli of smoothness. In particular, if one consider the
localization l for which every set l(k,E, z, δ) consists of all points
(z0, z1, . . . , zk) satisfying the condition

|zi − zj |

|zp − zq|
≤ N (∃N ≥ 1 ∀ i, j, p, q = 0, 1, , . . . , k : p 6= q) ,(3)

then the corresponding moduli are called uniform. (In particular,
classical moduli of smoothness on the real line correspond to the
arithmetical localization and are uniform.) The moduli are called
free if the constraint (3) is not imposed (or when N = +∞ ).
The introduced moduli of smoothness enabled to extend to
finite-difference smoothnesses of orders k = 2, 3, . . . various
results of complex constructive function theory known for k = 1.
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2.3. Polynomial approximations
In the early seventies in contrast to functions of real variable, for
functions given in a closed domain of the complex plane, the results
on direct and inverse problems of polynomial approximation had
usually relations to moduli of smoothness of the order k = 1.

Direct problem: to study the dependence of rapidity of polynomial
approximation on structural properties of functions.
Inverse problem: to study the dependence of structural properties
of functions on the rapidity of their polynomial approximation.

J.H. Curtiss (1936), W.E. Sewell (1938, 1942), H.M. Elliott (1951),
S.N. Mergelian (1951, 1952), S.Ya. Alper (1955), V.K. Dziadyk
(1959), N.A. Lebedev and N.A. Shirokov (1971) obtained results for
the direct problem, and J.L. Walsh, W.E. Sewell and H.M. Elliott
(1949), V.K. Dziadyk (1959, 1963) obtained results for the contour
inverse problem of polynomial approximation under those or other
additional restrictions on smoothness.
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2.3. Polynomial approximations

V.K. Dziadyk (1959) obtained a result for the solid inverse problem
of polynomial approximation of Hölder functions in domains with
some good piecewise smooth Jordan boundaries, but such a
problem were open for general functional classes defined by means
a majorant of the type of module of continuity (the problem was
posed by V.K. Dziadyk in the middle sixties).

N.A. Lebedev and P.M. Tamrazov (1970) developed a new method
for solving the contour inverse problem of polynomial approximation
and obtained results for boundaries of both an arbitrary bounded
continuum and a wide class of compacts. P.M. Tamrazov (1971,
1973) extended these results onto the solid inverse problem of
polynomial approximation for a wide class of compacts and solved
the V.K. Dziadyk problem for general functional classes defined by
means normal majorants.
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2.3. Polynomial approximations

Using the developed theory of complex finite-difference
smoothnesses of any order, P.M. Tamrazov (1975) solved open
problems of approximation theory on general sets in the complex
plane. He proved direct and inverse theorems of polynomial
approximation and obtained constructive characterization of
functions on some new classes of sets in terms of the best uniform
polynomial approximations. The solution of direct and inverse
problems of polynomial approximation on complex sets was
obtained mainly due to the introduction of free moduli ωk,∞,F,f (δ) of
smoothness of any order k.
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2.3. Polynomial approximations

Theorem (P.M. Tamrazov, 1975). Let F be an arbitrary connected
compact set with connected complement and let the continuous
function f(z) be given on F such that it is approximated on ∂F by
polynomials pn(z) of degree n in the following rate:

|f(z)− pn(z)| ≤ µ

(
d
( 1

n
, z
))

∀ z ∈ ∂F ∀n = 1, 2, . . . ,

where µ is a normal majorant, and d( 1
n
, z) is the distance between

a point z and 1
n

-th level line of the outer Green function. Then

ωk,∞,F,f (δ) ≤ c δk
ed∫

0

µ(t) dt

tk(t+ δ)
∀ δ ∈ (0, d] ,

where d is the diameter of F , and the constant c does not depend
on δ.
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2.3. Polynomial approximations

P.M. Tamrazov and V.J. Gorbaichuk (1972) proved some inverse
theorems of polynomial approximation on compacts of positive
capacity.
P.M. Tamrazov and V.V. Bardzinskii (1976) proved local
approximation theorems on complex sets.
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2.4. Contour-solid results and some other results

P.M. Tamrazov developed a general contour-solid theory for
holomorphic and meromorphic and subharmonic functions.

P.M. Tamrazov and A.J. Shchekhorskii (1977) proved contour-solid
theorems for holomorphic functions in C

n.

P.M. Tamrazov and T. Aliyev proved contour-solid theorems for
meromorphic (1986) and finely meromorphic (2006) functions.
These results take into account zeros and the multivalence of
functions.

P.M. Tamrazov and A.A. Sarana (1997) studied contour-solid
properties of finely hypoharmonic and finely subharmonic functions.
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2.4. Contour-solid results and some other results

P.M. Tamrazov (1977) solved the problem of finite differences and
modules of smoothness for superpositions of functions, that was an
open problem for a long time. Using a method of solving this
problem, E.W. Karupu (1978) obtained some results on
finite-difference smoothnesses of conformal mappings.

P.M. Tamrazov (1975) and O.F. Gerus (1977, 1998) studied
finite-difference smothnesses of Cauchy integral operator and
related singular operators. O.F. Gerus (1981) and S.A. Plaksa
(1989, 1990) solved some boundary problems for analytic functions
in domains with rectifiable Jordan boundaries.
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3.1. Gonchar’s problem on capacities
An ordered pair (E+, E−) =: E of disjoint nonempty closed subsets
E+ and E− of the extended complex plane C is called a condenser.

Denote by Φ the class of condensers in [−1, 1].
Denote by Φ∗ the class of standard condensers (E+, E−) such
that E+ = [d+, 1] and E− = [−1, d−], where −1 ≤ d− < d+ ≤ 1.

Let us define a single-valued mapping s : Φ→ Φ∗ which makes
E ≡ (E+, E−) ∈ Φ correspond to s(E) := E∗ ≡ (E+

∗ , E
−
∗ ) ∈ Φ∗ in

such a way that mesE+
∗ = mesE+ and mesE−

∗ = mesE−, where
mes denotes the linear Lebesgue measure.

-q q

−1 1
-q q

−1 1
E−

E+

E ≡ (E+, E−) ∈ Φ

q q

d− d+

s(E) := E∗ ≡ (E+
∗ , E

−
∗ ) ∈ Φ∗

E−
∗ E+

∗
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3.1. Gonchar’s problem on capacities

The capacity of E ≡ (E+, E−) is denoted by CapE.

The Gonchar’s extremal problem: Show that

CapE ≥ Cap s(E) ∀E ≡ (E+, E−) ∈ Φ

(at least in the case where mesE+ = mesE− ).

-q q

−1 1
-q q

−1 1
E−

E+

E ≡ (E+, E−) ∈ Φ

q q

d− d+

s(E) := E∗ ≡ (E+
∗ , E

−
∗ ) ∈ Φ∗

E−
∗ E+

∗
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3.1. Gonchar’s problem on capacities

We call a condenser D ≡ (D+, D−) antithetic to the condenser
E ≡ (E+, E−) ∈ Φ if D+ and D− are obtained by reflecting E+ and
E−, respectively, in the imaginary axis.

We say that the condenser D ≡ (D+, D−) quasi coincides with
E ≡ (E+, E−) if the sets (D+ ∪ E+) \ (D+ ∩ E+) and
(D− ∪ E−) \ (D− ∩ E−) have zero capacity.

Theorem 3.1 (P.M. Tamrazov, 1981). Let E ∈ Φ. Then
CapE ≥ Cap s(E), and the equality is attained if and only if either
E quasi coincides with s(E) or with the condenser antithetic to
s(E), or when CapE = 0 .

To prove Theorem 3.1, P.M. Tamrazov developed a method based
on mixing signed measures (charges).
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3.1. Gonchar’s problem on capacities
Note that a very similar generalized conjecture seems to be
intuitively plausible:

CapF ≥ CapF∗

for the capacity of a condenser F ≡ (F+, F−) in the strip
P := {z ∈ C : −1 ≤ Re z ≤ 1} as compared to the capacity of the
condenser F∗ ≡ (F+

∗ , F−
∗ ) related to F in the following way:

on a horizontal line Γy := {z ∈ C : Im z = y} each of the sets
l+y := F+

∗ ∩ Γy and l−y := F−
∗ ∩ Γy lies in P ,

mes l+y = mesF+ ∩ Γy and mes l−y = mesF− ∩ Γy,
and the right-hand end of l+y and the left-hand end of l−y lie on ∂P .

-q q

Γy

−1 1
-q q

Γy

−1 1

F−
F−
∗

l−y

F+ F+
∗

l+y
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3.1. Gonchar’s problem on capacities

But it turns out that this generalized conjecture is false.

In fact, let F+
θ,ε consist of the segments {z ∈ C : 1/2 ≤ z ≤ 1} and

{z ∈ C : Im z = θ, |Re z − 3/4| ≤ ε}, and let F−
θ,ε be the reflection of

F+
θ,ε in the imaginary axis.

Let F+
θ,ε,∗ consist of the segments {z ∈ C : 1/2 ≤ z ≤ 1} and

{z ∈ C : Im z = θ, 1− 2ε ≤ Re z ≤ 1}, and let F−
θ,ε,∗ be the reflection

of F+
θ,ε,∗ in the imaginary axis.

-

6

q q

Γθ

−1 1−1/2 1/2

F−
θ,ε F+

θ,ε

-

6

q q

Γθ

−1 1−1/2 1/2

F−
θ,ε,∗ F+

θ,ε,∗
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3.1. Gonchar’s problem on capacities
Theorem 3.2 (P.M. Tamrazov, 1981). There is a number θ0 ∈ (0, 1/8]

such that if θ ∈ (0, θ0] and ε ∈ [θ/2, θ], then the capacities of the
condensers Fθ,ε := (F+

θ,ε, F
−
θ,ε) and Fθ,ε,∗ := (F+

θ,ε,∗, F
−
θ,ε,∗) satisfy the

inequality

CapFθ,ε < CapFθ,ε,∗ .

The proof of Theorem 3.2 is based on the construction of certain
families of curves, the effective construction of a conformally
invariant metric for them, and the deduction of two-sided estimates
for the conformal moduli of the mentioned families.

-

6

q q

Γθ

−1 1−1/2 1/2

F−
θ,ε F+

θ,ε

-

6

q q

Γθ

−1 1−1/2 1/2

F−
θ,ε,∗ F+

θ,ε,∗
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3.2. Other problems of potential theory
P.M. Tamrazov (1998) solved Eremenko’s extremal problem on
harmonic functions.

P.M. Tamrazov (1999) solved contour-solid and cluster problems for
finely holomorphic and finely subharmonic functions; he solved also
some other problems of fine potential theory.

P.M. Tamrazov (2001) solved problems on minimization of energy of
charges on batteries of condensers.

N.V. Zorii (1991) solved noncompact essentially problems of the
potential theory.
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4. Extremal problems for conformal mappings

P.M. Tamrazov (1968) developed methods for solving extremal
problems associated with multipole quadratic differentials having
free poles.

Let KR := {z ∈ C : R < |z| < 1} be a ring, where R ∈ (0, 1),
Cr := {z ∈ C : |z| = r} be a circle.
Let F(R) be the class of univalent conformal mappings f : KR → C

for which the bounded component of C \ f(KR) contains the points
0, 1 and a continuum f(C1).

Problem: Among all mappings f ∈ F(R) to find such f for which the
functional |f ′(z0)| is minimal for a fixed z0 ∈ KR.
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4. Extremal problems for conformal mappings

Let DR be a doubly-connected domain equivalent conformally to
the ring KR with the boundary consisting of the intervals [−∞,−t]

and [0, 1].
Let gR(z) be the function with the properties:
gR(z) ∈ F(R), gR(KR) = DR, gR(1) = 1.

Theorem 4.1 (P.M. Tamrazov, 1968). For any function f ∈ F(R), the
following inequality holds:

|f ′(z)| ≥ g′R(−|z|) .

Moreover, for every fixed point z = z0, the equality is attained only
for either

f(z) ≡ gR

(
−z
|z0|

z0

)
or f(z) ≡ 1− gR

(
−z
|z0|

z0

)
.
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4. Extremal problems for conformal mappings

Using Theorem 4.1, P.M. Tamrazov (1968) solved some extremal
problems for conformal mappings associated with multipole
quadratic differentials having 5 free poles.

Using the principal idea to use quadratic differentials with free
poles, G.P. Bakhtina (1974) and A.K. Bakhtin (2006) developed the
theory of extremal problems for nonoverlapping domains.
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4. Extremal problems for conformal mappings

Parameterization for extremals of Tchebotaröv’s problem

Let K := {z ∈ C : |z| < 1} be the unit disk in C.
Let {aj} := {aj}m+1

j=1 ⊂ C \ {0} with am+1 =∞, where a1, a2 . . . , am

is an unordered collection.
One of equivalent formulations of Tchebotaröv’s problem: Among
all univalent conformal mappings f : K → C \ {aj} with f(0) = 0, to
find such f for which the functional |f ′(0)| is maximal.

r

r

r

r

a1a2

a3

am

am+1 =∞

Kiev, 2018 – p. 50/58



4. Extremal problems for conformal mappings

It is known that the extremal function f of Tchebotaröv‘s problem
satisfies the following functional-differential equation:

(
zf ′(z)

f(z)

)2

=
p(f(z))

q(f(z))
,

where p(w) :=
∏

j:aj 6=∞

(aj − w) , and q is a polynomial of the degree

m− 1 with q(0) = p(0) (which is uniquely determined by the
collection of points {aj}). The quadratic differential of Tchebotaröv’s
problem

Q(w)dw2 = −
q(w)

w2p(w)
dw2 .
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4. Extremal problems for conformal mappings

Let B := C \ f(K). One may consider B as an undirected,
connected, simple, acyclic, plane graph (it is a tree) on C consisting
of:
1) nodes of order one at all points aj and only at them,
2) nodes of orders νs + 2 at all zeros bs of the order νs ≥ 1 of
Q(w)dw2 and only at them,
3) all critical analytic trajectories of Q(w)dw2 (ending at zeros or
simple poles of Q(w)dw2) as edges of the graph.

�
r

r

r

r

r

r

B

a1a2

a3

am

am+1 =∞

b1
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4. Extremal problems for conformal mappings

P.M. Tamrazov proved that B is isomorphic (in a certain sense) to a
rectilinear graph (tree) Γ for which the sum of lengths of all
segments (composing Γ) equals π, with the correspondence of the
nodes
Γ 3 0←→∞ ∈ B.

�
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r

r

r

r

r
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a1a2
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am
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bs r r
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4. Extremal problems for conformal mappings

Theorem 4.2 (P.M. Tamrazov, 2005). For every Γ under
consideration, there is a function φT with the following properties:
1) φT is holomorhic and univalent in K, and continuous on K \ {1};
2) φT (K) = C, φT (0) = 0, φ′

T (0) = 1, φT (1) =∞;
3) φT is continuous (with respect to topology of C in the image) on
K;
4) φT is extremal in Tchebotaröv’s problem for the collection of
points {aj} which are completely defined by Γ and φT .
The extremal function f(z) in this problem for the mentioned
collection of points {aj} is unique up to rotation of the disc K in
the z-plane around the origin.
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4. Extremal problems for conformal mappings
P.M. Tamrazov introduced a certain relation of equivalence in the
set G of all considered rectilinear graphs.
Let G̃ denote the factor-set of G with respect to the equivalence.
For a graph Γ ∈ G, let Γ̃ denote the class of all graphs equivalent
to Γ (with the "same configuration").

Theorem 4.3 (P.M. Tamrazov, 2005). The class of all extremals of
Tchebotaröv’s problem is parametrized by elements of the set
G̃× ∂K, and this parametrization is one-to-one correspondence:
1) to every element Γ̃ ∈ G̃ and any t ∈ ∂K there corresponds one
(and only one) point collection {aj} for which the function
f(z) := tφT (z) (with φT mentioned in Theorem 4.2 and any graph
Γ ∈ Γ̃) is extremal in Tchebotaröv’s problem, and conversely,
2) for every collection of points {aj} there exists one and only one
class Γ̃ ∈ G̃ and the single t ∈ ∂K such that the function
f(z) := tφT (z) is extremal in Tchebotaröv’s problem for {aj}.

Kiev, 2018 – p. 55/58



4. Extremal problems for conformal mappings

P.M. Tamrazov (2010) established a parameterization for extremals
of the problem formulated by H. Grötzsch in 1930 as the hyperbolic
analog of Tchebotaröv’s problem. He established also a
parameterization for extremals of some generalization of
Tchebotaröv’s problem.
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P.M. Tamrazov has died on 11.02.2012 after a prolonged illness.

Promarz Melikovich Tamrazov was a remarkable person, being very
kind, responsive and exceptionally attentive to the people.
Mathematics was his true love, a sense and happiness in all his life.
In our contacts and mathematical discussions with him, we were
convinced repeatedly by his great mathematical talent. Sometimes
the impression was created that there are practically no
mathematical difficulties for him. He had tremendous mathematical
intuition and shared generously his ideas with disciples.

We have a good luck to meet this eminent person on our creative
way. He will remain in our memory as an intellectually gifted and
outstanding person for ever.
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