ATTRACTING AND ATTRACTED SETS

A. N. ŠARKOVSKIÍ

Let T be a continuous single-valued transformation of a compact space E into itself. Every point $x \in E$ generates an iterating sequence $\{T^jx\}_{j=0}^\infty$. If $x, Tx, \dots, T^{k-1}x$ are pairwise distinct and $T^{k-1}x = x$, then $x, Tx, \dots, T^{k-1}x$ form a cycle of order k.

The point y is called an ω -limit point of the sequence $|T^jx|$, if for each neighborhood U of y and every n>0 there exists an $m\geq n$ such that $T^mx\in U$. We denote the set of all ω -limit points of $|T^jx|$ by Ω_x .

1. The set $\Omega = \Omega_x$ is closed and $T\Omega = \Omega$. The following two theorems characterize the transformation T on Ω .

Theorem 1. If U is an open set in Ω , such that $U \neq \Omega$, then the closure of TU is not contained in U.

The following two corollaries follow from Theorem 1:

Corollary 1. If $\Omega' \subset \Omega$ is such that $T\Omega' = \Omega'$, then Ω' can not be both closed and open in Ω .

Corollary 2. If Ω is finite then the points of Ω form a cycle.

Corollary 3. If Ω is infinite then every point of a cycle contained in Ω is a limit point of points of Ω .

Theorem 2. If Ω is infinite and $T^jx \in \Omega$ for $j \geq j_0$, then Ω is the derived set of $\bigcup_{j=0}^{\infty} T^jU$ for every set U which is open in Ω .

If Ω has interior points in E, then there always exists a j_0 such that $T^jx \in \Omega$ for $j \geq j_0$. Theorems 1 and 2 characterize the transformation on Ω . By this remark we mean the following.

A. If T is a continuous transformation of E into itself such that every closed set Ω with $T\Omega = \Omega$ satisfies the assertion of Theorem 2, then there exists a point $x \in \Omega$ such that $\Omega_x = \Omega$.

B. If a closed set Ω does not have interior points in E, Ω does not contain isolated points of E and T is given on Ω so that $T\Omega = \Omega$ and Theorem 1 is satisfied, then the transformation T can be extended to a closed set E', $\Omega \subset E' \subseteq E$ in such a way that T is continuous on E' and there exists a point $x \in E'$ such that $\Omega_x = \Omega$.

The problem of the structure of ω -limit sets of an iterating sequence reduces to the following: what is the structure of a closed set $\Omega \subseteq E$ if one can define a continuous transformation on Ω such that $T\Omega = \Omega$ and such that Theorems 1 and 2 hold for Ω .

One may mention the following result: If the compact space E is locally connected and Ω has interior points in E, then $\Omega = \bigcup_{j=1}^k \Omega^{(j)}$, $1 \le k < \infty$, where $\Omega^{(1)}, \dots, \Omega^{(k)}$ are connected closed sets which are mutually disjoint and $T\Omega^{(j)} = \Omega^{(j+1)}$, $j = 1, 2, \dots, k-1$, $T\Omega^{(k)} = \Omega^{(1)}$.

2. We shall say that the point $x \in E$ is attracted to the set Ω , if Ω is the set of ω -limit points of the sequence. The set of points of the compactum which are attracted to a given set Ω will be denoted by $P(\Omega)$. From now on we shall denote by the letter Ω those and only those sets (with indices

or without indices) for which $P(\Omega)$ is not empty.

Theorem 3. $\bigcup_{\Omega' \supset \Omega} P(\Omega')$ is a set of type G_{δ} .

Let Σ be a system of open sets σ_i , $i=1,2,\cdots$, such that: 1) $\sigma_i \cap \Omega \neq 0$, $i=1,2,\cdots$; 2) for every neighborhood U of a point $x \in \Omega$ there exists a $\sigma \in \Sigma$ which is contained in U. For every $\sigma_i \in \Sigma$ we construct an open set $S(\sigma_i)$, consisting of all inverse images of σ_i : $x \in S(\sigma_i)$ if and only if there exists an integer $k \geq 0$ such that $T^k x \in \sigma_i$. Then $\bigcap_{i=1}^{\infty} S(\sigma_i) = \bigcup_{\Omega' \geq \Omega} P(\Omega')$. Indeed, if $x \in P(\Omega')$, where $\Omega' \geq \Omega$, then $x \in S(\sigma_i)$, $i=1,2,\cdots$. If $x \in P(\Omega'')$ and Ω'' does not contain Ω , i.e., if there exists a point $y \in \Omega$ which does not belong to Ω'' , then there exists σ_i , $\ni y$ which does not contain any of the points of the sequence $|T^j x|_{j=0}$. Hence $x \in S(\sigma_{i'})$ and $x \in \bigcup_{\Omega' \geq \Omega} P(\Omega')$.

Theorem 4. $\bigcup_{\Omega' \subset \Omega} P(\Omega')$ is a set of type $F_{\sigma\delta}$.

Indeed, if F is an arbitrary closed set, then the set p(F) consisting of the points $x \in E$ such that $T^jx \in F$ for $j \geq j_0$ $(j_0$ depends on x) is a set of type F_{σ} . Let us consider a sequence of open sets $U_1 \supset U_2 \supset U_3 \cdots$ such that $\bigcap_{i=1}^{\infty} U_i = \Omega$ and let F_i be the closure of U_i . Let us construct $p(F_i)$, $i=1,2,\cdots$. Then $\bigcap_{i=1}^{\infty} p(F_i)$ is also the set $\bigcup_{\Omega' \subseteq \Omega} P(\Omega')$. Indeed, if $x \in P(\Omega')$, $\Omega' \subseteq \Omega$, then $x \in p(F_i)$, $i=1,2,\cdots$. If $x \in P(\Omega'')$ and there exists a point $y \in \Omega''$ which does not belong to Ω , then there exists an i_0 such that $y \in F_{i_0}$ and then $x \in p(F_i)$, $i \geq i_0$.

Corollary. $P(\Omega)$ is a set of type $F_{\sigma\delta}$.

If $\Omega \cap P(\Omega)$ is not empty, then it follows from Theorem 3 that $P(\Omega)$ is a set in Ω of type $G_{\bar{\delta}}$ of second category.

The problem arises as to whether there exist transformations for which the set $P(\Omega)$ is a set of type G_{δ} or $F_{\sigma\delta}$ but is not a set of a simpler type. The theorems formulated below give an affirmative answer to this question.

3. Let us consider the case when E is a segment of the real line.

Theorem 5. If Ω is infinite, then $P(\Omega)$ is a set of class ≥ 1 in the Baire-de la Vallée-Poussin classification.

Corollary. If Ω is infinite and there does not exist a set $\Omega' \supset \Omega$ then $P(\Omega)$ is a G_5 set but not an F_{σ} set.

Theorem 5 follows from Lemma 1.

Lemma 1. If the conditions of Theorem 5 are fulfilled then 1) in every neighborhood of each point $X \in P(\Omega)$ there is an x' < x, $x' \in P(\Omega)$, (if x is not the left end point of E) and an x'' > x, $x'' \in P(\Omega)$ (if x is not the right end point of E); 2) if the interval $(a, b) \in P(\Omega)$, then also $a, b \in P(\Omega)$.

Theorem 6. If Ω contains a cycle and there exists an $\Omega' \supset \Omega$, then $\bigcup_{\Omega' \supseteq \Omega} P(\Omega')$ is a set of second class.

The proof of Theorem 6 depends on Lemmas 1 and 2.

Lemma 2. If $(a, b) \subset \bigcup_{\Omega' \supseteq \Omega} P(\Omega')$ and Ω contains a cycle, then there exists an Ω' such that $(a, b) \subset P(\Omega')$.

Lemma 2 is probably also valid even if Ω does not contain cycles.

Theorem 7. If Ω contains a cycle and 1) there exists an $\Omega' \supset \Omega$; 2) in each neighborhood U of Ω there exists an $x \in P(\Omega)$, $x \in \Omega$, $T^j x \in U$, $j = 0, 1, 2, \cdots$, then $P(\Omega)$ is a set of third class in the Baire-de la Vallée-Poussin classification.

Thus $P(\Omega)$ is (under the conditions of the theorem) an $F_{\sigma\delta}$ set and not a $G_{\delta\sigma}$ set.

For instance, if the transformation is $Tx = x - x \sin(1/x)$ defined on [0, 1] then the set of points x such that $T^j x \to 0$ as $j \to \infty$ is exactly an $F_{\sigma \bar{x}}$ set.

If Ω is infinite and contains at least one isolated point (and hence also a denumerable number of isolated points), then condition 2) of the theorem holds.

The following is the summary of the proof of Theorem 7: 1) We choose a subset J of the set $\bigcup_{\Omega' \supseteq \Omega} P(\Omega')$ which is homeomorphic to the set of irrational points [1]; 2) we prove that $P(\Omega) \cap J$ can be obtained by the same means and from the same elements as a Baire set of third class [2].

We obtain Theorem 8 as a corollary of Theorems 6 and 7.

Theorem 8. If the conditions of Theorem 7 are fulfilled then $\bigcup_{\Omega' \subset \Omega} P(\Omega')$ is a set of third class.

Received 8/SEPT/64

BIBLIOGRAPHY

- [1] P. S. Aleksandrov and P. S. Uryson, Math. Ann. 98 (1927).
- [2] N. N. Luzin, Ensembles analytiques, Paris, 1930; Russian transl., Collected works, Vol. 2, Chap. 2, Izdat. Akad. Nauk SSSR, Moscow, 1958. MR 27 #3487.

Translated by: Y. N. Dowker