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We study reduction operators (called also nonclassical or conditional symme-
tries) of the (1+1)-dimensional linear rod equation. In particular, we prove
and illustrate a new theorem on linear reduction operators of linear partial
differential equations.

1 Introduction

For linear partial differential equations, there exist well-developed classical meth-
ods of their analytical solution, which, in particular, includes the separation of
variables, different integral transforms, Fourier series and their generalizations. At
the same time, the study of symmetry properties of such equations is important,
first of all, for the development of methods of symmetry analysis itself.

In this paper we consider the (1+1)-dimensional constant-coefficient linear rod
equation utt + λuxxxx = 0, where λ > 0, for unknown function u of the two inde-
pendent variables t and x. This equation describes transverse vibrations of elastic
rods. It is a special case of the Euler–Bernoulli beam equations, corresponding
to constant values of parameters. Lie symmetries and the general equivalence
problem for the class of Euler–Bernoulli beam equations were studied in [5,6,11].
By simple scaling of t or x, without loss of generality we can set λ = 1, i.e., it is
sufficient to consider the equation

utt + uxxxx = 0. (1)

Some simple exact solutions of this equation are presented in [9, Section 9.2.2].1

The maximal Lie invariance algebra of equation (1) is

g = 〈∂t, ∂x, 2t∂t + x∂x, u∂u, h(t, x)∂u〉,

where h = h(t, x) is an arbitrary solution of equation (1).
We study reduction operators (called also nonclassical or conditional symme-

tries) of the (1+1)-dimensional linear rod equation (1). First, in Section 2 we

1See also http://eqworld.ipmnet.ru/en/solutions/lpde/lpde501.pdf.
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prove a theorem on linear reduction operators of general linear partial differential
equations. This is why the notation in this section is different from the other
part of the paper. The consideration of the next two sections illustrates both the
statement and the proof of the theorem. The description of singular reduction
operators of (1) in Section 3 is exhaustive. In contrast to this, only particular
classes of regular reduction operators of (1) are found in Section 4. Possible gen-
eralizations of results obtained in the paper are discussed in the conclusion. We
list interesting symmetry properties of equation (1) and additionally indicate the
relation between the (1+1)-dimensional linear rod equation (1) and the (1+1)-
dimensional free Schrödinger equation.

2 Linear reduction operators of linear equation

In order to present a theoretical background on reduction operators, based on
[1–4, 10, 12], we first consider a general rth order differential equation L of the
form L(x, u(r)) = 0 for the unknown function u of the independent variables
x = (x1, . . . , xn). Here, u(r) denotes the set of all the derivatives of the function u
with respect to x of order not greater than r, including u as the derivative of order
zero. Any vector field Q in the foliated space of the n independent variables x
and the single dependent variable u takes the form

Q = ξi(x, u)∂i + η(x, u)∂u,

where the coefficients ξi and η are smooth functions of x and u. The first-order
differential function Q[u] = η − ξiui is called the characteristic of Q.

Here and in what follows the index i runs from 1 to n, and we use the
summation convention for repeated indices, α = (α1, . . . , αn) is a multi-index,
αi ∈ N ∪ {0}, |α| = α1 + · · · + αn, and δi is the multi-index whose ith entry
equals 1 and whose other entries are zero. Subscripts of functions denote differ-
entiation with respect to the corresponding variables, ∂i = ∂/∂xi and ∂u = ∂/∂u.
The variable uα of the rth order jet space Jr = Jr(x|u) corresponds to the deriva-
tive ∂|α|u/∂xα1

1 . . . ∂xαnn , and ui ≡ uδi . All considerations are in the local smooth
setting. Then the equation L can be viewed as an algebraic equation in the jet
space Jr and is identified with the manifold of its solutions in Jr:

L = {(x, u(r)) ∈ Jr | L(x, u(r)) = 0}.

We use the same symbol L for this manifold and write Q(r) for the manifold
defined by the set of all the differential consequences of the characteristic equation
Q[u] = 0 in Jr, i.e.,

Q(r) = {(x, u(r)) ∈ Jr | Dα1
1 · · ·D

αn
n Q[u] = 0, αi ∈ N ∪ {0}, |α| < r},

where Di = ∂xi + uα+δi∂uα is the operator of total differentiation with respect to
the variable xi.
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Definition 1. The differential equation L is called conditionally invariant with
respect to the vector field Q if the relation Q(r)L(x, u(r))|L∩Q(r)

= 0 holds. This
relation is called the conditional invariance criterion [1–3, 12]. Then Q is called
a conditional symmetry (or Q-conditional symmetry, or nonclassical symmetry,
etc.) operator of the equation L.

In this definition, Q(r) denotes the standard rth prolongation of Q [7, 8]:

Q(r) = Q+
∑

0<|α|6r

ηα∂uα , where ηα = Dα1
1 · · ·D

αn
n Q[u] + ξiuα+δi .

The equation L is conditionally invariant with respect to the vector field Q if
and only if an ansatz constructed with Q reduces L to a differential equation with
n−1 independent variables [12]. Thus, we will briefly call a conditional symmetry
operator of the equation L a reduction operator of this equation.

Reduction operators Q̃ and Q are called equivalent, Q̃ ∼ Q, if they differ
by a multiplier which is a nonvanishing function of x and u: Q̃ = λQ, where
λ = λ(x, u) 6= 0. Reduction operators Q and Q̃ are called equivalent with respect
to a group G of point transformations if there exists g ∈ G for which the opera-
tors Q and g∗Q̃ are equivalent, where g∗ is the mapping induced by g on the set
of vector fields.

Now consider an rth order linear differential equation L of the form

L[u] :=
∑
|α|6r

aα(x)uα = 0

for the unknown function u of the independent variables x = (x1, . . . , xn), where
some coefficient aα with |α| = r does not vanish.

Among Lie symmetries of linear differential equations, a distinguished role
is played by symmetries associated with first-order linear differential operators
acting on u = u(x). If n > 2 and r > 2 or n = 1 and r > 3, the system
of determining equations SDE(L) for the coefficients of vector fields from the
maximal Lie invariance algebra gmax of L necessarily implies the equations ξiu = 0
and ηuu = 0. In other words, any of such vector fields can be represented as

Q = ξi(x)∂i + (η1(x)u+ η0(x))∂u, (2)

and the system SDE(L) additionally gives that η0 is an arbitrary solution of L.
The vector fields η0(x)∂u, where η0 runs through the set of solutions of the equa-
tion L, form an ideal of the algebra gmax and generate point symmetries that are
associated with the linear superposition principle. Up to the equivalence in gmax

that is generated by adjoint actions of elements from the ideal, we can assume
η0 = 0 in (2) if at least one of the coefficients ξi or η1 does not vanish.

The purpose of the further consideration in this section is to extend the last
claim to reduction operators of the form (2), which will be called linear reduction
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operators. Note that general conditions when a linear differential equation admits
only reduction operators which are equivalent to linear ones are not known.

Additionally recall that a vector field Q is called (weakly) singular for the
differential equation L: L[u] = 0 if there exists a differential function L̃ = L̃[u] of
an order less than r and a nonvanishing differential function λ = λ[u] of an
order not greater than r such that L|Q(r)

= λ L̃|Q(r)
. Otherwise Q is called

a (weakly) regular vector field for L. A vector field Q is ultra-singular for the
equation L if this equation is satisfied by any solution of the characteristic equation
Q[u] := η − ξiui = 0. See [1, 4] for theoretical background on singular reduction
operators.

Theorem 1. Let a linear partial differential equation L possess a reduction oper-
ator Q of the form (2). Then the coefficient η0 is represented as η0 = ξiζ0

i −η1ζ0,
where ζ0 = ζ0(x) is a solution of L. Hence, up to equivalence generated by action
of the Lie symmetry group of L on the set of reduction operators of L, the coeffi-
cient η0 can be set equal to zero. Any vector field of the form ξi∂i + (η1u+ ξiζi −
η1ζ)∂u, where ζ = ζ(x) is an arbitrary solution of L, is a reduction operator of L.

Proof. Since Q is a reduction operator, at least one of the coefficients ξi does not
vanish. Consider the vector field Q̂ = ξi(x)∂i+η

1(x)u∂u. Let X1(x), . . . , Xn−1(x)
be functionally independent solutions of the equation ξivi = 0, let Xn(x) be a par-
ticular solution of the equation ξivi = 1 and let U(x) be a nonvanishing solution of
the equation ξivi + η1v = 0. We introduce the notation X = (X1, . . . , Xn). Then
the components of X and the function U(x)u are functionally independent in to-
tal as functions of (x, u). This means that the change of variables T : x̃ = X(x),
ũ = U(x)u is well defined.

We carry out this change of variables and represent all objects and relations
in the new variables (x̃, ũ). Thus, the vector field Q̂ coincides with the generator
of shifts with respect to the variable x̃n, Q̂ = ∂x̃n , and hence Q = ∂x̃n + η̃0(x̃)∂ũ,
where η̃0(x̃) = U(x)η0(x). Then the characteristic equation associated with the
vector field Q in the new variables is ũx̃n = η̃0. The change of variables T also
preserves the linearity of the equation L, which takes the form

L̃[ũ] =
∑
|α|6r

ãα(x̃)ũα = 0, (3)

where each coefficient ãα are expressed in terms of the coefficients aα
′
, |α′| > |α|,

and derivatives of Xi and U . The variable ũα of the jet space Jr corresponds to the
derivative ∂|α|ũ/∂x̃α1

1 . . . ∂x̃αnn . Up to nonvanishing multiplier, a coefficient ãα
0
,

where |α0| = r, can be assumed to be identically equal to 1.
We denote an antiderivative of η̃0 with respect to x̃n by ζ̃0,

η̃0 = ζ̃0
x̃n .

We separately consider two cases depending on whether or not the reduction
operator Q is ultra-singular for L, and show that in each of these cases there exists
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an antiderivative ζ̃0 of η̃0 satisfying the representation (3) of the equation L in
the new variables, L̃[ζ̃0] = 0.

Suppose that the reduction operator Q is ultra-singular for L. As the property
of ultra-singularity is not affected by changes of variables, this means that the
representation L̃[ũ] = 0 of the equation L in the new variables is satisfied by any
solution of the characteristic equation ũx̃n = η̃0, i.e.,∑

|α|6r,αn 6=0

ãαη̃0
α−δn +

∑
|α|6r,αn=0

ãαũα = 0,

where the derivatives ũα with αn = 0 are not constrained. Splitting with respect
to them, we obtain the system of equations ãα = 0 for α running the set of
multi-indices with |α| 6 r and αn = 0 and an equation for the coefficient η̃0,∑

|α|6r,αn 6=0

ãαη̃0
α−δn :=

∑
|α|6r,αn 6=0

ãαζ̃0
α = 0.

So, the summation in equation (3) is in fact for the values of the multi-index α
with αn 6= 0 and hence the function ζ̃0 satisfies this equation.

Suppose that the reduction operator Q is not ultra-singular for L. As the
rth prolongation of Q is given by Q(r) = ∂x̃n +

∑
|α|6r η̃

0
α(x̃)∂ũα , the conditional

invariance criterion implies for this case that

Q(r)L̃[ũ] =
∑
|α|6r

(ãαx̃n ũα + ãαη̃0
α) = 0 (4)

for all points of the jet space Jr where L̃[ũ] = 0 and ũα′ = η̃0
α′−δn with |α′| 6 r

and αn > 0. As ãα
0

= 1, the differential function Q(r)L̃[ũ] does not depend on

the derivative ũα0 . Hence the constraint L̃[ũ] = 0 is not essential in the course
of confining to the manifold L ∩ Q(r). The derivatives ũα with αn = 0 are not
constrained. Splitting with respect to them in (4) gives the system of equations
ãαx̃n = 0 for α running the set of multi-indices with |α| 6 r and αn = 0 as
a necessary condition for the equation L to admit the reduction operator Q.
Then on the manifold Q(r) we get

Q(r)L̃[ũ] =
∑

|α|6r,αn=0

ãαx̃n ũα +
∑

|α|6r,αn 6=0

ãαx̃n ũα +
∑
|α|6r

ãαη̃0
α

=
∑

|α|6r,αn 6=0

ãαx̃n η̃
0
α−δn +

∑
|α|6r

ãαη̃0
α

=
∑

|α|6r,αn=0

ãαx̃n ζ̃
0
α +

∑
|α|6r,αn 6=0

ãαx̃n ζ̃
0
α +

∑
|α|6r

ãαζ̃0
α+δn

=

∑
|α|6r

ãαζ̃0
α


x̃n

= 0.
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The integration of the last equality with respect to x̃n gives that the function
ζ̃0 = ζ̃0(x) satisfies the inhomogeneous linear equation

L̃[ζ̃0] :=
∑
|α|6r

ãαζ̃0
α = g(x1, . . . , xn−1) (5)

for some smooth function g = g(x1, . . . , xn−1). As in this case the reduction
operator Q is not ultra-singular for L, there exists the multi-index α with |α| 6 r
and αn = 0 such that ãα 6= 0. Hence equation (5) has a particular solution h
that does not depend on x̃n, h = h(x1, . . . , xn−1).2 The function ζ̃0 − h is also
an antiderivative of η̃0 with respect to x̃n and, at the same time, it satisfies the
corresponding homogeneous linear equation, L̃[ζ̃0 − h] = 0. Therefore, without
loss of generality we can assume that the antiderivative ζ̃0 itself is a solution of
equation (3), L̃[ζ̃0] = 0.

We carry out the inverse change of the variables in the equality η̃0 = ζ̃0
x̃n

= Q̂ζ̃0

and introduce the function ζ0 = ζ̃0/U , which satisfies the equation L in the old
variables (x, u). We have Uη0 = ξi(Uζ0)i = Uξiζ0

i + (ξiUi)ζ
0 = U(ξiζ0

i − η1ζ0),
i.e., η0 = ξiζ0

i − η1ζ0. Here we use that ξiUi = −η1U . The mapping generated
by the point symmetry transformation x̄ = x, ū = u − ζ0(x) of L on the set
of reduction operators of L maps the vector field Q to the vector field Q̂, for
which the coefficient η0 is zero. This means that Q̂ is a reduction operator of L.
Applying the similar mapping generated by the point symmetry transformation
x̄ = x, ū = u+ ζ(x) with an arbitrary solution ζ = ζ(x) of L, we obtain that any
vector field of the form ξi∂i+(η1u+ξiζi−η1ζ)∂u is a reduction operator of L.

An ansatz constructed for the unknown function u with the vector field Q is

u =
1

U(x)
ϕ(ω1, . . . , ωn−1) + ζ0(x),

where ϕ is the invariant dependent variable, ω1 = X1(x), . . . , ωn−1 = Xn−1(x)
are invariant independent variables, and we use the notation from the proof of
the theorem. The corresponding reduced equation is

∑
|α|6r,αn=0

ãα(ω1, . . . , ωn−1)
∂|α|ϕ

∂ωα1
1 . . . ∂ω

αn−1

n−1

= 0.

It is obvious that the form of the reduced equation does not depend on the
parameter-function ζ0(x). The substitution of an arbitrary solution of L instead
of ζ0(x) gives the same reduced equation.

2If n > 2, then for the guaranteed existence of such a classical solution we suppose that
all functions are analytical. In the case n = 2 or for specific linear equations the requested
smoothness of functions can be lowered.
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3 Singular reduction operators of the rod equation

For the linear rod equation (1), i.e., L: utt + uxxxx = 0, the general form of
reduction operators is

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u,

where the coefficients τ , ξ and η are smooth functions of (t, x, u) with (τ, ξ) 6=
(0, 0). Similarly to the evolution equations, a vector field Q is singular for the
linear rod equation (1) if and only if the coefficient τ identically vanishes. Note
that vector fields that are weakly singular for this equation are also strongly
singular for it. Then ξ 6= 0 and hence up to usual equivalence of reduction
operators we can set ξ = 1. In other words, for the exhaustive study of singular
reduction operators of the linear rod equation (1) it suffices to consider vector
fields of the form

Q = ∂x + η(t, x, u)∂u.

The manifold L ∩Q(4) is defined by the equations

ux = η, uxx = ηx + ηηu, uxxx = (∂x + η∂u)2η, uxxxx = (∂x + η∂u)3η,

utt = −uxxxx = −(∂x + η∂u)3η.

Hence the conditional invariance criterion implies that

ηtt + 2ηtuut + ηuuu
2
t − ηu(∂x + η∂u)3η + (∂x + η∂u)4η = 0.

Collecting coefficients of different powers of the unconstrained derivative ut and
splitting with respect to it, we derive the system of three determining equations
for the coefficient η:

ηuu = 0, ηtu = 0, ηtt − ηu(∂x + η∂u)3η + (∂x + η∂u)4η = 0.

Thus, in contrast to a (1+1)-dimensional evolution equation, where there is a sin-
gle determining equation for the coefficient η of singular reduction operators and
this equation is reduced, in a certain sense, to the evolution equation under con-
sideration, finding singular reduction operators of the linear rod equation is not
a no-go problem. The equations ηuu = 0 and ηtu = 0 give the expression

η = η1(x)u+ η0(t, x)

for the coefficient η, where η1 = η1(x) and η0 = η0(t, x) are smooth functions of
their variables. Theorem 1 implies that, up to equivalence generated by the max-
imal Lie symmetry group Gmax of the linear rod equation on the set of reduction
operators of this equation, we can set η0 = 0. We also show this directly.



24 V.M. Boyko and R.O. Popovych

After substituting the expression for η into the last determining equation, we
can additionally split with respect to u to obtain

∂x(∂x + η1)3η1 = 0, η0
tt − η1η03 + η04 = 0,

where the functions η03 and η04 are defined by the recurrent relation η00 := η0

and η0k = η0,k−1
x + η0(∂x + η1)k−1η1, k = 1, 2, 3, 4. We make the differential

substitution

η1 =
θx
θ
, η0 = ζx −

θx
θ
ζ,

where θ = θ(x) and ζ = ζ(t, x) are the new unknown functions. It is possible to
show by induction that

η0k =
∂k+1ζ

∂xk+1
− ζ

θ

dk+1θ

dxk+1
, k = 1, 2, . . . .

Hence the differential substitution reduces the system for η1 and η0 to a system
for θ and ζ,(

θxxxx
θ

)
x

= 0, ζttx −
θx
θ
ζtt −

θx
θ
ζxxxx +

θxθxxxx
θ2

ζ + ζxxxxx −
θxxxxx
θ

ζ = 0.

Integrating once the first equation, we get the constant-coefficient linear ordinary
differential equation θxxxx = κθ, where κ is the integration constant. The second
equation can be represented as(

ζtt + ζxxxx
θ

)
x

−
(
θxxxx
θ

)
x

ζ = 0, hence

(
ζtt + ζxxxx

θ

)
x

= 0.

The integration of the last equation with respect to x results in the equation
ζtt + ζxxxx = ρ(t)θ, where ρ is a smooth function of t. The function ζ is defined
up to the transformation ζ̃ = ζ+σθ, where σ is an arbitrary smooth function of t.
This transformation allows us to set ρ = 0. Indeed, ζ̃tt+ζ̃xxxx = ρθ+σttθ+σκθ = 0
if σtt + κσ = −ρ. In other words, we can assume that the function ζ satisfies the
linear rod equation (1). Then the mapping generated by the point symmetry
transformation t̄ = t, x̄ = x, ū = u−ζ(t, x) of equation (1) on the set of reduction
operators of this equation maps the vector field Q to the vector field of the same
form, where ζ = 0 and hence η0 = 0.

Proposition 1. Up to equivalence generated by symmetry transformations of lin-
ear superposition, the set of singular reduction operators of the linear rod equa-
tion (1) is exhausted by the vector fields of the form

Qs = ∂x +
θx
θ
u∂u,

where the function θ = θ(x) satisfies the ordinary differential equation θxxxx = κθ
for some constant κ.
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An ansatz constructed with the reduction operator Q is u = θ(x)ϕ(ω), where
ω = t is the invariant independent variable and ϕ is the invariant dependent vari-
able. The corresponding reduced equation is ϕωω +κϕ = 0. As an interpretation,
we can say that the reduction operator Qs is related to separation of variables
in the linear rod equation (1). It is obvious that the reduction operator Qs is
equivalent to a Lie symmetry operator only if θx/θ = const.

4 Regular reduction operators of the rod equation

Consider regular reduction operators of the linear rod equation (1), for which the
coefficient τ does not vanish. Up to usual equivalence of reduction operators we
can set τ = 1, i.e., it suffices to consider vector fields of the form

Q = ∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.

Essential among the equations defining the manifold L ∩Q(4) are the equations

ut = η − ξux, utx = ηx + ηux − ξxux − ξuu2
x − ξuxx,

utt = −uxxxx = ηt + ηu(η − ξux)− (ξt + ξu(η − ξux))ux

−ξ(ηx + ηux − ξxux − ξuu2
x − ξuxx).

Collecting coefficients of uxxuxxx in the condition following from the conditional
invariance criterion, we obtain the equation ξu = 0. Other terms with uxxx give
the equations ηuu = 0 and ηxu = 3

2ξxx. Therefore, we have

ξ = ξ(t, x), η = η1(t, x)u+ η0(t, x), where η1 :=
3

2
ξx + γ(t)

with a smooth function γ = γ(t). The other determining equations reduce to

2ξtξ + 5ξxxx + 4ξ2ξx = 0, (6)

ξtt + ξxxxx + 2(η1ξ)t + 2ξtξx − 4η1
xxx + 8ξξxη

1 − 4ξξ 2
x = 0, (7)

η1
tt + η1

xxxx + 2η1η1
t − 2ξtη

1
x + 4ξx(η1

t + η1η1 − ξη1
x) = 0, (8)

η0
tt + η0

xxxx + 2η0η1
t − 2ξtη

0
x + 4ξx(η0

t + η1η0 − ξη0
x) = 0, (9)

where every appearance of η1 should be replaced by 3
2ξx + γ(t).

Similarly to singular reduction operators, Theorem 1 again implies that, up to
equivalence generated by the maximal Lie symmetry group Gmax of the linear rod
equation on the set of reduction operators of this equation, we can set η0 = 0.
We show that the direct proof of this fact is not trivial. Indeed, let the function ζ
be defined by the relation η0 = ζt + ξζx − η1ζ. As it is a first-order quasi-linear
partial differential equation with respect to ζ, such a function ζ exists. We use this
relation to substitute for η0 into equation (9). Taking into account equations (6)–
(8) and ηxu = 3

2ξxx, we derive the following equation for the function ζ:

(∂t + ξ∂x − η1 + 4ξx)(ζtt + ζxxxx) = 0,
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i.e., ζtt + ζxxxx = h(t, x), where the function h = h(t, x) satisfies the equation

ht + ξhx + (−η1 + 4ξx)h = 0.

The function h = h(t, x) can be set to zero. Indeed, the function ζ is defined
up to summand that is a solution of the equation gt + ξgx − η1g = 0. Any such
solution is represented as g = g0(t, x)ϕ(ω), where g0 is a fixed solution of the
same equation, ϕ ia an arbitrary function of ω, and ω = ω(t, x) is a nonconstant
solution of the equation ωt + ξωx = 0. Then χ = ω 4

x satisfies the equation

χt + ξχx + 4ξxχ = 0.

Therefore, the function h possesses the representation h = g0ω 4
x ψ(ω) for some

smooth function ψ of ω. The above determining equations imply that the vector
field ∂t + ξ∂x + η1u∂u is a reduction operator for the equation utt + uxxxx = 0.
Hence we have

gtt + gxxxx = g0ω 4
x ϕωωωω + · · · = g0ω 4

x (ϕωωωω + · · · ),

where the expression in the brackets depends merely on ω and the dots denote
terms including derivatives of ϕ of orders less than four. This means that the
ansatz g = g0(t, x)ϕ(ω) reduces the equation gtt + gxxxx = h to the ordinary dif-
ferential equation ϕωωωω + · · · = ψ, which definitely has a solution ϕ0 = ϕ0(ω).
Subtracting the corresponding function g = g0ϕ0 from the function ζ, we annihi-
late the function h.

Therefore, without loss of generality we can assume that the function ζ satisfies
the initial equation (1). Then the mapping generated by the point symmetry
transformation t̄ = t, x̄ = x, ū = u − ζ(t, x) of (1) on the set of reduction
operators of (1) maps the vector field Q to the vector field of the same form,
where ζ = 0 and hence η0 = 0.

As a result, the study of regular reduction operators of the linear rod equa-
tion (1) reduces to the solution of the overdetermined system of nonlinear differ-
ential equations (6)–(8) for the functions ξ = ξ(t, x) and γ = γ(t). (Recall that
η1 := 3

2ξx + γ(t).) This solution appears an unexpectedly complicated problem.
Hence we have considered particular cases of regular reduction operators by im-
posing additional constraints on the functions ξ and γ. Thus, cumbersome and
tricky computations with Maple show that any regular reduction operator of (1)
with γ = 0 is equivalent to a Lie symmetry operator of this equation. The same
result is true under the assumption ξxx = 0 and ξ 6= 0. There are no regular
reduction operators with ξt = 0 and ξx 6= 0.

Suppose that ξ = 0. Then equations (6) and (7) are identically satisfied and the
coefficient η1 is represented as η1 = γ(t). Equation (8) implies the single ordinary
differential equation γtt + 2γγt = 0 for the function γ, which is once integrated to
γt + γ2 = −κ, where κ is the integration constant. Hence the function γ admits
the representation γ = ϕt/ϕ, where the function ϕ = ϕ(t) is a solution of the
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linear ordinary differential equation ϕtt + κϕ = 0. The corresponding reduction
operator

Qr = ∂t +
ϕt
ϕ
u∂u,

results in the ansatz u = ϕ(t)θ(ω), where ω = x is the invariant independent
variable and θ is the invariant dependent variable. The corresponding reduced
equation is θωωωω = κθ. Therefore, similarly to the singular reduction operator Qs

from Proposition 1 the regular reduction operator Qr is related to separation of
variables in the linear rod equation (1). This operator can be considered as
a regular counterpart of the operator Qs. The reduction operator Qr is equivalent
to a Lie symmetry operator only if ϕt/ϕ = const.

5 Conclusion

In spite of the rod equation (1) is linear and has only obvious Lie symmetries,
it is interesting from the symmetry point of view since it possesses a number of
nontrivial properties related to the field of symmetry analysis. We list five of these
properties:

• Equation (1) possesses both regular and singular nonclassical symmetries
which are inequivalent to Lie symmetries and associated with separation of
variables.

• A potential system of the rod equation (1) coincides with the (1+1)-di-
mensional free Schrödinger equation. Hence equation (1) possesses purely
potential and nonclassical potential symmetries.

• A function is a solution of the rod equation (1) if and only if it is the real
(resp. imagine) part of a solution of the (1+1)-dimensional free Schrödinger
equation. This allows us to construct new families of exact solutions of (1)
in an easy way.

• Equation (1) has a nonlocal recursion operator whose action on local sym-
metries (which necessarily are affine in derivatives of u) gives nontrivial local
symmetries of higher order. As a result, for arbitrary fixed order, excluding
order two, this equation possesses local symmetries of this order which do
not belong to the enveloping algebras of local symmetries of lower orders.

• As the linear differential operator associated with (1) is formally self-adjoint,
the space of cosymmetries and the space of characteristics of local symme-
tries coincides. This implies that equation (1) has conservation laws of
arbitrarily high order.

A detail discussion of these properties will be a subject of a forthcoming paper.
In the present paper, we have studied the first property and below we briefly
present the next two properties.
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The linear differential operator L := ∂2
t + ∂4

x associated with equation (1) is
factorized to the product of the free Schrödinger operator and its formal adjoint:

L = (i∂t + ∂2
x)(−i∂t + ∂2

x).

This indicates that the solution of (1) is closely connected with the solution of
the free (1+1)-dimensional Schrödinger equation

iψt + ψxx = 0. (10)

To make this connection explicit, we consider the potential system constructed
for equation (1) with the conservation law having the characteristic 1:

vx = ut, vt = −uxxx. (11)

The second equation of (11) is in conserved form that allows us to introduce the
potential w satisfying the conditions

wx = v, wt = −uxx. (12)

Excluding v from the joint system of (11) and (12), we obtain the system

ut = wxx, wt = −uxx. (13)

The maximal Lie invariance algebra of system (13) is

g1 = 〈∂t, ∂x, 2t∂t + x∂x, w∂u − u∂w, 2t∂x + xw∂u − xu∂w,
4t2∂x + 4tx∂x +

(
x2w − 2tu

)
∂u −

(
x2u+ 2tw

)
∂w, (14)

u∂u + w∂w, β(t, x)∂u + γ(t, x)∂w〉,

where (β(t, x), γ(t, x)) is an arbitrary solution of system (13).
System (13) implies that the complex-valued function ψ = w + iu of the vari-

ables t and x satisfies equation (10) and the function w is a solution of equation (1).
Finally, we have the following simple assertion.

Proposition 2. The function u = u(t, x) is a solution of equation (1) if and only
if it is the real (resp. imagine) part of a solution of the (1+1)-dimensional free
Schrödinger equation iψt + ψxx = 0.

A fixed solution of equation (1) corresponds to a set of solutions of equa-
tion (10) which differ by summands of the form C1x + C0, where C0 and C1 are
arbitrary real constants. As wide families of exact solutions of equation (10) are
already known, Proposition 2 gives the simplest way of finding exact solutions for
equation (1).

In fact, the main result of the paper is Theorem 1 on single linear reduction
operators of general linear partial differential equations. The next step is to extend
this assertion to multidimensional reduction modules that are generated by linear
vector fields.
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