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The Sharkovsky ordering describes the coexistence of cycles with
different periods for discrete-time dynamical systems given by maps
f : I → I where I is an interval in the real line R and, possibly,
I = R. One can also say that it provides the forcing relation ≺
for the existence of cycles of certain periods due to the presence of
a cycle of another period.

This ordering is the following ordering of natural numbers

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2n ≺ . . .
. . . . . . . . . . . .

· · · ≺ 7 · 2n ≺ 5 · 2n ≺ 3 · 2n ≺ . . .
. . . . . . . . . . . .

· · · ≺ 7 · 2 ≺ 5 · 2 ≺ 3 · 2 ≺ . . .

· · · ≺ 11 ≺ 9 ≺ 7 ≺ 5 ≺ 3

or, if use the relation �,

3 � 5 � 7 � · · · � 2·3 � 2·5 � · · · � 22·3 � 22·5 � · · · � 22 � 2 � 1



Let f n, n ≥ 1, denote the n-th iteration of f , i.e., f n = f (f n−1),
where f 0 is the identity map. The point x ∈ I is a periodic point
of period m (m ≥ 1) for f , if f m(x) = x and f n(x) 6= x for
any 1 ≤ n < m. In this case, the points x , f (x), . . . , f m−1(x)
form a periodic orbit or a cycle of period m.

Theorem (Sharkovsky, 1964) If a continuous map of an interval
into itself has a cycle of period m, then it has a cycle of any period
m̃ ≺ m. Moreover, for any m there exists a continuous map
that has a cycle of period m but does not have cycles of periods
m, m ≺ m.

The lecture will deal with some properties of the ordering, its
possible generalizations on various classes of maps, spaces, and the
history of this ordering birth.



This theorem also shows how cycles of different periods can be
arranged on I . If B is a cycle, let S(B) be the interval
[min{x ∈ B},max{x ∈ B}], referred to as the support of the cycle.
If m is the period of the cycle B and m̃ is any number such that
m̃ ≺ m, then the map f also has a cycle B̃ of period m̃ such that
S(B̃) ⊂ S(B). Indeed, instead of the map f , one can consider a
continuous map fB that coincides with f on S(B) and equals const
outside the interval S(B). The theorem remains true for fB , in
particular, fB has cycles of period m̃, but all cycles of fB are in
S(B).



The ordering (∗) can be interpreted in terms of stratification
(Block, Coppel 1992). Let C (I , I ) denote the set of all continuous
maps of I into itself and Pn be the subset of C (I , I ) consisting
of maps which have cycles of period n. According to (∗), if
m ≺ m then Pm ⊃ Pm. Hence, P1 ⊃ P2 ⊃ P4 ⊃ ... ⊃ P5 ⊃ P3.



The ordering (∗) has a property of C 0-stability (Block 1981): if
f has a cycle of period m, then there exists ε = ε(f ,m) > 0
such that whatever m̃ ≺ m, any map
f̃ : supx∈I |f̃ (x)− f (x)| < ε has a cycle of period m̃.



The following important corollary of the theorem relates to
bifurcation theory: if the map f depends on a parameter, the
ordering (∗) also gives a universal ordering for the birth of cycles of
new periods when this parameter varies. For example, the
bifurcation diagram for the logistic family of maps

x 7→ λx(1− x),

shown in Fig. 1, displays the birth of attracting cycles of new
periods according to (∗), when λ increases from 2.9 up to 4. At
first, there is an attracting cycle of period 1 (fixed point), then
there arises an attracting cycle of period 2, then of period 22, then
of period 23; the cycle of period 3 appears for λ = 1 + 2

√
2 ≈ 3.83.



Рис.: The bifurcation diagram for the logistic family of maps
x 7→ λx(1− x), x ∈ [0, 1].



If λn denotes the parameter value corredponding to the birth of the
first cycle of period 2n, then, as noticed by Feigenbaum, Coullet,
and Tresser,

δn = (λn − λn−1)/(λn+1 − λn)→ δ = 4.66920... as n→∞,

that is, the rate of appearance of cycles of double periods is
characterized by the number δ which is often called the Feigenbaum
constant. It turns out that not only the sequence of bifurcations,
defined by (∗), but also the rate of bifurcations, defined by the
constant δ, are “universal” in the sense that they are valid for the
whole class of differentiable maps (and not only the logistic family).





The proof of the theorem is based on the intermediate value
theorem and actually uses only the fact that if f is a continuous
map and J is an interval such that f (J) ⊃ J then on J there
exists a fixed point of the map f .
Since the end of 1970th, there have been published many papers
with various proofs of the theorem or its parts, as well as proofs of
the theorem for special classes of maps.

K. Burns, and B. Hasselblatt, The Sharkovsky theorem: a natural
direct proof, Amer. Math. Monthly 118(2011), 229-244.

D.-S. Du A simple proof of theorem, Amer. Math. Monthly
111(2004), 595-599.

B.-S. Du A collection of simple proofs of Sharkovsky’s theorem,
arXiv:math/0703592







The progress towards the ultimate goal — the publication of the
article “Coexistence of the cycles of a continuous map of the line
into itself” in the Ukrainian Mathematical Journal [UMZh, 1964,
16, No. 1, 61-71] — was more or less traditional and lasted about
two years. According to dates in the journal publications, it began
in May 1960 from the statement ∀(k > 2) � 2 appeared in the
article “Necessary and sufficient conditions for the convergence of
one-dimensional iterative processes” [UMZh, 1960, 12, No. 4],
continued with the statement ∀k 6= 2i � ...2m � 2m−1 � ... � 1 in
the article “On the reducibility of a continuous function...” [Reports
of Acad.Sci.USSR, 1961, 130, No.5], and completed in March 1962
with a submission and acceptance of the aforementioned final
article to the journal, where it was printed already in the 1964.
True, in order to pay attention by mathematicians to it, it took
another 13 years or more.



Probably the first time the words “ S h a r k o v s k y o r d e r i n g ” as
a mathematical term were used by Peter Kloeden in his article “On
Sharkovsky’s cycle coexistence ordering” [Bull. Austral. Math. Soc.,
1979, vol. 20, 171-177].

In that article P.Kloeden showed that the ordering is also true for
the multidimensional maps x 7→ F (x), F = (f1, ..., fn) of the kind

fi (x1, ..., xn) = fi (x1, ..., xi ), i = 1, ..., n, n > 1;

these maps are now called triangular. For them, the i-th coordinate
depends only on the first i coordinates, i.e. a triangular map is a
skew product of one-dimensional maps.



I was asked many times why it came to my mind to investigate
such a topic, not very popular at that time. As I already wrote, I
became acquainted with the iterations of functions during the first
and second years of study at Taras Shevchenko Kiev State
University, where I was involved in mathematical circles and
discovered some interesting facts such as, for example, that the
iterated sine sinn(x) = sin(sinn−1(x)), n = 1, 2, . . . , converges to 0
as

√
3/n. And the decision to study one-dimensional iterations

came in 1958, at the last 5th year of study, when it was time to
write a graduate work.



The graduation work on the iterations was written and successfully
defended, but in the course of its implementation, new questions
arose that seemed interesting to the author. So, in November 1958,
when I became a graduate student at the Institute of Mathematics
of the Academy of Sciences of Ukraine, the problem of choosing
the subject of research was not stand in front of me. (Even though
there was a problem with a supervisor of the graduate student: all
potential supervisors insisted that the young man had to deal with
the topics that they do. As a result, at the suggestion by Yuri
Alekseevich Mitropolsky, who was the Director of the Institute, it
was approved that the official supervisor will be Nikolai Nikolaevich
Bogolyubov, who already had moved to Moscow (Dubna)).



After the first year of graduate school, which was mainly devoted to
the preparation of so-called candidate exams, I was able to actively
engage in research. As a result, at June 1961, I presented my thesis
that was adopted to defense. The thesis was entitled “On some
problems of the theory of one-dimensional iterative processes” and
it was based on four articles by the author, three of which were
published in 1960-61 in UMZh, and the fourth one in the
above-mentioned Reports of the Academy of Sciences of the USSR.
Thus, the Ph.D. thesis already contained a part of the o r d e r i ng
∀k 6= 2i � ...2m � 2m−1 � ... � 1, and since Reports of the
Academy of Sciences of the USSR was translated (by AMS) into
English already at that time, this statement became available also
to English-speaking readers.



Yuri Makarovich Berezansky was an official opponent to my thesis.
He worked at our institute, and I met him many times at that time
discussing my dissertation and other problems. Since my head was
busy “clarifying the details” on the coexistence of cycles, I talked to
him about my progress in this direction, and Yu.M. expressed his
doubts that specific “details” (or parts) of the coexistence ordering
for cycles actually occur, because it sounded very unusual. However,
soon after the defense that took place on October 28th, 1961, the
proof crystallized out in the whole within two days, and then, as
well as I remember, it took (as many as!) 11 days to put everything
on paper. The title arose “by itself ”: at that time, the political term
“peaceful coexistence of two systems, capitalism and socialism” was
used very often in mass media, and it seemed that the word c o e-
x i s t e n c e had to be highly appropriate for the situation that
loomed with periods of cycles (although, perhaps, the word
“forcing” would reflect the essence of the matter more accurately).



It took about 3 months more to finalize the draft version, to print
the handwritten text on a typewriter in several copies as required
by the journal staff and then write the formulas in all printed copies
by hand. The article also included more than ten drawings that had
to be made on separate sheets. Finally, in March of 1962, the
article was sent to the Ukrainian Mathematical Journal, and the
editorial sent it for review. As Y.M. told me later, at his suggestion
the article was sent for review to a well-known topologist (it seems
to be Albert Solomonovich Schwartz) who could understand the
proposed proof and dispel any doubts that arise. About a year later,
a positive review was received and it contained one
recommendation to use the term Λ-scheme instead of
Λ-construction. The recommendation was accepted by the author,
and the replacement was made. I myself had doubts about the
Lemmas 1-3, which are rather trivial: is it worth to include them?
The reviewer dispelled my doubts by writing that, of course, it is
worth having these lemmas in the text for completeness.



After reviewing and editing the text, the manuscript was sent to
the printing house, from where I was soon asked how to handle the
� badge that was not available in the typography (at that time, for
each letter or icon, it was necessary to have a cast made from lead,
and all the text was typed by a typesetter from such casts by
hand). To the question from the printing house, I answered that the
easiest way is probably to lay the letter Y on its side, which was
done as a result (though they put it on the wrong side).



In 1967, I had my first travel abroad to Prague, where I participated
in a conference on nonlinear oscillations. My report was devoted to
one-dimensional difference equations and included, in particular, the
theorem on the coexistence of periodic solutions with different
periods. The organizers published texts of almost all reports in the
Proceedings of the conference, but my report was presented by an
abstract only [“Proc. 4th Conf. on Nonlinear Oscillations”,
Academia Publ. House, Prague, 1968, p. 249]: According to the
organizing committee, a strange ordering of natural numbers, and
moreover written for the simplest difference equation, can hardly be
related to a very serious theory of nonlinear oscillations.
At that time, there was nothing surprising in the similar attitude of
many mathematicians to one-dimensional dynamical systems. For
example, very known mathematician Yakov Sinai wrote in his book
“Modern Problems of Ergodic Theory” (Fizmatlit, Moscow, 1995) :
“About twenty years ago I had the general feeling that the structure
of one-dimensional dynamical systems is relatively simple and can
be fully understood, and at the same time, the results valid for the
one-dimensional case do not have natural multidimensional analogs.



The years after this have shown that both of these sensations are
wrong. First, new surprising and unexpected patterns were
discovered here, and, second, some of them are naturally
transferred to the case of any dimension.” [Lecture 11 “Sharkovsky
order and Feigenbaum universality”].

Finally, in 1975, the appearance of the article by T.Li and J.Yorke
“Period three implies chaos” attracted the attention of
mathematicians to one-dimensional dynamic systems (and, of
course, to the notion of chaos) and the article by P.Stefan “A
theorem of Sarkovskii on the existence of periodic orbits of
continuous endomorphisms of the real line”[Comm. Math. Phys.,
1977, 54, 237-248] literally pulled Sharkovsky the ordering out of
non-existence and showed that very interesting facts in
one-dimensional systems had already been found. We can say that
from this point the ordering began its own life, eventful and
independent of the author.



Since the original proof was far from optimal, many people were
tempted to suggest their own proofs that would be more or less
“normal”, and as a result, in the late 1970s – early 1980s, several
proofs were built by the efforts of several mathematicians or groups
of mathematicians (.....). Since the study of one-dimensional
systems seemed very promising, it attracted quite a lot of
mathematicians. Soon it was already possible to say about the
emergence of a new direction in dynamical systems — a new
section called “Combinatorial dynamics”. Some summaries and
prospects of these studies were considered at a special conference
“Thirty years after Sharkovskii’s theorem: new perspectives”
(Murcia, Spain, 1994) [Proceed. Conf.(eds Alseda L.,Balibrea F.,
Llibre J., Misiurewicz M.), Intern. J. Bifurcation and Chaos 5(5),
1995, and World Sci. Ser. Nonlinear Sci. B, vol. 8, 1996].



* * * * *



Let us consider several statements (examples, facts) of
combinatorial dynamics.

1) the simplest, or minimal, cycles ;
2) rotation theory by A. Blokh and M.Misiurewicz ;
3) coexistence of homoclinic trajectories and

stratification of the space C 0(I , I )



The Sh-theorem started a new field in the dynamical systems
theory that can be appropriately called combinatorial dynamics.

While the Sh-theorem is stated in the language of a specific
ordering among the periods of cycles of an interval map, in reality
it solves the problem of fully describing all possible sets of periods
of an interval map. Thus, a cycle is labeled by its period viewed as
the type of the cycle, and we describe all possible sets of types of
cycles of interval maps. Therefore, one direction of the
one-dimensional combinatorial dynamics is to describe possible sets
of types of periodic orbits of one-dimensional maps.
This can be done by describing special ordering among types of
cycles (so-called forcing relation) and then using it in the same way
as the Sh-Theorem is used for the full characterization of all
possible sets of periods of interval maps.



We will first define simplest cycles. In what follows when considering
cycles of a map f we will denote the first point of a cycle by p0 and the
like while setting f i (p0) = pi , etc.

Definition
A periodic orbit of an odd period n is called a simplest cycle if n ≥ 3 and
the orbit can be described as

pn−1 < pn−3 < · · · < p4 < p2 < p0 = pn < p1 < p3 < · · · <

· · · < pn−4 < pn−2

or
pn−2 < pn−4 < · · · < p3 < p1 < p0 = pn < p2 < p4 < · · · <

· · · < pn−3 < pn−1

Evidently, any cycle of period three is a simplest cycle.
If the period is five this is no longer the case. Indeed, using the same
notation as in definition we see that if p4 < p2 < p0 = p5 < p1 < p3 or
p3 < p1 < p0 = p5 < p2 < p4, then the cycle is a simplest cycle while it
is easy to see that there are other cycles of period five too (such as, e.g.,
p0 = p5 < p1 < p2 < p3 < p4).



Theorem (L.Block, 1979). If f ∈ C 0(I , I ) has a cycle of period n,
then f has also a simplest cycle of period n.



The Sh-theorem uses a specific order among the periods of cycles
of an interval map. One can think of periods having different
strengths, so that stronger periods force weaker periods (to be
among periods of cycles of an interval map). Simply put, periods
force periods. As a result, one describes all possible periods of
cycles of continuous interval maps. However, there are finer than
periods but still numerical ways to describe interval cycles (i.e., a
cycle is characterized by a fixed number of integers - say, two -
however long the cycle is). The concepts of rotation pair/number
(A.M.Blokh, M.Misiurewicz,1995,1997) fit into this description.
Here it turns out to be very useful concept of the number of
rotations per period.



The movement on R is to the right or left. Let
A = {a1 < a2 < · · · < ak} be points of a cycle and let a map f act
on these points according to a cyclic permutation
i1 = 1→ i2 → i3 → ...→ ik → 1: first ai1 = a1 moves to the right
to ai2 , then ai2 maps in some direction to ai3 , etc. Each time the
direction of the point’s movement changes, it can visualized as the
turn (rotation) of the point by 180 degrees in the positive direction.
Taking two 180-degree rotation as one (full) rotation, after k steps
the point comes back to itself and the direction in which it moves is
the same. The cumulative rotation p is just the number of
rotations per period corresponding to 2p changes of the direction
of the movement of a point.



Define the rotation pair of a cycle as (p, q), where q is the period
of the cycle and p is the number of rotations per period of this
cycle. The number p/q is called the rotation number of the cycle.
Let us introduce the following partial ordering among all pairs of
integers (p, q).

We will write (p, q) m (r , s) if p/q < r/s or p/q = r/s = m/n
with m and n coprime and p/m � r/m (notice that
p/m, r/m ∈ N).



Theorem
(A.M.Blokh, M.Misiurewicz, 1995,1997) If f : [0, 1]→ [0, 1] is
continuous and has a cycle of rotation pair (p, q) then f has cycles
of any rotation pair (r , s) such that (p, q) m (r , s).

This theorem can be understood in the sense of forcing among
rotation pairs of interval cycles: the fact that (p, q) is the rotation
pair of a cycle of a map f forces the presence of other cycles of f
with every rotationt pair (r , s) such that (p, q) m (r , s). Evidently,
this theorem is modeled after the Sh-theorem. Moreover, the
theorem implies a full description of the sets of rotation pairs for
continuous maps; as in the Sh-theorem, all theoretically possible
sets really occur.



One example: suppose that we know that an interval map f has a
cycle of period, say, 11; then according to the Sh-theorem we can
only guarantee that it has cycles of periods 13, 15 etc. However we
cannot say in what cases the existence of a cycle of period 11
forces the existence of cycles of periods, say, 3, or 5, or 7, or 9. Are
there any cycles of period 11 that in fact force the existence of
cycles of odd periods of less than 11?

Assume now, that there exists an f -cycle of rotation pair, say,
(2, 11). Then not only can we guarantee that f has cycles of
periods 9, 7, 5 and 3 but also that some of these cycles have
rotation pairs (2, 9), (3, 9), (4, 9), (2, 7), (3, 7), (1, 5), (2, 5) and
(1, 3). Thus, since we are now using more informative input we are
getting a slightly richer output. Also, Theorem 1 and the definition
of the order m are easy to follow as both are basically related to the
order of rotation numbers (all of whom must be less than or equal
to 1/2) with respect to their distance to 1/2; this order is rather
transparent and easy to grasp.



Coexistence of periodic and homoclinic trajectories
Along with periodic trajectories, homoclinic trajectories play an
important role in the dynamics. Their presence in a system
indicates also the presence of trajectories with very complex
behavior. In particular, homoclinic trajectories are thoroughly
studied for multidimensional dynamical systems.

Usually, the trajectory of a dynamical system, different from
periodic, call homoclinic if its α-limit and ω-limit sets coincide and
are the same cycle. If f ∈ C 0(I , I ), then the map f −1 is
multivalued, therefore the definition needs to be adjusted.

Definition H Call a trajectory x0, x1, x2, ... (and a point x0)
homoclinic (to a cycle (β1, ..., βm), if x0 is not periodic, its ω-limit
set is a cycle (β1, ..., βm), and there exists a sequence of points
x−1, x−2, ... with f (x−i ) = x−i+1, i = 1, 2, . . . such that
x−jm+k → βk , k = 1, ...,m, j = 0, 1, 2, . . . , when j →∞; here
the sequence x−1, x−2, . . . is simply a branch of the backward
trajectory of x = x0.



The term homoclinic trajectory appeared in one-dimensional
dynamics for the first time probably back in 1969 where it was
remarked that a homoclinic trajectory exists in a system then and
only then when there exists a cycle of period 6= 2m, m > 0, and
later this statement was proved. Namely, in 1978 Louis Block
proved the followig theorem.

Theorem Let f ∈ C 0(I , I ). Then the following are equivalent:
(i) f has a periodic point whose period is not a power of 2.
(Here, 1 = 20 is included as a power of 2.)
(ii) f has a homoclinic point.
(iii) There are disjoint closed intervals J and K in I , and a positive
integer n, such that f n(J) ⊇ J ∪ K and f n(K ) ⊇ J ∪ K .

The statement (iii) means that f n has on J ∪ K so-called the
Smale’ horseshoe or the Λ–scheme.



It is natural to expect that the coexistence of homoclinic
trajectories is closely related to the coexistence of cycles that are
limits of these homoclinic trajectories. To describe the coexistence
of homoclinic trajectories for one-dimensional dynamical systems,
the following classification of homoclinic trajectories was proposed.

Definition H1,2

We say that a homoclinic trajectory to some cycle is one-sided, if
there exists its backward trajectory to this cycle, which tends to
each point of the cycle from one side only. If such a backward
trajectory do not exists, we will call this trajectory as two-sided
homoclinic trajectory.

Definition Hm

We shall call a homoclinic trajectory as m-homoclinic one if it is an
one-sided homoclinic trajectory to a cycle of period m or a
two-sided homoclinic trajectory to a cycle of period m/2.



Theorem Homoclinic trajectories induce in the space C 0(I , I ) the
following order among integers

1.3.5.7.9. ... . 2·1 . 2·3 . 2·5 . ... . 22·1 . 22·3 . 22·5 . ... : (∗∗)

if f ∈ C 0(I , I ) has a m-homoclinic trajectory, then f has also a
k-homoclinic trajectory for every k , m . k .

The difference between (∗∗) and Sh-ordering

3 � 5 � 7 � · · · � 2·3 � 2·5 � · · · � 22·3 � 22·5 � · · · � 22 � 2 � 1

is that all powers of two “migrate” in (∗∗) in the respective blocks
generated by (with the participation of) odd numbers, where they
become the “strongest”. Specifically, the “strongest” of all numbers
is 1.



Let F (m) be the set of all continuous functions of interval which
has a cycle of period m and
let H(m) be the set of all continuous functions of interval which
has a one-sided homoclinic trajectory to a cycle of period m or a
two-sided homoclinic trajectory to a cycle of period m/2.

Then in these notations

H(1) ⊂ H(3) ⊂ H(5) ⊂ H(7) ⊂ . . .

· · · ⊂ H(2) ⊂ H(2 · 3) ⊂ H(2 · 5) ⊂ . . .

· · · ⊂ H(22) ⊂ H(22 · 3) ⊂ H(22 · 5) ⊂ . . .

and the following theorem is true

Theorem H(n) = F (n) for any n = m2k ,
where m > 1 is odd and k ≥ 0.



As the consequence of all statements above, we obtain the
following stratification of space C 0(I , I ):

Theorem For f ∈ C 0(I , I ), the following is true

F (1) ⊃ F (2) ⊃ F (22) ⊃ ... ⊃ F (2∞) ⊃
. . . . . . . . . . . .

... ⊃ F (5·2k) = H(5·2k) ⊃ F (3·2k) = H(3·2k) ⊃ H(2k) ⊃
. . . . . . . . . . . .

... ⊃ F (5·22) = H(5·22) ⊃ F (3·22) = H(3·22) ⊃ H(22) ⊃

... ⊃ F (5 · 2) = H(5 · 2) ⊃ F (3 · 2) = H(3 · 2) ⊃ H(2) ⊃

... ⊃ F (5) = H(5) ⊃ F (3) = H(3) ⊃ H(1)


