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Simple Examples



Example 1: Cantor Set

C =
{

x ∈ [0,1] : x =
α1

31 +
α2

32 + . . .+
αn

3n + . . . ,

ternary expansion

αn = αn(x) ∈ {0,1,2}
}
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Informal Explanation of Fractals

“Fractal dimension” = a “generalization” of a “usual” dimension
that can take fractional (noninteger) values.

Fractal set = a set whose fractal dimension is a noninteger
number.
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Self-similar Set and Self-similar Dimension

Definition
E is called a self-similar set if

1. E = E1
⋃

E2
⋃
. . .
⋃

En, n > 1,

2. Ei
ki∼ E , i = 1,n,

3. Ei
⋂

Ej is “small” with respect to E for i 6= j .

Definition
Self-similar dimension αs(E) of a set E is a solution of

kx
1 + kx

2 + . . .+ kx
n = 1.

For Cantor set, C = C1 ∪ C2, Ci

1
3∼ C.

αs(C) = x ,
(1

3

)x
+
(1

3

)x
= 1 ⇒ αs(C) = log3 2 ≈ 0.6309. 4



Example 2: Tribin Function

x =
α1

3
+
α2

32 + . . .+
αn

3n + . . . ≡ ∆3
α1α2...αn...,

αn = αn(x) ∈ A3 = {0,1,2},

y = f (x) =
β1

2
+
β2

22 + . . .+
βn

2n + . . . ≡ ∆2
β1β2...βn...,

βn = βn(y) ∈ A2 = {0,1},

where

β1 =

0 if α1 = 0

1 if α1 6= 0,
βn =

βn−1 if αn = αn−1

1− βn−1 if αn 6= αn−1, n > 1.
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Example 2: Tribin Function

1. Continuous,

2. nowhere differentiable function (i.e., it does not have
derivative at any point).
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Example 3: Minkowski Function

x ∈ [0,1]

x =
1

a1 +
1

a2 +
1

a3 +
. . .

= [a1,a2,a3, . . .], an ∈ N,

G(x) =
1

2a1−1 −
1

2a1+a2−1 + . . .+
(−1)n−1

2a1+a2+...+an−1 + . . .

is called the Minkowski function.
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Example 3: Minkowski Function

1. Continuous,

2. strictly increasing,

3. singular function (i.e., its derivative is equal to 0 almost
everywhere with respect to Lebesgue measure).
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Problems and Methods I

We study

• Fractal sets:
• sets on the real line (Cantor-type sets,

Besicovitch–Eggleston sets, etc.),
• curves on the plane (graphs of functions, Koch snowflake,

etc).

Their analytical definition (by formulae, equations, etc).
Fractal properties (self-similarity, self-affinity,
Hausdorff–Besicovitch dimension).
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Problems and Methods II

• Continuous functions (singular, nowhere monotonic,
nowhere differentiable).
They have fractal properties (i.e., their level sets, graphs,
spectra are fractal sets).

• Singular probability measures.
They are supported on the sets of zero Lebesgue
measure, which can be fractal sets.
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Problems and Methods III

We need to study various systems of representation for real
numbers and create new systems with finite and infinite
alphabet, with constant and variable alphabet, with standard
and redundant alphabet, etc.

Calculation of Hausdorff–Besicovitch dimension (fractal
dimension) is a complicated problem usually.

We need to develop and use different techniques for this
problem: for example, faithful systems of covering (restricted
systems of covering).
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Some Systems of Representation
for Real Numbers



Qs-representation

Let As = {0,1,2, . . . , s − 1} be an alphabet, s ≥ 2, let
Qs = (q0,q1, . . . ,qs−1) be a stochastic vector, where qi ∈ (0,1),
q0 + q1 + . . .+ qs−1 = 1.

Theorem
For any x ∈ [0,1], there exists a sequence (αn),
αn = αn(x) ∈ As such that

x = βα1 +
∞∑

n=2

(
βαn

n−1∏
j=1

qαj

)
Qs-expansion (1)

≡ ∆Qs
α1α2...αn..., Qs-representation (2)

where βαn =
αn−1∑
i=0

qi .
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Geometry

Definition
Let (c1, c2, . . . , cm) be a fixed m-tuple, ci ∈ As. Cylinder of rank
m with the base c1c2 . . . cm is

∆Qs
c1c2...cm =

{
x ∈ [0,1] : x = ∆Qs

c1c2...cmαm+1αm+2...αm+i ...
, αm+i ∈ As

}
.

1. Cylinder is a closed interval.

2. Its length is
|∆Qs

c1c2...cm | = qc1qc2 . . . qcm ,

3. Cylinders of the same rank do not overlap.
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Basic Metric Relation

Lemma
For any c ∈ As and any m-tuple c1, c2, . . . , cm ∈ As,

|∆Qs
c1c2...cmc |
|∆Qs

c1c2...cm |
= qc .
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Other Representations with Finite Alphabet

Q∗s -representation:

Let As = {0,1,2, . . . , s − 1} be an alphabet, let

Q∗s =


q01 q02 . . . q0k . . .

q11 q12 . . . q1k . . .

. . . . . . . . . . . . . . .

q(s−1)1 q(s−1)2 . . . q(s−1)k . . .


be an infinite stochastic matrix, where qik ∈ (0,1),
q0k + q1k + . . .+ q(s−1)k = 1 for any k ∈ N.

Representations with redundant set of digits, etc.

16



Particular Cases

q0 = q1 = . . . = qs−1 = 1
s ⇒ classic s-adic expansion

(representation)

s = 2, Q2 = (q0,q1) ⇒ important particular case

q0 = q1 = 1
2 ⇒ classic binary expansion (representation)

17



First Ostrogradsky Series

Theorem
Any x ∈ (0,1) can be represented in the form of the first
Ostrogradsky series

x =
1
q1
− 1

q1q2
+ . . .+

(−1)n−1

q1q2 . . . qn
+ . . . (3)

= O1(q1,q2, . . . ,qn, . . .), (4)

where qn ∈ A = N = {1,2,3, . . .} and qn+1 > qn for any n ∈ N.
If x is irrational then the expression (3) is unique and it has an
infinite number of terms. If x is rational then it can be
represented in the form (3) in the following different ways:

x = O1(q1,q2, . . . ,qn−1,qn,qn+1) = O1(q1,q2, . . . ,qn−1,qn+1).
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Ō1-representation

Let g1 = q1 and gn+1 = qn+1 − qn for any n ∈ N.

Then one can rewrite series (3) in the form

1
g1
− 1

g1(g1 + g2)
+. . .+

(−1)n−1

g1(g1 + g2) . . . (g1 + g2 + . . .+ gn)
+. . . ,

(5)
where gn ∈ N.

For any x ∈ (0,1) there exists a sequence (gn),
gn = gn(x) ∈ N, such that

x =
∑

n

(−1)n−1

g1(g1 + g2) . . . (g1 + g2 + . . .+ gn)
(6)

= Ō1(g1,g2, . . . ,gn, . . .). (7)

19



Cylindrical Set (Cylinder)

Definition

A set Ō1
[c1c2...cm] of all x ∈ (0,1), which can be represented by

the Ō1-representation such that first m Ō1-symbols are equal to
c1, c2, . . . , cm respectively, is said to be the cylindrical set
(cylinder ) of rank m with the base (c1, c2, . . . , cm).
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Properties of Cylindrical Sets

1. Ō1
[c1c2...cm] = [a,b] (i.e., closed interval).

2. Ō1
[c1c2...cm] =

∞⋃
c=1

Ō1
[c1c2...cmc]

⋃
Ō1(c1, c2, . . . , cm),

sup Ō1
[c1c2...cmc] = inf Ō1

[c1c2...cm(c+1)], if m is odd,

inf Ō1
[c1c2...cmc] = sup Ō1

[c1c2...cm(c+1)], if m is even,

Ō1
[c1c2...cmc] ∩ Ō1

[c1c2...cm(c+1)] = Ō1(c1, c2, . . . , cm, c + 1).

3. Length |Ō1
[c1c2...cm]| =

1
σ1σ2 . . . σm(σm + 1)

, σk =
k∑

i=1

ci .
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Basic Metric Relation

Lemma

|Ō1
[c1c2...cmc]|
|Ō1

[c1c2...cm]|
=

a
(a + c − 1)(a + c)

= fc(a), a = 1+
m∑

i=1

ci . (8)

fc(a) ≤ 1
2 · (2c − 1)

.

|Ō1
[c1c2...cmc]|
|Ō1

[c1c2...cm]|
≤ m + 1

(m + c)(m + c + 1)
for m ≥ c − 1.
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Teor. Ĭmovı̄r. Mat. Stat. (2004), no. 70, 131–143
(in Ukrainian); translation in Theory Probab. Math. Statist.
(2005) no. 70, 147–160.

24



References III

S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G.Torbin,
The Ostrogradsky series and related Cantor-like sets,
Acta Arith. 130 (2007), no. 3, 215–230.

O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin,
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Other Representations with Infinite Alphabet

Second Ostrogradsky series

(Positive and alternating) Lüroth series

Engel series

Sylvester series

Q∞-representation
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A2-continued Fractions

Let A2 = {α1, α2} be an alphabet, 0 < α1 < α2.

Definition (A2-continued fraction)

1

a1 +
1

a2 + . . .

= [a1,a2, . . . ,an, . . .], an ∈ A2

27



A2-continued Fractions

LA2 = {x : x = [a1,a2, . . . ,an, . . .], an ∈ A2, n = 1,2, . . .},

min LA2 = inf LA2 = β1, max LA2 = sup LA2 = β2, LA2 ⊆ [β1, β2],

β1 = [(α2, α1)] =

√
α2

1α
2
2 + 4α1α2 − α1α2

2α2
,

β2 = [(α1, α2)] =

√
α2

1α
2
2 + 4α1α2 − α1α2

2α1
.
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Cylinder Sets I

Cylinder of rank m with the base c1c2 . . . cm

∆′c1c2...cm = {x : x = [c1, c2, . . . , cm,am+1,am+2, . . .],

am+i ∈ A2 for all i ∈ N},

cylindrical closed interval of rank m with the base c1c2 . . . cm

∆c1c2...cm = [min ∆′c1c2...cm ,max ∆′c1c2...cm ].

1. ∆′c1...cmc ⊂ ∆′c1...cm , ∆′c1...cm = ∆′c1...cmα1
∪∆′c1...cmα2

.

2. ∆c1...cmc ⊂ ∆c1...cm , but, in general,
∆c1...cm 6= ∆c1...cmα1 ∪∆c1...cmα2 .
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Cylinder Sets II

3. inf ∆c1...cmα1 < inf ∆c1...cmα2 , if m is odd,
inf ∆c1...cmα1 > inf ∆c1...cmα2 , if m even.

4. If α2 − α1 = β2 − β1, then

∆c1...cmα1∩∆c1...cmα2 = [c1, . . . , cm, α1+β2] = [c1, . . . , cm, α2+β1].

5. If α2 − α1 < β2 − β1, then ∆c1...cmα1 ∩∆c1...cmα2 = [a,b],

where

a =

[c1, . . . , cm, α1 + β2] for even m,

[c1, . . . , cm, α2 + β1] for odd m;

b =

[c1, . . . , cm, α2 + β1] for even m,

[c1, . . . , cm, α1 + β2] for odd m.
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Cylinder Sets III

6. If α2 − α1 ≤ β2 − β1, then

∆c1...cm = ∆c1...cmα1 ∪∆c1...cmα2 .

7. If α2 − α1 > β2 − β1, then

∆c1...cmα1 ∩∆c1...cmα2 = ∅.

31



Basic Metric Relation I

Length of cylindrical closed interval

|∆c1...cn | =
β2 − β1

(qn + β1qn−1)(qn + β2qn−1)
,

where qn is a denominator of convergent of rank n.

Basic metric relation:

|∆c1...cnc |
|∆c1...cn |

=

(
1 + β1

qn−1
qn

)(
1 + β2

qn−1
qn

)
(

c + β1 +
qn−1

qn

)(
c + β2 +

qn−1
qn

) .
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Basic Metric Relation II

If α2 − α1 = β2 − β1 (that is α1α2 = 1
2 , α1 = β1, α2 = β2), then

|∆c1...cnc |
|∆c1...cn |

=

(
1 + c qn−1

qn

)
(

2c2 + 1 + 2c qn−1
qn

) ,
|∆c1...cnα1 |
|∆c1...cnα2 |

=

(
1 + α1

qn−1
qn

)(
2α2

2 + 1 + 2α2
qn−1

qn

)
(

1 + α2
qn−1

qn

)(
2α2

1 + 1 + 2α1
qn−1

qn

) .
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Basic Metric Relation III

If α1 = 1
2 , α2 = 1, then β1 = 1

2 , β2 = 1 and

|∆c1...cn
1
2
|

|∆c1...cn |
=

2 +
qn−1

qn

3 + 2qn−1
qn

,

|∆c1...cn1|
|∆c1...cn |

=
1 +

qn−1
qn

3 + 2qn−1
qn

,

|∆c1...cn
1
2
|

|∆c1...cn1|
=

2 +
qn−1

qn

1 +
qn−1

qn

= 1 +
1

1 +
qn−1

qn

.
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Properties of LA2

Theorem

If α1α2 ≤ 1
2 , then LA2 = [β1, β2].

Corollary

If α1α2 ≤ 1
2 , then ∆′c1...cm = ∆c1...cm .

Theorem

If α1α2 = 1
2 , then only countable set of points x ∈ [β1, β2] have

two representations in the form of A2-continued fraction. Other
points have a unique representation.
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Research Topics at the Department



Cantor-type Sets

Let {Vn} be a fixed sequence of nonempty subsets of
alphabet A.

C[f , {Vn}] = {x ∈ [0,1] : x = ∆f
α1α2...αn...,

αn = αn(x) ∈ Vn, n ∈ N},

where f is one of the above-mentioned representations.

This set can be a spectrum of probability distribution, level set
of a function, etc.

We study topological, metric, and fractal properties of
C[f , {Vn}].
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Frequency of Digit

x = ∆Qs
α1α2...αn... ∈ [0,1].

Definition

Let Ni(x , k) = #
{

j : αj(x) = i , j ≤ k
}

.

Frequency of digit “i” in Qs-representation of x is

νi(x) = νQs
i (x) = lim

k→∞

Ni(x , k)

k
.
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Besicovitch–Eggleston Sets

Let (p0,p1, . . . ,ps−1) be a stochastic vector.

The Besicovitch–Eggleston set is

E ≡ E [Qs, (p0,p1, . . . ,ps−1)] =
{

x ∈ [0,1] : νi(x) = pi ,

i ∈ As = {0,1, . . . , s − 1}
}
.

Theorem
E is

• everywhere dense set in [0,1],

• set of zero Lebesgue measure if pi 6= qi for some i ∈ As,

• set with Hausdorff–Besicovitch dimension

α0(E) =
ln pp0

0 pp1
1 . . . pps−1

s−1

ln qp0
0 qp1

1 . . . qps−1
s−1 39



Random A2-continued Fraction with Independent Elements

Consider random variable

ξ =
1

η1 +
1

η2 + . . .

≡ [η1, η2, . . .],

where ηk are independent random variables with distribution
P{ηk = α1} = pα1k ≥ 0, P{ηk = α2} = pα2k ≥ 0,
pα1k + pα2k = 1, 0 < α1 < α2, α1α2 ≥ 1

2 .

40



Lebesgue Structure of Distribution

Theorem (Lebesgue theorem)
Let F (x) be a probability distribution function. Then

F (x) = α1Fd (x) + α2Fac(x) + α3Fs(x), (9)

where αi ≥ 0, α1 + α2 + α3 = 1, and

1. discrete function Fd increases only by jumps at atoms of
distribution;

2. absolutely continuous Fac is an improper integral of its
derivative

Fac(x) =

x∫
−∞

F ′ac(t)dt ;

3. singular Fs is a continuous function such that its derivative
is equal to 0 almost everywhere w.r.t. Lebesgue measure. 41



Lebesgue Structure of Distribution

Eq. (9) is called Lebesgue structure of distribution (of
probability distribution function F ). To establish Lebesgue
structure of distribution = to find α1, α2, α3 and Fd , Fac , Fs.

If one of the α1, α2, α3 = 1, then distribution has a pure
Lebesgue type (pure discrete, pure absolutely continuous or
pure singularly continuous).

Otherwise it is a mixture of two or three distributions of pure
Lebesgue types.
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Structure of Singular Distribution

Theorem (Pratsiovytyi theorem)
Let F (x) be a singular probability distribution function. Then

F (x) = γ1FS(x) + γ2FC(x) + γ3FK (x), (10)

where γi ≥ 0, γ1 + γ2 + γ3 = 1, and

1. FS is of Salem type,

2. FC is of Cantor type,

3. FK is of quasi-Cantor type.
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Structure of Singular Distribution

A singular probability distribution function F (x) is

• of Salem type if Sξ = ∪i [ai ,bi ],

• of Cantor type if Lebesgue measure λ(Sξ) = 0,

• of quasi-Cantor type if Sξ is a nowhere dense set and
λ(Sξ) > 0.

Spectrum Sξ of random variable ξ (or of its probability
distribution function Fξ) is

Sξ = {x ∈ [0,1] : Fξ(x + ε)− Fξ(x − ε) > 0 for any ε > 0}.
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Structure of Singular Distribution

Eq. (10) is called the structure of singular distribution (of
singular probability distribution function F ). To establish
structure of singular distribution = to find γ1, γ2, γ3 and FS, FS,
FK .

If one of the γ1, γ2, γ3 = 1, then distribution has a pure singular
type.
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Random A2-continued Fraction with Independent Elements

Theorem

Distribution of ξ is discrete ⇔ M ≡
∞∏

k=1
max{pα1k ,pα2k} > 0.

Distribution of ξ is continuous ⇔ M = 0.
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Random A2-continued Fraction with Independent Elements

Theorem

If α1α2 >
1
2 and distribution of random variable ξ is continuous,

then ξ has a singular distribution of Cantor type.

Theorem

For α1α2 = 1
2 , distribution of ξ has a pure Lebesgue type.
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Random A2-continued Fraction with Independent Elements

Let ξ has a continuous distribution, i.e., M = 0, and α1α2 = 1
2 .

Theorem
If matrix ‖pik‖ contains a finitely many zeroes, then ξ has a
singular distribution of Salem type.

Theorem
Random variable ξ has a singular distribution of Cantor type if
and only if matrix ‖pik‖ contains an infinitely many zeroes.
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Tribin Function

x =
α1

3
+
α2

32 + . . .+
αn

3n + . . . ≡ ∆3
α1α2...αn...,

αn = αn(x) ∈ A3 = {0,1,2},

y = f (x) =
β1

2
+
β2

22 + . . .+
βn

2n + . . . ≡ ∆2
β1β2...βn...,

βn = βn(y) ∈ A2 = {0,1},

where

β1 =

0 if α1 = 0

1 if α1 6= 0,
βn =

βn−1 if αn = αn−1

1− βn−1 if αn 6= αn−1, n > 1.
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Level Sets of Function f

For any y0 ∈ [0,1], the level set of the function f is
f−1(y0) =

{
x ∈ [0,1] : f (x) = y0

}
.

Theorem

1. If y0 is a binary rational number, then set f−1(y0) is finite
and Hausdorff–Besicovitch dimension α0

(
f−1(y0)

)
= 0.

2. For binary irrational number y0, α0
(
f−1(y0)

)
= B log3 2,

where B = lim
k→∞

dk
k , dk is an amount of pairs of consecutive

digits of y0 (to kth place) such that their components are
different.
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Graph of Function f

Theorem
Box-counting dimension of graph Γf is 2− log3 2 ≈ 1.36907.

Theorem
Hausdorff–Besicovitch dimension of Γf is

α0(Γf ) = log2
(
1 + 2log3 2) ≈ 1.34968.
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Shukla Function

Using nontrivial arithmetic construction, Shukla proposed a first
example of singular function which is nonmonotonic.

U. K. Shukla,
On points of non-symmetrical differentiability of
a continuous function. III,
Ganita 8 (1957), no. 2, 81–104.
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Class of Functions 1

Let (ak ) be a given infinitesimal sequence of positive real
numbers, 0 < ak <

1
2 , A3 = {0,1,2},

g0k = g2k = 1
2 + ak , g1k = −2ak ,

γ0k = 0, γ1k = g0k , γ2k = g0k + g1k = 1
2 − ak .

f (x) = γα1(x)1 +
∞∑

k=2

(
γαk (x)k

k−1∏
j=1

gαj (x)j

)
, (11)

where

x =
α1(x)

3
+
α2(x)

32 + . . .+
αk (x)

3k + . . . ≡ ∆3
α1(x)α2(x)...αk (x)....
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Class of Functions 1

Lemma
Function f (x) is well defined and has the following properties:

1. 0 ≤ f (x) ≤ 1 and f (0) = 0, f (1) = 1,

2. it is continuous,

3. it is nowhere monotonic.

Theorem

If g0k = g2k = 1
2 + 1

6k , g1k = − 2
6k , then f (x) is a nowhere

monotonic singular function.
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Class of Functions 2

Let (εn) be a sequence of positive real numbers from [0,1],
gn = (g0n,g1n,g2n,g3n,g4n),
g0n = g4n = 2+εn

4 , g1n = g3n = −εn
4 , g2n = 0,

δ0n = 0, δ1n = 2+εn
4 , δ2n = 2

4 = δ3n, δ4n = 2−εn
4 ,

i.e., δ[i+1]n = δin + gin =
i∑

j=0
gjn, n ∈ N.

f (x) = δα1(x)1 +
∞∑

k=2

(
δαk (x)k

k−1∏
j=1

gαj (x)j

)
≡ ∆G

α1α2...αk ...
. (12)
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Class of Functions 2

Theorem
Function f (x) is

1. well defined and continuous on [0,1];

2. constant on every cylinder ∆5
c1c2...cm2 as well as on cylinder

∆5
c1c2...cn−11 and ∆5

c1c2...cn−13 if εn = 0;

3. monotonic (nondecreasing) if and only if εn = 0, n ∈ N;

4. singular function of Cantor type, its set of nonconstancy is
Cantor-type set C[5,A5] = {x ∈ [0,1] : αn(x) ∈ A5},
A5 = {0,1,3,4}, with Hausdorff–Besicovitch dimension
log5 4. It takes all values from closed interval [0,1], does
not have intervals of monotonicity, except for intervals of
constancy, if inequality εn 6= 0 holds for infinite set of n, and
its graph is symmetric with respect to point C

(1
2 ,

1
2

)
.
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α-dimensional Hausdorff Measure

Let E be any bounded set of Rn and α > 0.

Definition (α-dimensional Hausdorff measure)

Hα(E) = lim
ε→0

mα
ε (E) = sup

ε>0
mα
ε (E),

where mα
ε (E) = inf

d(Ej )≤ε

{∑
j

dα(Ej)
}

, d(Ej) is a diameter of the

set Ej and the infimum is taken over all at most countable
ε-coverings {Ej} of the set E by sets Ej ∈ Rn.
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Properties of the Hausdorff Measure

1. Hα
(⋃

i
Ei

)
≤
∑

i
Hα(Ei);

2. If α1 < α2, then Hα1(E) ≥ Hα2(E);

3. If Hα1(E) = 0, then Hα2(E) = 0 for α1 < α2;

4. If Hα2(E) =∞, then Hα1(E) =∞ for 0 < α1 < α2.
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Hausdorff–Besicovitch Dimension

0 αα0

∞

Hα(E) c
P�

CC��

Definition (Hausdorff–Besicovitch dimension)

α0(E) = inf{α : Hα(E) = 0} = sup{α : Hα(E) 6= 0}
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Properties of the Hausdorff–Besicovitch Dimension

1. α0(E) = 0 for any at most countable set E ;

2. α0(E1) ≤ α0(E2) if E1 ⊂ E2;

3. α0(
⋃
n

En) = sup
n
α0(En);

4. If E1 and E2 are geometrically similar, then
α0(E1) = α0(E2).
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Billingsley Dimension

Let E be any bounded subset of [0,1] and α > 0.

Let ν be a continuous probability measure on [0,1].

Definition

Hα(E , ν) = lim
ε→0

mα
ε (E , ν) = sup

ε>0
mα
ε (E , ν),

where mα
ε (E , ν) = inf

ν(Ej )≤ε

{∑
j
να(Ej)

}
, and the infimum is taken

over all at most countable ε-coverings {Ej} of the set E by sets
Ej ∈ [0,1].

Definition (Billingsley dimension or Hausdorff–Besicovitch
dimension with respect to measure ν)

αν(E) = inf{α : Hα(E , ν) = 0} = sup{α : Hα(E , ν) 6= 0}
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Why We Study Such Objects?



Domination

Theorem (Banach–Mazurkiewicz)
The set of all nowhere differentiable functions in the space
C[0,1] of continuous on [0,1] functions with uniform distance is
a set of second category.

S. Banach,
Über die Baire’sche Kategorie gewisser
Funktionenmengen,
Studia Math. 3 (1931), no. 1, 174–179.

S. Mazurkiewicz,
Sur les fonctions non dérivables,
Studia Math. 3 (1931), no. 1, 92–94.
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Domination

Theorem (T. Zamfirescu)
The set of all singular functions in the space of all continuous
monotonic functions with supremum-distance is a set of second
category.

T. Zamfirescu,
Most monotone functions are singular,
Amer. Math. Monthly 88 (1981), no. 1, 47–49.
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Summary



Summary

We study various systems of encoding (representation) for real
numbers with finite and infinite alphabet.

We use these systems for analytical definition and studying
some mathematical objects with complicated local structure:
fractal sets, singular probability distribution functions, nowhere
differentiable functions, and nowhere monotonic functions.

We study topological, metric, and fractal properties of the sets,
Lebesgue structure of singular probability distributions,
properties of level sets and graphs of nowhere differentiable
functions, and fractal properties of such objects.
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About Us

Department of Dynamical Systems and Fractal Analysis
https://www.imath.kiev.ua/departments/?dep=2&lang=en

Laboratory of Fractal Analysis
https://www.imath.kiev.ua/departments/?dep=18&lang=en

These slides are available at

https://www.imath.kiev.ua/~baranovskyi/talks/

20210416fampds.pdf
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