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IlepeamoBa

21-24 rpyxnus 2018 poky B Incruryri maremaruku HAH Ykpainu
MPOXOMB MiKHApOAHWI ceminap “Cumerpis Ta iHTErpoBHICTH DiBHIHDL
MaremarudHoi ¢izuku” 3 Haromu 40-1 piunuii cTBOpPeHHS Bijiiny npu-
KJIagHuX gocimkenb (3 2016 poxky — Bimgin maremarudunol ¢bizuxu),
quB. https://www.imath.kiev.ua/ appmath/conf2018. Ceminap Tpasm-
MITHO TPOBOAUTHCA ¥ TPYAHI B MaM SITh PO 3aCHOBHUKA BiJIiTy, BUIAT-
Horo ykpaincbkoro suenoro B.I. @ymuua (18.12.1936-07.04.1997).

Mera 3ycrpiui — obMiH AyMKaMu BYEHHX, IO MPAIMIOIOTH y Taay3i
TPYNOBOr0 aHaJI3y AudepeHIiaIbHUX PiBHIHb, IHTErPOBHOCTI Ta MaTe-
MaTHUYIHOTO MOJIEIIOBaHHs. [ 0JIOBHIMEU TeMaMu ceminapy OyJiu 3acTocy-
BaHHS TPYMOBUX METO/IIB J0 JOCTIIZKEHHS MOJeei, Mo OMUCYIOTh Mpo-
1IeCU PeasIbHOI'O CBiTY, Te€Opis iHTerpoBHOCTI, cydacHa teopis amaredp Jli
BKJIIOYHO 3 KOHTPAKI[isIMU TA iHBapianTtamu Takux ajaredp. ¥y cemimapi
B3SJIM yuacTh 33 yuacuuka 3 Ykpaiuu, [Hoawmi, Kinpy, Ascrpii, Iraii,
Kamaau ta Himeuunmnn.

Heit 36ipauK MicTuTb cTarTi yuacHukiB ceminapy. /1o Hboro yBifiniin
16 crareii, mo Oya1yTh KOPUCHUMHU ACMIPAHTAM TA HAYKOBUM CIiBPODIT-
HUKAM, Ki [MIKaBATHCSI IPYIOBAM AHAJII30M Au(epeHIiaTbHuX PIBHIHD
Ta TEOPIEI IHTErPOBHOCTI.

Pedaxmopu
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Touni po3B’sa3Kn HEJIIHIITHOTO
PiBHSIHHS TEILJIOIIPOBLIHOCTI

uy = (F(u)ug), + H(u)

A.®. Bapannux ¥, T.A. Bapannux ¥, L.I. FOpux §
t Iomopcovra axademin, Cayncor, Horvua

Y [Toamascoruti nayionarvnuti nedazozivnuti ynisepcumem
wment B.I. Kopoaenxa

§ Haugonarvrui ynisepcumem xapuos8ur mexrnoarozit, Kuis
E-mail: i.yu@ukr.net

BanpornonoBano Meros o0y 0B TOYHUX PO3B’A3KIB HEJIHIAHOIO PIBHSAH-
ust Temtonposigaocti uy = (F(u)ug)e + H(u), SKuit IPYHTYETHCH HA BUKO-
pucranni miacranoBku p(x) = wi(t)e(u), ne bynknia p(z) € po3s’a3xkom
ommoro 3 pisnans (p')? = Ap®> + B, (p')? = Ap* + Bp* + C, a dbynxuii wi (t)
i p(u) 3HAXOmATHCA 3 yMOBH, IO I TiJCTAHOBKA DPEIAYKYE PIBHIHHS 10
3BUHYARHOTO MudePEHIiaIbHOrO PiBHAHEA 3 HeBimOMOW GyHKIHEn w1 (t).

A method for construction of exact solutions to nonlinear heat equation
ur = (F(uw)uz)e + H(u) which is based on ansitz p(z) = wi(t)e(u) is
proposed. Here the function p(x) is a solution to one of the equations
(p')? = Ap* + B, (p')* = Ap* + Bp* + C, and the functions w () and o(u)
can be found from the condition that this ansatz reduces the equation to
an ordinary differential equation with unknown function ws (¢).

1. Beryn. Pobora npucssiuena mobymoBi TOYHUX PO3B’sI3KiB HEJTiHili-
HOT'O PiBHSIHHS TEIJIONPOBiIHOCTI

Ut = (F(U)UZ)I + H(u), (1)

AKe OIUCYE HEeCTAIIOHAPHY TEILJIONPOBITHICTD B HEPYXOMOMY CEPeJIOBH-
i, KO KOedIMieHT TeTOMPOBiIHOCTI i MIBUAKICTD peakiiii € J0Biib-
auMu GyHKIaMu Temneparypu. I'pynosa kiacudikaiiisi piBHIHD OO
BUJLY, & TaKOK TOYHI po3B’st3km 1yisi pisHux dyHKii F(u) i H(u) onn-
caHo B poborax (qus. [1, 2, 3] i uroBaHy Tam JiTeparypy).
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V wiii cTarTi ME BUKOPHCTOBYEMO METO, TOOY/I0BU TOYHUX PO3B’A3KiB
piBusinng (1), KUl FPYHTYETHCs HA KIACUYHOMY MeTO/l BiIOKpeMJIeHH I
3MIHHUX Ta OTO y3arajabHEeHHi, & TAKOXK METOJIi PEIYKIIii, 1o JIEXKUTH B
ocuoBi cumerpiitnoro meroxy C. JIi. s moOymoBu TOYHUX PO3B’S3KiB
piBHsAHHS (1) 3aCTOCOBY€ETHCS MiZCTAHOBKA

p(x) = wi(t)p(w), (2)

sKa MicTuTh 1Bl HeBimomi GyHKIHT w1 (t) 1 p(u), a Takox dyHKIi0 p(T),
KA 3a/1a€ThCs anpiopHo. JleraibHO pO3TJIAIal0ThCs BULAAKY, KO p(x)
€ PO3B’I3KOM OJIHOTO 3 TAKUX PiBHAHD:

() = Ap* + B,
(¥')? = Ap* + Bp* + C,

ne A, B, C' — crani. IIpu Takomy BuGopi dyHKIii p(z) HeBimomi dyHK-
mii wi(t) 1 ¢(u) BU3HAYAIOTHCS 3 YMOBH, IO MijcTaHOBKA (2) pemykye
piBasiang (1) 10 3BMUaiiHOrO nUdEpeHIiaIbHOr0 PIBHAHHS 3 HEBIIOMOIO
dyukuieo wq (t).

BiamiTumo, 1110 Takwmii miaxig OyB BUKOPHUCTAHUM /11 TOOYI0BU TOU-
HuX po3s’s3kiB piBusanus ruiy Kopresera—ue ®pisa 8 [4, 5] i nesiniiinoro
piBHAHHSA

ug = F(u)ug, + F’(u)uﬁ.

2. Po3B’a3ku piBHsHHS (1), 110 BUPaXkalOThCd Yepe3 TPUTO-
HOoMeTpudHi yHKII. BBenemo o3HaueHHS

Osnavennsi 1. Byunemo rosopuru, mo piBusuus (1) monyckae migcra-
HOBKY (2), saKiulo BoHa penykye piusanus (1) 1o 3Buvaiinoro pudepen-
IanbHOTO PiBHAHHS Ha QyHKI0 wi (t).

st nobynoBu To4HUX PO3B’s13KiB piBHsHH#A (1) BUKOPUCTOBYETLCSH
Hi/ICTAHOBKA

p(z) = wi(t)p(u), (3)
ze p(x) € po3B’si3KOM PiBHSHHS

(P> =Ap*+B, A#0, B#0.
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IMigcrasumo (3) B piBusanus (1):

/ 1 1 1
et W A S (—FB@, +F’B>

wi ¢ wi (¥')? (¢')?
2, 1 2
e ¥ P
+ (—FA i F’A(w,)Q +FPAZ+ H) : (4)

Hns pusnavenHs GyHkiiin F(u) i ¢(u) orpuMaeMo Taky cucremy pis-
HSHD:

(‘0// 1 SD
Tt eE =M ®)
2, .1 2
02 @ @ L
—FA o F’A((p,)z + FA& +H= /\2&, (6)

ze A1, A2 € R. Hexait F'(u) # 0. Iurerpytouu piBusinusa (5), ske € jiniii-
HuM BinHocHo byskuii F' = F'(u), 3Haxoaumo

F= ()\1 /¢du + Cl> ©, (7)

ne vyt i mami C,Cy,Co, ... — noBinbHi crani interpyBanus. [ligcraBus-
mwm (5), (6) B piBugHHg (4), OTPUMYEMO DIBHIHHS JIJId BUSHAYEHHS DYH-
kil w (t):
w] 1
—L + MB— + A2 = 0. (8)
w1 wy
3 piensEsb (5), (6) 3HAXOANMO

1

H= E(f)\lAgag — AF @ + Xoy). (9)

V mincyMKy OTpUMAaEMO TaKy Teopemy:

Teopema 1. Sxwo pishannsa (1) donycrae nidemanoswy euzandy (3)
i F'(u) #£ 0, mo ¢gynxuii F(u) i H(u) susnauaromocsa gopmysamu (7)
i (9) eidnosiono, a gynruia wi(t) € poss’askom pienannsa (8).

Orpumani po3s’s3ku piBusuus (1) MOKHA y3arajJbHUTU, BAKOPUCTO-
BYIOYH ITi/ICTAHOBKMU:

p(u) = wi(t) ch(k (x + C3)) + wa(t) sh(k (z + Cs)), (10)
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axmo A = k% > 0,
o(u) = w(t) cos(k (z + C3)) + wa(t) sin(k (x + Cs)), (11)

akmo A = —k% < 0.

Posrasinemo, vanpuknan, nigcranosky (10). dxmo dbyskuii F(u) i
H (u) susnauaiorbes 3a dopuynamu (7) i (9) simmosizao i A = k? > 0,
To nigcranoska (10) peaykye piBuauus (1) go cucremu

wy = (=MEw] + M E*ws) wi + Agwy, (12)
wh = (=M k*wi + A E*w3) wa + Aowo. (13)

Hexait wy # 0. 3 pirusanb (12), (13) sunansae, mo wy = Cw;. PiBHAHHS
(12) nabyBae BUrIsAILY

’LUll = )\1]472 (02 — 1) wij’ + Aawi. (14)

Akuio Ay # 0, 1o po3s’si3kom piBusuug (14) € Gyukuis

Mise )
M2 (o 1)> ,

w? = (i; exp(—2Aat) — ;

ze Co # 0. Maemo rakuil po3s’s30k piusnus (1):

Oy A ~1/2
p(u) = £ | == exp(—2Xat) — —k* (C* — 1)
A2 A2
X [ch(k (x + C3)) + wa(t) sh(k (z + C3))].
Ao Ay = 0, T0 po3s’sizkom piBustansg (14) € dyukiis
=[—2MK* (C? = 1)L+ Co] ™", A #0.

VY mizcymky orpumyemo takuii po3s’s30k piBasHHs (1):

o(u) = [—2)\1/{2 (C2 — 1) t+ CZ]_1/2
x [ch(k(x + C3)) + wa(t) sh(k(x + C3))].

Bunanox wy = 0 3BoANTHCA 10 iHTErpyBaHHS PIBHAHHS

= /\1k2w§’ + Aawsy.
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Orxe, gkio Ag # 0, T0O MaeMo Takuii po3s’s30k piBHsaHHs (1):

—1/2
p(u) = (i exp(—2\at) — i\\;k2> sh(k(x + Cs)),

ne Cy # 0, a 'y Bunaaky Ay = 0 — po3B’s30K
o) = (=20 K? (C2 — 1)t + C3) "/ ? sh(k (z + Cs)).
Awnasioriuno, nincranoska (11) peaykye piusanus (1) 10 cucremu
= (N k2wi + A2k%w3)w; + Agw, (15)
wh = (AN2E%w? + Nk w3 )wy + Aaws. (16)
Ipoinrerpysasmm (15), (16), orpumyemo Taki po3s’s3ku piBasauHg (1):

Oy Moy S\ 712
o(u) = [ —= exp(—2at) — =k* (1+C?)
A2 A2

x [cos(k (z 4 C3)) + C'sin(k (z + Cs))],
ne Cy # 0, Ay # 0;
p(u) = (—2MK? (C% + 1)t + Co) /2
x [cos(k(x + Cs)) + Csin(k(z + C3))], A #0,
se A1 # 0, Ay = 0;

—1/2
o(u) = (fz exp(—2Aqt) — /\1k2> sin(k (x + Cs)),

e 02750, /\27&0;
o(u) = (=2\ k%t + Cy) "2 sin(k(z + C3)),

e )\17&0, )\210

3. Po3B’a3ku piBHaHHA (1), 10 BHPaXXaloThCd 4Yepe3 eJlin-
TraHi GyHKOiT dkob6i. Onuuemo piBusuug Buay (1) i ix Touni pos-
B’SI3KHM, Kl JIOIyCKAIOThH Mi/[CTAHOBKY

p(x) = wi(t)e(uw), (17)
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zie p(x) € po3B’sI3KOM PiBHSHHS
(P2 =Ap* +Bp* +C, A#0, C#0. (18)

[Migcrasusumu B pisagaus (1), orpuMyeMo

/ 4. 1
St <2AF‘p CAFEE L ap # >
wy ¢ (¢)3 (¢')?
+1< cr? ! ) (19)
wi ()3 (¢")2
4,0290// 2 7
+ (—BF 90/3 =+ BFE + H(u)> .

3 pisusaHA (19) OoTpHMyEMO cHCTEMY

" )1 @
- +F =\Z, (20)
(¥')? (¥')? ¢
24P % 4 agh (—FE L) 20,8 21
ERA AR =0 @
" , ¥ ¥
—BF-~—— + BF +H( )= A3—, (22)
(¢")? (¢")? ¢
Zie A1, A2, Az € R. IlincraBusmmn (20) B (21), 3HaX0AMMO
Xl M
=22 = T2 2
24 %2 2 v (23)
3 piBuganug (22)
1
H=—B<p2( F“”—+F’ 2>—BF¢/+>\3¢/,
¢’ (¥") ¢
a Tomy Ha mizcrasi (20) i (23):
H(u) = ———" + X (24)

o 24 @y’

IMixcrasusnm (23) B (20), 3HAXOAMMO PIBHSHHS JJid BU3HAYEHHS (DYHKIIT
¢ = p(u):

" A2 4 At 5 A2 - N2
® (A + 2\ 5 ZASD (") (25)
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IMigcrasusmm (20)—(22) B (19), orpuMyeMo DIBHSAHHS /171 BU3HAYEHHS
dbyukuil wy = wi (t):
w’l 2 )\16

L+ 4+ X3 =0. 26
w1+ 2w1+w%+3 (26)

VY migcyMKy OTpUMAaEMO TaKy Teopemy:

Teopema 2. dxwo pisnanna (1) donycxae nidemanosxy (17), mo dymnx-
wit F(u) i H(u) susnauaromovesa gopmyaamu (23) i (24) eidnosiono,
a Pynruyii p ma wi(t) € po3e’asKamu 36uNATHUL OUPEPEHUIANOHUL Di6-
nano (25) ma (26).

TakuM guHOM, TTOOYA0BY TOYHHUX PO3B’sA3KiB BUay (17) piBHsaHHS (1)
3BEJIEHO JI0 iHTerpyBaHHs piBHsAHB (25), (26).

Posrnanemo apa Bunaaxu.

I) Bunagok A; = 0. Piusuns (25) nabysae BUTIISILY

Turerpyroun piBusuns (27), 3HaX0AUMO
Y = (C’lu + 02)71/3,

Cy # 0, i va mincrasi (23), (25)

F = —%(C’lu + 02)—2/3’
3\ B s 3

H = - — .
20, (C1u+02) Cy (Clu—l—C’g)

PiBusinns (1) nabysae Bursssy

A , 3\ B
e (gl(olu + 02)2/3“I)m 36

3\
— 2Z23(Chu+ Cy), (28)
C,

(Clu + 02)1/3
1

1 IiICTAHOBKOIO

v=gp(u) = (Cru+ Cy)~'/*
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3BOJIUTHCS 10 BULY

A A
vy = fglvzvm + Alv(vz)z - ?131)3 + A3v. (29)

Turerpyroun piBusinng (26) y Bunaaky Ae = 0, 3Hax041MO

A
w? = C3exp(—2Ast) — T;C’ C3 #£0, sKmo Az # 0,
w} = —2X\,Ct+ C3, axmo A3 = 0.

VY mizcymky orpumyemo raki po3s’sa3ku piBusub (28), (29):
a) dAxmo A =k?, B = —(1 +k2), C =1, ro

£\~ 12
v=plu) = (Crep(-20a) = 3] su(aik), Ao 20
3
v=(u) = (=2t + 03)71/2 sn(z; k), A3 =0.
6) dxmo A= —k?, B=2k*>—-1,C=1-k% 10

A\ 12
v=¢(u)= <C3 exp(—2Ast) — (1 — kzz))\;) en(x; k), Az #0,

v=gp(u) = (=2\ (1 - k)t +C5) " en(a: k), As = 0.
B) dkmo A= —1,B=2-k% C=—-1+k? 7o

—1/2
v=o(u)= <C3 exp(—2Ast) — (=1 + k2);\;> dn(z; k), Az #0,

v=p(u) = (=2\1 (=1 + £t + C5) " dn(a; k), As = 0.
IT) Bunagok A\; = 0. PiBusinusa (25) nabyBae BUDISLY
¢ =—=(¢)% (30)
Turerpyroun piBusuns (30), 3HaX0AUMO
¢ = (Cru+ Cy)'/?,

e Cy # 0, 1 na miacrasi (23), (25)

Az

F =
24

(Cru+ Cy) ™3,
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3\
H= Q—X(C’w—&- C) —

3B
2AC,

(Cru+ Ca)*/3.
Pipuauns (1) nabyBae BUIIsLY

A
Up = (ZZ(CW + C’g)_Q/?’uz)

~ 3\B
2AC,

3
+ 7f’(clu +Cy)

x

(Cru+ Cy)/3, (31)

1 IiICTAaHOBKOIO
v=¢(u)=(Ciu+ 02)1/3

3BOTUTHCA JI0 BUILY

_ AB1
20pe + A0 — 227; (32)

vy = —=p
" 24
Mipcrasusmm (20)—(22) B (19), orpuMyeMO DIBHAHHS /I BU3HAYEHHS
bysruii w; = wq(u):

/

w
—L 4+ w3 =0. (33)
wy

Turerpyroun piBusuns (33), 3HaX0AUMO

A
wy? = Csexp(2Ast) — )\—2, C3 # 0, akmmo A3 # 0;
3
’11)1_2 = 2)\2t + Cg,HKH_IO )\3 =0.

V migcymky orpumyemo Taki po3s’s3ku piBusub (31), (32):
a) SIkmo A = k?, B = —(1+k?), C = 1, ro pieusmns (32) mae
BUTJIAT

A
vy = 72,1)72,011‘ + A3v +

/\2(1 + k2) 1
2k2 v’

2k?2 (34)

Pose’si3ku pisusans (34):

1/2
v = (Cg exp(2Ast) — i\z) sn(z; k), armo Az # 0;
3
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v = 2\t + C3)/?sn(x; k), sxmo Az = 0.

6) sIxmo A = —k% B =2k? — 1, C =1 — k2, to pisuanus (32) mae
BUTLJISAT

A2, Ao(2k%2 - 1)1
V¢ = _ﬁv Vg + A?,U + Tg (35)
Posp’asku piBuanus (35):
Ao\ /2
v= (Cg exp(2Ast) — )\) cn(z; k), axmo Az # 0;
3

(2Xat + C3) /2 en(x; k), sxmo Az = 0.

v

B) dkmo A = —1, B =2— k2 C = —1+ k?, 1o piBuanusa (32) mae
BUTJIAT

A Xa(2 —Kk2) 1
vy = ——2v_2vm + A3v + M; (36)

2 2

Posp’askn piBusaHH: (36):

1/2
v= (Cg exp(2Ast) — i\\2> dn(z; k), axmo Az # 0;
3

v = (2ot + C3)/2 dn(z; k), saxmo Az = 0.
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(1+1)-BumipHi HeJsriHiiTHI eBOONiTHI
PiBHSIHHS JIDYTOTO MOPSIIKY

3 MaKCUMAJbHUMH JiiBCHKUMU
cuMeTpigMu
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SHaiieHo aBHKI BUTJISA IEPETBOPEHD, 1O 0B’ A3y I0Th HesrnilHi (1+41)-Bu-
MipHi €BOJIIONINHI PIBHAHHSA APYTOr0 MOPAAKY 3 MaKCUMAJIbBHUMU CEMUBU-
MipHEME aarebpaMu JiiBCbKUX CHMeTpiil.

We have established the explicit forms of the transformations that connect
nonlinear (141)-dimensional evolution equations of the second order with
maximal seven-dimensional Lie symmetry algebras.

Posrasinemo kiac (141)-BUMIipHUX eBOJIOIIHHWX DIBHSIHB MOPSIIKY N

U/t:F(t,x,U,Uh...,Un), (1)
—Ou .. du , _q = > 2, F — nosi
neuy =Gt ug = 5:4,1=0,...,n, ug = u, n > 2, JIOBiLTbHA TJIaaKa
dyukmiga. Takox 6ya1eM0O BUKOPUCTOBYBATH MOZHAYCHHST Uy, Ug g, - - - IS

HOX1THUX 3a 3MIHHOIO .

CumerpiiinuM BiaacTuBocTAM piBHsiHb 3 Kjacy (1) npucssiyeno 6a-
rato gociimzkenb. Kpim Toro, y 0ararbox BHIIAJKIB caMe €BOJIOIHHI
piBasHHES 3 Kaacy (1), 9K TPaBUIO, BUCTYNAIOTH OA30BUMHU MPUKJIAIAME
B cuMeTpiiiHoMy aHasi3i audepeHniajbHUX PIBHAHDL (IUB., HATPUKJIAJI,
monorpadii [6, 9, 15, 17]).

Binunosinuo 1o pesysabrarie B.B. Cokousiosa [18, p. 173] ra B.A. Ma-
rajzieesa [12, p. 346] (nus. rakox crarrio P.3. ZKanosa [19]) konrakTHi
TIEPETBOPEHHS, sIKi 30€piraloTh BUIJIS, €BOMOIIHHNX piBHAHL (1), BUdYep-
MYIOTHhCSA MEPETBOPEHHAMHI

t:%(t)7 %:d)(t)x?u?,u’l)’ ﬂ:w(t7$7u’ul))
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Je QyHKITT ¢ Ta 1) 33 0BOJBHIIOTH YMOBY KOHTAKTHOCTI

B.A. Marazgeesum [12, Teopema 0.1] moBemeHO, MO PO3MIPHICTH aJ-
re6pu KoHTakTHUX cuMerpiit (Cont) (141)-BuMipHUX e€BOMONIAHAX piB-
uanb (1) we nepesuutye n + 5 abo gopiBuioe 0o. B ocrannbomy Bunagky
€BOJITOLIIHI PIBHAHHS 3BOJAATHCS JI0 JIHIHHUX 34 JIOIIOMOI'OI0 KOHTAKTHUX
MepeTBOPEHb. Y IIiif ke poOOTI aBTOPOM OTPUMAHO MOBHUIN TEPeTiK aJj-
reOp CKIHYEHHOBUMIPHUX KOHTAKTHWX CUMETDPIill €BOJIIOIINHUX DIBHIHBb
Ta MOKA3aHO, sIK ONKUCATU €BOJIONINHI PIBHAHHS, Kl JOIYyCKAIOThH 3a/1a-
Hy anrebpy KOHTAKTHOI CuMeTpil.

3okpewma, 3riguo 3 [12, reopema 3.5, Oyub-sike piBusnus 3 Kuacy (1)
3 MaKCHMAJbHOK (n 4 5)-BUMIPHOI airebpoi KOHTAKTHHX CHMETpiii,
€KBiBaJIEHTHE PiBHAHHIO

1—n
Up = Up "

ITpn npoMy BiamoBizHa amrebpa KOHTAKTHUX CHMeTpiit Mae Burisy [12,
JIMB. JIOBEJIEHHsS TeopeMn 3.5 Ta JO/IaTOK]:
k -1 2
gM1 = <1, Ty, XV Uy, — U5 U A+ DUy, TU, — (0 — 1)a2u,

ug, tuy + )\u>, (2)

gek=1,....n—1,A#0,\=-2 o ={1 2, ... tu+Iu} — (n+5)-

n
KOMIIOHEHTHA TeHepyrda (BpyHKIlid iHDIHITE3NMATHLHOTO OIepaTopa,

Q=7)0 + &(t,x,u,uz)0p + n(t, , U, Uy ) Oy
+ C(ta x,u, uw)aut + p(t7 €, u, uz)a’uz

3 koediuiearamu T, &, 1, (, p, AKi BU3HAYAOTHCA HACTYIHUM YHHOM
[11, 19]:

T=—0u, §=—Pu,, N=0¢— UtPy, — UzPu,,

C= ¢t +UutPy, p= s+ UgPuy.
Jast nosinmprHOrO n > 2 Bei GasucHi eseMenTH anebpu (2) € MPOTOBKEH-
HAMU BiAIOBLAHUX JiTBCbKUX cumerpiii (Tobro anebpa (2) € TpuBiaibHOIO

ainrebpo0 KOHTAKTHUX cUMeTpiii). 3okpema, g n = 2 ug ajrebpa Mae
BUILJISL]L

In=2 = <ata az: au7 2xaw + uau + U'taut - uwauma
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20y, + Oy, , 4t0: + 3ud, — w0y, + 3uy 0y,
220, 4 2udy + 1ui0y, — TUL0,,)

i € npomoBxkeHHsAM ajareOpu JiiBCbKUX (TOYKOBUX) CUMETDiil piBHSAHHS
U = uzs’? (nuB. peamizanito (5) muzkue). YmoBu Ha dyHKiio F, npu
akux Knac (1) momyckae smiie TpuBiasibHI KOHTaKTHI LEPETBODEHHS,
orpuMaHo B pobori [13].

Y pobori [19] P.3. 2K 1aHOBHM BCTAHOBJIEHO 3B’ 130K MixK MOTEHIiab-
HUMHU T4 KOHTAKTHUMY CUMETDifAMU eBOJIOIIAHNX piBHaHb (1), a TakoxK
3aIPOIOHOBAHO MiAXid M0 Kaacudikarlil TaKuX PiBHSAHD.

CBixKuii Oryisi/i Ta OCTAHHI PE3yJIbTATH MO0 HEKJIACUIHUX CHMeTpiit
€BOJIIONIHUX PIBHAHD MOXKHA 3HalTH B pobori [§].

3HavyHe MicIle B JTepaTrypi TPUIIISETHCS 3HAXOMXKEHHIO JIIBCHKUX
cuMeTpiii eBoMOMiIfTHUX pPiBHAHL. KpiM TOro, BUBYAIOTHCSA CUMETpiiiHi
BJIACTMBOCTI pizHOMaHiTHUX Hizkiacis kiacy (1) mpu n = 2,3. Y pobo-
mi [5], LII. Axaros, P.K. Tazizos ra H.X. I6parimoB posrusiaysu Jio-
KaJIbHI Ta HEJIOKAJIbHI CUMeTPil /IS JIeTKUX KJ1aciB eBOJIOINHUX PIBHAHD
JPYTOTO TIOPSIJIKY, & cCaMe JIJIst PiBHSIHb HEJIiHIHOI TeTJIONMPOBiIHOCTI, He-
JTiHiHOT (ibTparlil Ta ra30B0i AuHaMiKu. 30KpeMa, y Iiil poboTi 3Haiire-
HO TPYIY eKBiBaJE€HTHOCTI Ta BUKOHAHO IOBHY I'DYIOBY Kiacudikariio
kaacy uy = H(ug,). dKimo BUKIOUUTH 3 PO3ruIsiy JHHIHHUA BUNAIOK,
TO Tipu AOBinbHIA GyHKHmI H meil Kjaac J0mMycKae Im'aTHUBHMIPHY ajre-
6py aiiBcbkux cumerpiit. Kpim Toro, icuye 5 HeekBiBasieHTHUX BUIIAIKIB
pPO3MIUpEHHS i€l M’ STUBUMIPHOL areOpu. Y BUIMAJAKY CTEMEHEBOI, JIoTa-
pudMigHOT Ta eKCIOHEeHIaIbHOI HeJiHIHHOCT, ajaredpa iHBapiaHTHOC-
Ti — IIECTUBUMIpPHA, & CEMUBUMIPHY anredpy JOMyCKAOTh ABa HACTYITHI
piBHAHHHA [5]:

w = u,,’?, (3)

T

up = ul/?. (4)

T

3rinHo 3 [5], MakcuMasbHi JiiBCbKi anrebpu inBapianTHOCTI piBHSAHB (3)
ra (4) nacryusi:
gacit = (O, Og, Oy, 2t0; + x0y + 200y, 10y, 4t0r + 3udy,
220, + Uy ), (5)
gacr2 = (O, Oz, Oy, 2t0; + x0y + 2uby, TOy,
2t0; + 3udy,, udy). (6)
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¥ poborax [4, 7] BuB4eHO cuMeTpiiiHi BJIaCTUBOCTI Kjacy
ug + uugy = Fuy).
3okpemMa, MOKa3aHo, 110 PIBHAHHSI
up + ug = ul/? (7)
JOmmycKae cemuBuMipHy anrebpy JIi

nr = (01, Oy 10y + Do, 40, + 500, + udy,
w0y, (2t — )0y + u0y, (tu — x)(t0, + Oy)). (8)

VY poborax [1, 2] 3a JOMOMOT0I0 TEXHIKH PO3TAJLyKEHOTO PO3IIEITIEeH-
HS BUKOHAHO ITOBHY TPYMOBY KIacH@IKAIIIO JiiCbKUX CHMeTPii i IKIaciB
ug+uu, = H(up) rau, = H(u,) Bignosinuo, ae n > 3. dus. [16] ra cuu-
COK JIITEpATypH B Iiif poOOTI MO0 METOLY PO3TATYKEHOTO PO3IIENIeH-
Hs TA IHIUX CYYACHUX AJreOpaldHUX TeXHIK CHMEeTpiiHol Kiracudikarii
mudepeHIiiaJIbHIX PIBHSAHD.

Ockinbkuy, 3rigHo 3 pesyabrarom B.A. Marazeesa [12], icuye enune 3
TOYHICTIO 10 KOHTAKTHUX IlepeTBOpeHb ekpiBasienTHOCTL (141)-Bumiphe
€BOJITOLIIIHE PIBHAHHS JIPYIOro HOPSJKY 3 CEMUBUMIPHOIO MAKCUMAaJlb-
HOIO aIrebpoi0 KOHTAKTHUX CHMETPiif, TO OCHOBHA MeTa Iiel podboTH mo-
JIITA€ B HACTYIIHOMY: 3HAUTH TEPETBOPEHHS, IO TOB SI3yIOTh HEJIiHIHH]
(14-1)-Bumipsi eBomoniitai piBasanus (3), (4) Ta (7).

Binowmo, o piBusinus (4) 3BoauThes 10 piBHsHHA (3) 38 JOLHOMOrOK0
KOHTaKTHOIo nepersopenns (aus. [10, 14])

~ ~ JUUE - 1
t=—t, x=Uz, U=2TUz—U, U =U; Upp==—", (9)
Uzz
1e U — HOBa 3aJI€KHA 3MiHHA Ta {, T — HOBI He3aJIeXKHI 3MiHHI.

BayBaxkumo, o piBHsaAHHs (4) iHBapiaHTHE LIOJO0 [EPETBOPEHHS I'O-
norpada [3, c. 409]

1

t=t, x=u(t,3), ultz)=7, U = —Up, Ugy = —=.
Uzz

Takum 9MHOM, PIBHSIHHS HEJiHIHHOI Tertonposingocri (4) — me oaun
MpUKJIa] roaorpad-iHBapiaHTHOTO €BOJIIONIHHOIO PIBHSAHHS APYTOrO MO-
PAJIKY TIOPsiL 3 PIBHAHHAMY MBUIKOL 1udy3ii uy = uz,u, b Ta dbimsrpanii

Up = Ugy (1 + ui)_l
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Hawmmu 3naiineno monudikoBane meperBopenHs romorpada

t=t, x=u(t,T)+3t, wultz)=7,
7"~+E 1 U~

Uy = 7%7 Uy = = ~ Ugax = 7~LI~33 (10)
uz +1 uz +1 (uz +t)

siKe 3BOANTH piBHsAHHSA (7) 10 piBHsAHHS (4).

Orxe, Heminiiini piBHsAHHES (4) Ta (7) 3 CEMUBUMIDHUMH MaKCHMAaJIb-
HUMHU aareOpaMu iHBAPiaHTHOCTI 3BOAATHCS 10 HEMIHIHOTO pPiBHIHHS
rerioposianocti (3) 3 kaacudikanii B.A. Marajeesa 3a 10110MOroro KoH-
TAKTHOrO mepersopenns (9) Ta y3arajabHEHOrO NEPETBOPEHH:A OAOrPa-
da (10), a Bignorinni anredbpu (6) Ta (8) isomMopdHi 3 ToYHICTIO 0 KOH-
TAKTHUX TI€PETBOPEHDb aareopi (5).
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Mopdism F = {Fn, n > 1}, mo 3abe3nedye BaacTuBicTh HOPMATHLHOC-
Ti anrebp B medopmaniiinomy kBaHTyBaHHI 3a Komieswdewm, 3amamno Ha-
60poM BimOOparKeHb TEH30PHUX CTereHedl nrdepeHIiagTbHOT rpa yioBaHol
amre6pm J1i (dgLa) mynprusexkroprux nomis B dgLa momimmudepenmiamsamx
oIeparopiB Ha CKIHYEHHOBUMIPHUX a(iHHUX MHOrOBHIAX. X04Ya MEPIIUi
wier Fi cam 1o cobi He € Mopdizmom asredp JIi, mocaigoBHiCTh F B IILIO-
My € Loo-mopdizmom. Ha ftoro ocaoBi 6ymyeTbest BimoOpaKeHHsT eIeMeHTiB
Maypepa-Kaprana, sike CTaBUTH y BIAIOBIZHICTD IIyaCOHOBUM OiBeKTOpaM
medbopMarii j1a > % A[[r]], IO J0OYIOBYIOTEH 3BWYaiTHe MHOXKEHHA (DyHKITiH
10 ACOIIIATUBHUX HEKOMYTATUBHUX *-00YTKIB HA TIPOCTOPI CTEIIEHEBUX Psi-
aiB o h. Ilpm mpoMy acommaTuBHICTD *-T00yTKIB 3abe3re9eHo — Ha MO-
Bi rpadis Konnesnya, mo mpeacTaBisioTh moiaudepenIiaabHi omeparTo-
pu, — audepeHIiaaTbHUMU HAC IKaMU TOTOXKHOCTI Ik00i. MeTta poboTu —
mpoiTocTpyBaTy el asredpaianmii MexaHi3Mm s x-100yTkis Konnesudaa
(30Kpema, 3 TapMOHIYHUMY TIPOTIATATOPAMM).

The formality morphism F = {F,, n > 1} in Kontsevich’s deformation
quantization is a collection of maps from tensor powers of the differen-
tial graded Lie algebra (dgLa) of multivector fields to the dgLa of polydif-
ferential operators on finite-dimensional affine manifolds. Not a Lie algebra
morphism by its term JF; alone, the entire set F is an Lo,-morphism
instead. It induces a map of the Maurer—Cartan elements, taking Pois-
son bi-vectors to deformations pa +— *A[[H]] of the usual multiplication
of functions into associative noncommutative *-products of power series
in h. The associativity of *-products is then realized, in terms of the
Kontsevich graphs which encode polydifferential operators, by differential
consequences of the Jacobi identity. The aim of this paper is to illustrate
the work of this algebraic mechanism for the Kontsevich x-products (in
particular, with harmonic propagators).
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1. Introduction. The Kontsevich formality morphism F relates
two differential graded Lie algebras (dgLa). Its domain of definition is

the shifted-graded vector space Té&l(M ™) of multivectors on an affine
real finite-dimensional manifold M"; the graded Lie algebra structure is
the Schouten bracket [, ] and the differential is set to (the bracket with)
zero by definition. On the other hand, the target space of the formality

morphism F is the graded vector space Digll]y(M ") of polydifferential
operators on M"; the graded Lie algebra structure is the Gerstenhaber
bracket [, ]¢ and the differential dy = [ua,-] is induced by using the
multiplication p4 in the algebra A := C*°(M") of functions on M".
It is readily seen that w.r.t. the above notation, Poisson bi-vectors P
satisfying the Jacobi identity [P, P] = 0 on M" are the Maurer—Cartan
elements (indeed, (d = 0)(P) + 1[P,P] = 0). Likewise, for a (non)com-
mutative star-product x = p 4 + (tail =: B), which deforms the usual
multiplication p = paqr in A[[R]] = C°(M")@rR[[A]] by a tail B w.r.t.
a formal parameter A, the requirement that x be associative again is the
Maurer—Cartan equation,

[, Ble+ 3[B,Blc =0 <= i[u+B,u+ Blc=0.

Here, the leading order equality [u, ]g = 0 expresses the given associa-
tivity of the product p itself.

The Kontsevich formality mapping F = {F,,: Tgi?y — Dpoly, n > 1}
in [15, 16] is an Lo,-morphism which induces a map that takes Maurer—
Cartan elements P, i.e., formal Poisson bi-vectors P = hP+a(h) on M",
to Maurer-Cartan elements!, i.e., the tails B in solutions x of the asso-
ciativity equation on A[[A]].

The theory required to build the Kontsevich map F is standard, well
reflected in the literature (see [15, 16], as well as [9, 11] and references
therein); a proper choice of signs is analysed in [2, 20]. The framework of
homotopy Lie algebras and L.,-morphisms, introduced by Schlessinger—
Stasheff [19], is available from [17], cf. [10] in the context of present
paper.

So, the general fact of (existence of) factorization,

Assoc(x)(P)(f,9.h) = O(P.[P.PI)(f,9.h), f.g.he AR, (1)

is known to the expert community. Indeed, this factorization is im-
mediate from the construction of L..-morphism in [16, Section 6.4].

n fact, the morphism F is a quasi-isomorphism (see [16, Theorem 6.3]), inducing
a bijection between the sets of gauge-equivalence classes of Maurer—Cartan elements.
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We shall inspect how this mechanism works in practice, i.e., how pre-
cisely the x-product is made associative in its perturbative expansion
whenever the bi-vector P is Poisson, thus satisfying the Jacobi identity
Jac(P) := 3[P,P] = 0. To the same extent as our paper [6] justifies
a similar factorization, [P, Q(P)] = (P, [P, P]), of the Poisson cocycle
condition for universal deformations P = Q(P) of Poisson structures,?
we presently motivate the findings in [5] for x mod 5(h3), proceeding
to the next order x+ mod o(h*) from [7] (and higher orders, recently
available from [3]).3 Let us emphasize that the theoretical constructions
and algorithms (contained in the computer-assisted proof scheme under
study and in the tools for graph weight calculation) would still work at
arbitrarily high orders of expansion * mod o(#*) as k — co. Explicit
factorization (1) up to 5(hk) helps us build the star-product * mod 6(hk)
by using a self-starting iterative process, because the Jacobi identity
for P is the only obstruction to the associativity of x. Specifically, the
Kontsevich weights of graphs on fewer vertices (yet with a number of
edges such that they do not show up in the perturbative expansion of x)
dictate the coefficients of Leibniz orgraphs in operator < at higher orders
in /i. These weights in the r.h.s. of (1) constrain the higher-order weights
of the Kontsevich orgraphs in the expansion of x-product itself. This is
important also in the context of a number-theoretic open problem about
the (ir)rational value (const € Q\{0})-¢(3)?/m%+ (const € Q) of a graph
weight at A7 in % (see [12] and [3]).

Our paper is structured as follows. First, we fix notation and recall
some basic facts from relevant theory. Secondly, we provide three examp-
les which illustrate the work of formality morphism in solving Eq. (1).
Specifically, we read the operators ¢ = < mod 6(5’“) satisfying

Assoc(*)(P)(f,g,h) mod 6(h*) = < (P, [P, P1)(f,9,h) (1)

at k = 2, 3, and 4. This corresponds to the expansions * mod é(hk)
in [16], [5], and [7], respectively. One can then continue with k = 5, 6;
these expansions are in [3]. Independently, one can probe such factor-
izations using other stable formality morphisms: for instance, the ones

2Universal w.r.t. all Poisson brackets on all finite-dimensional affine manifolds,
such infinitesimal deformations were pioneered in [15]; explicit examples of these
flows P = Q(P) are given in [4, 6, §].

3Note that both the approaches — to noncommutative associative x-products and
deformations of Poisson structures — rely on the same calculus of oriented graphs by
Kontsevich [13, 14, 15, 16].
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which correspond to a different star-product, the weights in which are
determined by a logarithmic propagator instead of the harmonic one
(see [1, 18]).

2. Two differential graded Lie algebra structures. Let M"
be an r-dimensional affine real manifold (we set k = R for simplici-
ty). In the algebra A := C°°(M") of smooth functions, denote by 4
(or equivalently, by the dot -) the usual commutative, associative, bi-
linear multiplication. The space of formal power series in /i over A will
be A[[h]] and the h-linear multiplication in it is p (instead of paypy).
Consider two differential graded Lie algebra structures. First, we have
that the shifted-graded space Trf([ji(M ™) of multivector fields on M"
is equipped with the shifted-graded skew-symmetric Schouten bracket
[,] (itself bi-linear by construction and satisfying the shifted-graded
Jacobi identity); the differential is set to zero. Secondly, the vector
space Dﬁgll]y(M ™) of polydifferential operators (linear in each argument
but not necessarily skew over the set of arguments or a derivation in any
of them) is graded by using the number of arguments m: by definition,
let deg(f(m arguments)) := m — 1. For instance, deg(uua) = 1. The Lie

algebra structure on DiElL(M ") is the Gerstenhaber bracket [, ]g; for
two homogeneous operators ®; and @5 it equals [@, Po]g = P © Py —
(—1)deg®r-deg®2g, 5 Py, where the directed, non-associative insertion
product is, by definition

k1

(P15 Do) (ag, ..., 0k +ky) = Z(—l)“@@l (ao ® - Qa1
=0

® Po(a; @+ @ Gitky) ® Ay 41 ® @ Ay 1) -
In the above, ®;: A®(*i+1) 5 A 5o that a; € A.

Example 1. The associativity of the product 4 in the algebra of func-
tions A = C°°(M") is the statement that

D 45 a0, )+ () 1=, 2,0
— (— 1)@’ =0(eg = 1,0 (4D (ag, a), )
—ﬂf) (ao,ﬂgql)(ahaz))} =2{(ap-a1)-az —ag- (a1 -az)} = 0.

So, the associator Assoc(pa)(ag,a1,a2) = %[MA, tale (ag,a1,az) =0 for
any a; € A.
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Like [-,-], the Gerstenhaber bracket satisfies the shifted-graded Ja-
cobi identity. The Hochshild differential on Df)gl]y (M™) isdy = [pa, |c;
indeed, its square vanishes, d%, = 0, due to the Jacobi identity for [, ]
into which one plugs the equality [pa, pale = 0.

3. The Maurer—Cartan elements. In every differential graded
Lie algebra with a Lie bracket [, ], the Maurer—Cartan (MC) elements
are solutions of degree 1 for the Maurer—Cartan equation

da + i[a,a] =0, (2)

where d is the differential (equal, we recall, to dg =[ua, -] on Dégl]y(M’")

and zero identically on Tg([)ﬂ,(M ™). Likewise, the Lie algebra structure
[-,-] is the Gerstenhaber bracket [-,-]¢ and the Schouten bracket [-, -],
respectively.)

Now tensor the degree-one parts of both dgLa structures with %-k[[h]],
i.e., with formal power series starting at A', and, preserving the nota-
tion (that is, extending the brackets and the differentials by A-linearity),
consider the same Maurer—Cartan equation (2). Let us study its formal
power series solutions o = hlag + - -.

So far, in the Poisson world we have that the Maurer—Cartan bi-
vectors are formal Poisson structures 0+ P, +6(h) satisfying (2), which
is [APy + o(h), APy + o(h)] = 0 with zero differential. In the world of
associative structures, the Maurer—Cartan elements are the tails B in
expansions * = p + B, so that the associativity equation [x,*]¢ = 0
reads (for [u, ul¢ = 0)

[u7£ﬂ6’+'%LviﬂG ::07

which is again (2).
4. The Lo,-morphisms. Our goal is to have (and use) a morphism

T é gﬂ,(M S Digl]y(M ") which would induce a map that takes Maurer—
Cartan elements in the Poisson world to Maurer—Cartan elements in the
associative world.

The leading term Fi, i.e., the first approximation to the morphism
which we consider, is the Hochschild-Kostant-Rosenberg (HKR) map

(obviously, extended by linearity),

1 o
F 51/\"'/\§m'—>m Z (=1)78e1) @+ @ &o(m)s

" o€Sm
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which takes a split multi-vector to a polydifferential operator (in fact,
an m-vector). More explicitly, we have that

.7'-12 (51/\"'/\57,1)
1 m
— <a1 K- ay — Z (1)0H§o(i)(ai)>a (3)

m:
cESm

here a; € A:=C>(M"). For zero-vectors h € A, one has Fy: h—(1—h).

Claim 1 ([16, Section 4.6.2]). The leading term, map Fi, is not a Lie
algebra morphism (which, if it were, would take the Schouten bracket of
multivectors to the Gerstenhaber bracket of polydifferential operators).

Proof (by counterezample). Take two bi-vectors; their Schouten bracket
is a tri-vector, but the Gerstenhaber bracket of two bi-vectors is a differ-
ential operator which has homogeneous components of differential orders
(2,1,1) and (1,1,2). And in general, those components do not vanish. [

The construction of not a single map F; but of an entire collection
F = {F,, n > 1} of maps does nevertheless yield a well-defined map-
ping of the Maurer—Cartan elements from the two differential graded Lie
algebras.*

Theorem 2 ([16, Main Theorem]). There exists a collection of linear
maps F = {Fp: Tlﬂﬂ,(MT)(@” — Digl}y(MT), n > 1} such that Fy is
the HKR map (3) and F is an Loo-morphism of the two differential
graded Lie algebras: (T}ﬂﬂ,(MT), [,]. d =0) = (Di[olﬂy(Mr), [, e,

dg = [NA) ]G) Namely,

(1) each component F,, is homogeneous of own grading 1 —n,

2) each morphism F,, is graded skew-symmetric, i.e.
(2) P g y , de.,
Fn( . 357713 cee ) = _(_1)deg(§)»deg(n)fn(' ] 77757 s )

for &, n homogeneous,

4The name ‘formality’ for the collection F of maps is motivated by Theorem 4.10
in [16] and by the main theorem in loc. cit.
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(3) for each n = 1 and (homogeneous) multivectors &1, ... ,&,
Téig(M’), we have that (cf. [11, Section 3.6])
dpr(Ful&r, - &) )" IZ DFulr,. .y diy ..o &)

+3 Z Z DP T Fp(Eo)s -+ Eo)s (4)

p+q=noc€Sy 4
p,q>0

Follopr1) - &am)] g
= (71)71 2(71)8 n—l([givfj]aéla e a€i7 e a&j? e 7€n) (5)
i<j
In the above formula, o runs through the set of (p, q)-shuffles, i.e.,
all permutations o € Sy, such that o(1) <---< o(p) and indepen-

dently o(p+1) <---< o(n); the exponents t and s are the numbers
of transpositions of odd elements which we count when passing (t)

fmm (]:pa]:q>§17 . 75774) to (]:paga(l)w . ’éo(p)a-fq7§a(p+l)7 . ‘760(71)))
and (S) from (617' . 7571) to (gi’§j7£17' . '7617' . '7§j7' . '7§n)'5

Remark 1. Let n := 1, then equality (5) in Theorem 2 is

dy o Fy — ( )1 1 ( l)u:O from (d,gl)H(d,gl)Fl od=0
<= dyoF; = Fod,

whence F; is a morphism of complexes.
e Let n:= 2, then for any homogeneous multivectors &; and &a,

Fi(lér, &) — [Fi(&), Fa(&2)] o = du (Fa(6r, &2))
+ Fo((d = 0)(&1), &) + (=1)*#8 Fa (&1, (d = 0)(&2)),

so that in our case F; is “almost” a Lie algebra morphism but for the
discrepancy which is controlled by the differential of the (value of the)
succeeding map F» in the sequence F = {F,,, n > 1}. Big formula (5)
shows in precisely which sense this is also the case for higher homoto-
pies F,,, n = 2 in the L,-morphism F. Indeed, an L.,-morphism is
a map between dglas which, in every term, almost preserves the bracket
up to a homotopy dg o {...} provided by the next term.

5The exponent u is not essential for us now because the differential d on T;([)g(MT)
is set equal to zero identically, so that the entire term with w does not contribute
(recall F;, is linear).
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Even though neither 77 nor the entire collection F = {F,,, n > 1} is
a dgLa morphism, their defining property (5) guarantees that F gives us
a well defined mapping of the Maurer—Cartan elements (which, we recall,
are formal Poisson bi-vectors and tails B of associative (non)commutati-
ve multiplcations x = 1+ B on A[[R]], respectively).

Corollary 3. The natural h-linear extension of F, now acting on the
space of formal power series in h with coefficients in Tg([j}]/(M'“) and with
zero free term by the rule

£ Y S FuE 1 8),

n>1

takes the Maurer—Cartan elements P = WP +a(h) to the Maurer—Cartan
elements B =37 -, LF.(P,...,P) = P + o(h). (Note that the HKR
map Fi1, extended by h-linearity, still is an identity mapping on multi-
vectors, now viewed as special polydifferential operators.)

In plain terms, for a bivector P itself Poisson, formal Poisson struc-
tures P = hP + o(h) satisfying [P, P] = 0 are mapped by F to the tails
B = RP + o(h) such that x = p + B is associative and its leading order
deformation term is a given Poisson structure P.

Proof of Corollary 3. Let us presently consider the restricted case when

P = kP, without any higher order tail (k). The Maurer—Cartan equa-
tion in DU (M) @ Hk([H]] is i1, Bl + 3B, Blg = 0, where

1 - -
B:Za}"n(P,...,P)

n=1

and we let P = hP, so that B = D1 B Fa(P, ..., P). Let us plug
this formal power series in the L.h.s. of the above equation. Equating the
coefficients at powers A" and multiplying by n!, we obtain the expression

1 Fu(Py o Pla+3 > n—!.[}'p(P,...,P)J—'q(P,...,P)]G.

It is readily seen that now the sum ,in (5) over the set of (p, q)-
shuffles of n = p+¢q identical copies of an ob ject P just counts the number



30 R. Buring, A.V. Kiselev

of ways to pick p copies going first in an ordered string of length n.
To balance the signs, we note at once that by item (2) in Theorem 2,
see above, Fp(..., P pletl) )y = F (... Pt Pl ) because
bi-vector’s shifted degree is +1, so that no (p, q)-shuffles of (P,...,P)
contribute with any sign factor. The only sign contribution that remains
stems from the symbol F; of grading 1 — ¢ transported along p copies
of odd-degree bi-vector P; this yields t = (1 — ¢) - p and (—1)P"* =
(=1t . (1) A=a)P = ()PP = 4

The left-hand side of the Maurer—Cartan equation (2) is, by the
above, expressed by the left-hand side of (5) which the L,-morphism
F satisfies. In the right-hand side of (5), we now obtain (with, actually,
whatever sign factors) the values of linear mappings F,_; at twice the
Jacobiator [P, P] as one of the arguments. All these values are therefore
zero, which implies that the right-hand side of the Maurer—Cartan equa-
tion (2) vanishes, so that the tail B indeed is a Maurer—Cartan element
in the Hochschild cochain complex (in other words, the star-product
* = p+ B is associative).

This completes the proof in the restricted case when P = AP. For-
mal power series bi-vectors P = hP 4 o(h) refer to the same count of
signs as above, yet the calculation of multiplicities at A" (for all possible
lexicographically ordered p- and g-tuples of n arguments) is an extensive
exercise in combinatorics. O

Corollary 4. Because the right-hand side of (2) in the above reaso-
ning is determined by the right-hand side of (5), we read off an explicit
formula of the operator & that solves the factorization problem

Assoc(x)(P)(f,9.h) = O(P.[P.PI)(f,9.h), f.g.h € Al[H]]. (1)

Indeed, the operator is

<>:2-Z%-cn-]-"n_l([[P,P}],P,...,P). (6)

n>1

But what are the coefficients ¢,, € R equal to? Let us find it out.

5. Explicit construction of the formality morphism F. The
first explicit formula for the formality morphism F which we study in
this paper was discovered by Kontsevich in [16, Section 6.4], providing
an expansion of every term F,, using weighted decorated graphs:

.’F:{fn: Z Z WF'UP}-

m20T€GH m



Formality morphism as the mechanism of x-product associativity 31

Here I' belongs to the set G, ,,, of oriented graphs on n internal vertices
(i.e., arrowtails), m sinks (from which no arrows start), and 2n+m—2 >
0 edges, such that at every internal vertex there is an ordering of outgoing
edges. By decorating each edge with a summation index that runs from 1
to r, by viewing each edge as a derivation 9/9x® of the arrowhead vertex
content, by placing n multivectors from an ordered tuple of arguments
of F,, into the respective vertices, now taking the sum over all indices of
the resulting products of the content of vertices, and skew-symmetrizing
over the n-tuple of (shifted-)graded multivectors, we realize each graph
at hand as a polydifferential operator Tg c[)ﬂ, (M™)®m — Dégl]y(M ™) whose
arguments are multivectors. Note that the value F, (&1, ..., &,) itself is,
by construction, a differential operator w.r.t. the contents of sinks of the
graph I". All of this is discussed in detail in [13, 14, 15, 16] or [4, 5, 7].

The formula for the harmonic weights Wr € R is given in [16, Sec-
tion 6.2]; it is

Wr = (]}:[1 #Star(k)!) : (2m)2nt+m—2 /Cer /\ do.,

n,m BEEF

where # Star(k) is the number of edges starting from vertex k, dg, is the
“harmonic angle” differential 1-form associated to the edge e, and the
integration domain C,t m is the connected component of C,, ,,, which is

the closure of configurations where points g;, 1 < j < m on R are placed
in increasing order: ¢; < --- < g,. For convenience, let us also define

wr = ( f[ #Star(k)!) W

k=1

The convenience is that by summing over labelled graphs I', we actu-
ally sum over the equivalence classes [I'] (i.e., over unlabeled graphs)
with multiplicities (wr/Wr) - nl/#Aut(T"). The division by the volume
#Aut(T') of the symmetry group eliminates the repetitions of graphs
which differ only by a labeling of vertices but, modulo such, do not dif-
fer by the labeling of ordered edge tuples (issued from the vertices which
are matched by a symmetry).

Let us remember that the integrand in the formula of Wr is defined
in terms of the harmonic propagator; other propagators (e.g., logarith-
mic, or other members of the family interpolating between harmonic and
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logarithmic [1, 18]) would give other formality morphisms. A path inte-
gral realization of the x-product itself and of the components F,, in the
formality morphism is proposed in [10].

To calculate the graph weights Wr in practice, we employ methods
which were outlined in [7], as well as [12, Appendix E] (about the cyclic
weight relations), and [3] that puts those real values in the context of
Riemann multiple zeta functions and polylogarithms.® Examples of such
decorated oriented graphs I' and their weights W will be given in the
next section.

5.1. Sum over equivalence classes. The sum in Kontsevich’s
formula is over labeled graphs: internal vertices are numbered from 1
to n, and the edges starting from each internal vertex k are numbered
from 1 to #Star(k). Under a re-labeling o: T — I'? of internal vertices
and edges it is seen from the definitions that the operator Ur and the
weight Wt enjoy the same skew-symmetry property (as remarked in [16,
Section 6.5]), whence Wr -Ur = Wre -Ure. Tt follows that the sum over
labeled graphs can be replaced by a sum over equivalence classes [T'] of
graphs, modulo labeling of internal vertices and edges. For this it re-
mains to count the size of an equivalence class: the edges can be labeled
in []j_, #Star(k)! ways, while the n internal vertices can be labeled in
n!/#Aut(T") ways.

Example 2. The double wedge on two ground vertices has only one
possible labeling of vertices, due to the automorphism that interchanges
the wedges.

We denote by Mp = ([]j_, #Star(k)!) - n!/#Aut(T') the multiplicity
of the graph T, and let G, ,,, be the set of equivalence classes [I'] modulo
labeling of I' € G, 1,. The formula for the formality morphism can then
be rewritten as

F={r= Y MWl

m20 [[]€Gn m

here the I' in Mrp - Wr - Ur is any representative of [I']. Any ambiguity
in signs (due to the choice of representative) in the latter two factors
is cancelled in their product. Note that the factor (],_, #Star(k)!) in
Mr kills the corresponding factor in Wr, as remarked in [16, Section 6.5].

61t is the values wr instead of W which are calculated by software [3].
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5.2. The coefficient of a graph in the x-product. The x-product
associated with a Poisson structure P is given by Corollary 3:

g

n>1

—u+z Z Mp - Wr -Ur(P,..., P).

n>1 n! eGn 2

For a graph I' € Gn)g such that each internal vertex has two outgoing
edges (these are the only graphs that contribute, because we insert bi-
vectors) we have Mp = 2" - nl/#Aut(I"). In total, the coefficient of
Ur(P,...,P)at i™ is 2" /#Aut(T") - Wr = wp/#Aut(I"). The skew-sym-
metrization without prefactor of bi-vector coefficients in Ur(P,...,P)
provides an extra factor 2.

Example 3 (at h'). The coefficient of the wedge graph is 1/2 and the
operator is 2P, hence we recover P.

5.3. The coefficient of a Leibniz graph in the associator. The
factorizing operator < for Assoc(*) is given by Corollary 4:

S =9. H'C"‘]:”_l([[P’PH’P’m’P)
n>1
hn
—2.3" e Y My WeUe([PPLP, . P),
n>1 MeGn-13

For a graph I' € GG,,_1 3 where one internal vertex has three outgoing
edges and the rest have two, we have Mp = 3!-2"=2. (n — 1)!/#Aut(T).
In total, the coefficient of Ur ([P, P],P,...,P) at h™ is

1 n— WF _ @ wr
[2-n!-cn-3!-2 2~(n—1)!] AT {2- n} FAu()

The skew-symmetrization without prefactor of bi- and tri-vector coef-
ficients in the operator Ur([P,P],P,...,P) provides an extra factor
3!.272,

Example 4 (at h?). The coefficient of the tripod graph is cs - % and
the operator is 3! - [P, P], hence we recover co[P,P] = 2 Jac(P). (The
right-hand side is known from the associator, e.g., from [5].) This yields
ca = 1/3. In addition, we see that the HKR map F; acts here by the
identity on [P, P].
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In the next section, we shall find that at A", the coefficients of our
Leibniz graphs (with Jac(P) inserted instead of [P, P]) are

) {3!'271_2] | [2n] )~ 2 Fhaer)

so 3!-2". fn = 2" We deduce that ¢, = n/3! = n/6 in all our experi-
ments.

Conjecture. For all n > 2, the coefficients in (6) are ¢, =n/3! =n/6
(hence, the coefficients of markers T for equivalence classes [I'] of the
Leibniz graphs in (6) are 2™ - wp/#Aut(T")), although it still remains to
be explained how exactly this follows from the Lo, condition (5).

6. Examples. Let P be a Poisson bi-vector on an affine man-
ifold M". We inspect the associativity of the star-product x = pu +
D>t %Fn(P, ..., P) given by Corollary 3 by illustrating the work of
the factorization mechanism from Corollary 4. The powers of deforma-
tion parameter h provide a natural filtration A2-A®) +53 . AG) 4 pA. AM)
o(h*) so that we verify the vanishing of Assoc(%)(P)(,-,-) mod o(h*)
for * mod 6(54) order by order.

At h° there is nothing to do (indeed, the usual multiplication is asso-
ciative). All contribution to the associator of x at Al cancels out because
the leading deformation term AP in the star-product x = u+hP+0o(h) is
a bi-derivation. The order 7% was discussed in Example 4 in Section 5.3.

Remark 2. In all our reasoning at any order A"22, the Jacobiator in
Leibniz graphs is expanded (w.r.t. the three cyclic permutations of its
arguments) into the Kontsevich graphs, built of wedges, in such a way
that the internal edge, connecting two Poisson bi-vectors in Jac(P), is
proclaimed Left by construction. Specifically, the algorithm to expand
each Leibniz graphs is as follows:

1. Split the trivalent vertex with ordered targets (a,b,c) into two
wedges: the first wedge stands on a and b (in that order), and the
second wedge stands on the first wedge-top and ¢ (in that order), so
that the internal edge of the Jacobiator is marked Left, preceding
the Right edge towards c.

2. Re-direct the edges (if any) which had the tri-valent vertex as their
target, to one of the wedge-tops; take the sum over all possible
combinations (this is the iterated Leibniz rule).
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3. Take the sum over cyclic permutations of the targets of the edges
which (initially) have (a, b, ¢) as their targets (this is the expansion
of the Jacobiator).

6.1. The order h3. To factorize the next order expansion of the
associator, Assoc(x)(P) mod 6(h®) = h?-A@ + 13- A®) 1+6(n?), at 1 in
the operator < in the right-hand side of (1), we use graphs on n—1 =2
vertices, m = 3 sinks, and 2(n — 1) +m — 2 = 5 edges.

At B3, two internal vertices in the Leibniz graphs in the r.h.s. of
factorization (1) are manifestly different: one vertex, containg the bi-
vector P, is a source of two outgoing edges, and the other, with [P, P],
of three. Therefore, the automorphism groups of such Leibniz graphs
(under relabellings of internal vertices of the same valency but with
the sinks fixed) can only be trivial, i.e., one-element. (This will not
necessarily be the case of Leibniz graphs on (n — 2) + 1 internal vertices
at h”*: compare Examples 8 vs 9 on p. 39 below, where the weight of a
graph is divided further by the size of its automorphism group.)

The coefficient of k3 in the factorizing operator <,

coeff (<>,h3) :2-%-03~ Z Mrp - Wr -Ur ([P, P],P,...,P),

[TeGas

expands into a sum of < 24 admissible oriented graphs. Indeed, there are
six essentially different oriented graph topologies, filtered by the number
of sinks on which the tri-vector [P, P] and bi-vector P stand; the orde-
ring of sinks in the associator then yields 3+3+3x2+4+3x2+3=24
oriented graphs. (None of them is a zero orgraph.) As we recall from [5],
only thirteen of them actually occur with nonzero coefficients in the term
AG) ~ RB? in Assoc(x)(P)), the remaining eleven have zero weights.”
The weights of 15 relevant oriented Leibniz graphs from [5] are listed in
Table 1.8
Here we let by definition

If = aj (Jac(’P)(Pij,g, h)) 81]0

"Yet, these seemingly ‘unnecessary’ graphs can contribute to the cyclic weight
relations (see [12, Appendix E]): zero values of some of such graph weights can simplify
the system of linear relations between nonzero weights.

8To get the values, one uses the software [3] by Banks-Panzer-Pym or, indepen-
dently, exact symbolic or approximate numeric methods from [7], also taking into
account the cyclic weight relations from [12, Appendix EJ.
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Table 1. Weights wr of oriented Leibniz graphs I' in coeff (<>, h3).

(S )221 [01;012] 5 | (S22 = [12;012] L
(Ip)nz = [02;312] ﬁ (Ig)112 [12;032] 45
($)211 = [04;012] o | ([g)aun = [10;032]
(f)111 04;312] 45 | (In)in [24;013] 3
(S)i1 = [14,012] 0 | (If)121 = [01;312] i
(Sh)212 [20;012] T
(Sh)112 = [24;012] ;—41
(Ih)211 [20;013] ZTBl
(I)in = [14,032] 0
(In)1i21 = [21;013]

Likewise, I := 8j(
0;h, respectively.?
We also set

Sf = 'P”aj JaC(P)(azf7 9, h)

Similarly, we let S, := P¥9; Jac(P)(f,0;g,h) = 0 and define S, :=
P9, Jac(P)(f,g,0;h) = 0. Note that after all the Leibniz rules are
reworked, each of the six graphs Iy, ..., Sj, — with the Jacobiator Jac(P)
= 1[P, P] at the tri-valent vertex — splits into several homogeneous com-
ponents, like (If)111 or (Sk)212; taken alone, each of the components
encodes a zero polydifferential operator of respective orders.

91n [5], the indices i and j were interchanged in the definitions of both I, and I,
(compare the expression of Iy); that typo is now corrected in the above formulae.
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Claim 5. Multiplied by a common factor ([P,P]/Jac(P)) - 2871 =
2.4 =8, the Leibniz graph weights from Table 1 at k> fully reproduce
the factorization which was found in the main Claim in [5], namely:

3 3 3

A = 2(Sp)221, ALy = 2(Sg)izz,  ASth = —2(Sh)21z,
3 3)

A(11)1 = %(If - Ih)lllv A512 = ( If + II S )112’
gé)l = %(If — In)121, Agn = ( Sr—% élh)Qn'

Otherwise speaking, the sum of these Leibniz oriented graphs with
these weights (times 2-4 = 8), when expanded into the sum of 39 weighted
Kontsevich graphs (built only of wedges), equals identically the A3-
proportional term in the associator Assoc(x)(P)(f,g,h).

Proof scheme. The encodings of weighted Kontsevich-graph expansions
of the homogeneous components of the weighted Leibniz graphs Iy, ...,
S}, which show up in the associator at i3 and which are processed ac-
cording to the algorithm in Remark 2, are listed in Appendix A. Re-
ducing that collection modulo skew symmetry at internal vertices, we
reproduce, as desired, the entire term A®) in the expansion h? - A +
h3 - AB) + 5(h3) of the associator Assoc(x)(P) mod 6(h?). O

Three examples, corresponding to the leftmost column of equalities
in Claim 5, illustrate this scheme at order h3. The three cases differ
in that for Agz)l in Example 5, there is just one Leibniz graph without
any arrows acting on the Jacobiator vertex. In the other Example 6
for Ag)l’ there are two Leibniz graphs still without Leibniz-rule actions
on the Jacobiators in them, so that we aim to show how similar terms
are collected.'” Finally, in Example 7 about Aﬁ)l there are two Leibniz
graphs with one Leibniz rule action per either graph: an arrow targets
the two internal vertices in the Jacobiator.

Example 5. Take the Leibniz graph (5)221 = [01;012]. Its weight is
1/12. Multiplying the Leibniz graph by 8 times its weight and expanding

10To collect and compare the Kontsevich orgraphs (built of wedges, i.e., ordered
edge pairs issued from internal vertices), we can bring every such graph to its normal
form, that is, represent it using the minimal base-(# sinks + # internal vertices)
number, encoding the graph as the list of ordered pairs of target vertices, by running
over all the relabellings of internal vertices. (The labelling of ordered sinks is always
0<1<---<m-—1)
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the Jacobiator (there are no Leibniz rules to expand) yields the sum of
three Kontsevich graphs: 2 ([01;01;42] + [01;12;40] 4 [01;20;41]). This
is identically equal to the differential order (2,2,1) homogeneous part
Ag‘;)l of Assoc(x)(P) at h3. For instance, these terms are listed in [7,
Appendix D].

Example 6. Take the Leibniz graphs (Iy)121 = [01;312] and (I1)121 =
[21;013]. Their weights are 1/24 and —1/24, respectively; multiply them
by 8. Expanding the Jacobiator in the linear combination %(If —1Ip)121
yields the sum of Kontsevich graphs %([Ol; 31;42] + [01; 12;43] + [01; 23;
41] — [21;01;43] — [21;13;40] — [21;30;41]). The two Leibniz graphs
have a Kontsevich graph in common: [01;12;43] = [21;01;43] (recall
that internal vertex labels can be permuted at no cost and the swap
L 2 R at a wedge costs a minus sign). This gives one cancellation; the

remaining four terms equal Aggz)l as listed in [7, Appendix D].
Example 7. Take the Leibniz graphs (Iy)111 = [04;312] and (I1)111 =
[24;013]. Their weights are 1/48 and —1/48, respectively; multiply them

by 8. Expanding the Jacobiator and the Leibniz rule in the linear com-
bination %(I ¢ — In)111 yields the sum of Kontsevich graphs:

% ([04;31;42] + [04;12;43] + [04; 23; 41] + [05; 31;42]
+ [05; 12; 43] + [05; 23; 41] — [24; 01; 43] — [24; 13;40]
— [24;30;41] — [25;01;43] — [25;13;40] — [25;30;41]).

Two pairs of graphs cancel; namely [05; 31;42] = [25; 30; 41] and the pair
[05;23;41] = [25; 13;40]. The remaining eight terms equal /—\ﬁ)1 as listed
in [7, Appendix D].

6.2. The order h*. Let us proceed with the term A® at A*
in Assoc(*)(P)(-,-,-) mod 6(h*). The numbers of Kontsevich oriented
graphs in the star-product expansion grow as fast as

x = hY - (#graphs = 1)+ i - (# = 1)+ 1> - (# =4) + 1> (# = 13)
+ Bt (# = 247) + h® - (# = 2356) + hS - (# = 66041) + o(h%);
here we report the count of all nonzero-weight Kontsevich oriented

graphs. Counting them modulo automorphisms (which may also swap
the sinks), Banks, Panzer, and Pym obtain the numbers (h° : 1, A : 1,
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R% : 3, R® : 8, A* : 133, R® : 1209, AS : 33268). This shows that at
orders 1F2%, the use of graph-processing software is indispensible in the
task of verifying factorization (1) using weighted graph expansion (6) of
the operator <.

Specifically, the number of Kontsevich oriented graphs at A* in the
left-hand side of the factorization problem Assoc(x)(P)(:,-,-) = < (P,
[P,P])(-,-,-), and the number of Leibniz graphs which assemble with
nonzero coefficients to a solution < in the right-hand side is presented
in Table 2. At h*, the expansion of Assoc(x)(P) mod o6(h*) requires 241

Table 2. Number of graphs in either side of the factorization.

k 2 3 4 5 6
LHS: # K. orgraphs 3 (Jac) 39 740 12464 290305
RHS: # L. orgraphs, 1 (Jac) 13 241 ? ?
coeff #£ 0 —_——
Reference 8§5.3, [16] §6.1, [5] §6.2, [7] 3]

nonzero coefficients of Leibniz graphs on 3 sinks, 2 = n — 1 internal
vertices for bi-vectors P and one internal vertex for the tri-vector [P, P],
and therefore, 2(n — 1) + 3 = 2n + 3 — 2 = 7 oriented edges.

Remark 3. Again, this set of Leibniz graphs is well structured. Indeed,
it is a disjoint union of homogeneous differential operators arranged ac-
cording to their differential orders w.r.t. the sinks, e.g., (1,1,1), (2,1,1),
(1,2,1), (1,1,2), etc., up to (3,3,1).

Example 8. The Leibniz graph Lss; := [01;01; 012] of differential orders
(3,3,1) has the weight 1/24 according to [3]. Multiplied by a universal
(for all graphs at A*) factor 2* = 16 and the factor 1/(# Aut(Lss1)) =
1/2 due to this graph’s symmetry (3 = 4), it expands to 3 ([01;01;01;52]
+ [01;01;12;50] + [01;01;20;51]) by the definition of Jacobi’s identity.

This sum of three weighted Kontsevich orgraphs reproduces exactly Aé?l,
which is known from [7, Table 8 in Appendix D].

Example 9. The Leibniz graph L3as := [01;02; 012] of differential orders
(3,2,2) has the weight 1/24 according to [3]. Multiplied now by a univer-
sal (for all graphs at A*) factor 24 = 16 and the factor 1/(# Aut(Lszzz))
= 1, it expands to %([01;02;01;52] + [01;02;12;50] + [01;02;20;51]).

This sum reproduces Ag;)Q (again, see [7, Table 8 in Appendix DJ).



40 R. Buring, A.V. Kiselev

Example 10. Consider at the differential order (1,3,2) at h* the three
Leibniz graphs L1}, := [12;13;012], L%, := [12;12;014], and L}, :=
[12;01;412]. They have no symmetries, i.e., their automorphism groups
are one-element, and their weights are W(L(lé)Q) = 1/72, W(L%)Q) =

1/48, and W(Lgé) = 1/48, respectively. Pre-multiplied by their weights
and universal factor 2* = 16, these Leibniz graphs expand to

%([12; 13;01;52] + [12;13;12;50] + [12;13; 20; 51])
+ 2([12;12;01;54] + [12;12;14;50] + [12;12;40; 51])
+ £([12;01;41;52] + [12;01;12;54] + [12;01; 24; 51]).

There is one cancellation, since [12;01;12;54] = —[12;12;01;54]. The
remaining seven terms reproduce exactly A%)z; that component is known
from [7, Table 8 in Appendix D]. Actually, there was another Leibniz
graph at this homogeneity order, L%)Q := [12;15;012], but its weight is
zero and hence it does not contribute. (Indeed, we get an independent
verification of this by having already balanced the entire homogeneous
component at differential orders (1,3,2) in the associator.)

Intermediate conclusion. We have experimentally found the con-
stants ¢y, in Corollary 4 which balance the Kontsevich graph expansion of
the A¥-term A®) in the associator against an expansion of the respective
term at A* in the r.h.s. of (1) using the weighted Leibniz graphs. Namely,
we conjecture ¢ = k/6 in Section 5.3. The origin of these constants, in
particular how they arise from the sum over ¢ < j in the Lo, condition (5)
(perhaps, in combination with different normalizations of the objects
which we consider) still remains to be explained, similar to the reasoning
in [2, 20] where the signs are fixed. Note that both in the associator,
which is quadratic w.r.t. the weights of Kontsevich graphs in x, and
in the operator ¢, which is linear in the Kontsevich weights of Leibniz
graphs, the weight values are provided simultaneously, by using identical
techniques (for instance, from [3]). Indeed, the weights are provided by
the integral formula which is universal with respect to all the graphs
under study [16].

A. Encodings of weighted Kontsevich-graph expansions for
(p, g, 7)-homogeneous components (I¢,...,Sh)pgr-

# 2/3 (s_f)_{221}
3310101422/3
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331011240 2/3
3310120412/3

# 2/3 (S_g)_{122}

3311201422/3
331121240 2/3
331122041 2/3
# -2/3 (S_h)_{212}

331200142 -2/3
331201240 -2/3
331202041 -2/3

# 1/6 (I_f)_{111}

3310431421/6
3310412431/6
3310423411/6
3310531421/6
3310512431/6
3310523411/6

# -1/6 (I_h)_{111}

331240143-1/6
331241340 -1/6
331243041-1/6
331250143-1/6
331251340 -1/6
331253041-1/6

# 1/6 (I_f£)_{112}

3310231421/6
3310212431/6
3310223411/6

# 1/6 (I_g)_{112}

3311203421/6
3311232401/6
3311220431/6
# -1/3 (S_h)_{112}

331240142 -1/3
331241240 -1/3
331242041 -1/3

331250142 -1/3
331251240 -1/3
331252041-1/3
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Meros ekBiBaJIEHTHOCTI, & TaKOXK METO/I [IEPETBOPEHb MiXK KJjacaMu Jude-
PEHIIAJIbHAX PIBHSIHB, 3aMponoHoBanuii y poboti [O. Vaneeva et al. Acta
Appl. Math. 106 (2009), 1-46], 3acTocoBano [jist OGYI0BA TOYHUX PO3B’ 3~
KiB piBHgHb Pinmepa 3 KoedimieHTaMu, M0 3aJ1€KATh Bl 9aCOBOI 3MiHHOI.

The equivalence method and the method of mapping between classes of
differential equations proposed in [O. Vaneeva et al. Acta Appl. Math. 106
(2009), 1-46] are used for construction of exact solutions for Fisher equa-
tions with time-dependent coefficients.

PiBusgaua dPimepa,
ur = ktgy + mu(l —u), km #0, (1)

zaupouonosane P.E. ®imepowm y 1937 poui [5], € Kiacu4unoro jgerepminic-
TUYIHOIO MOJIEJIJIIO TIOMYJISIIIHOT T@HETHKY, IO OMUCY€E TUHAMIKY JaCTOTH
MOSIBU MYTAHTHOI'O T€HY Yy MOIMYJISII, SKWUii BOJIO/IIE CEJIEKTUBHOIO IEpe-
Baro. 3aJie’KHa 3MIHHA, U — YaCTOTA MOSIBU MYTAHTHOTO T€HY Y MMOIYJIs-
i1, 10 OHOPIITHO PO3TAIIOBAHA Y JIHIHHOMY CEpeJIOBUIII MPOXKUBAHHS,
HAIPUKJI, Ha Oeperosiit jimii, crajma m — IHTEHCHBHICTD CeJEKIl Ha
mepeBary MyTaHTHOTO reny, k — koedimient nudysii. MakcumanbHa aj-
rebpa JiiBCbKOI iHBapianTHOCTI piBHsaHHa (1) € aBOBUMIpHOIO. BasucHu-
MU OTlepaTropaMu Ii€i ajaredpu € omeparopu 3CyBiB 33 YaCOBOIO Ta MPO-
CTOPOBOIO 3MIHHOIO O; Ta O, 0 J03BOJIIE HOOYIyBATH IJIsd ILOIO PiB-
HAHHS PO3B’s13Ku TUILy OixKydol xBuii. Taki po3s’sa3ku Oy/1o moby10BaHO
y poborax [1, 3, 4, 8, 9]. Teopemu icHyBanHs Ta €4MHOCTI OOMEKEHUX
PO3B’sI3KIB GLIBIN 3arajbHOTO KJIACY PIBHAHD U = Ug, + F(t, x,u) moBe-
neno A.M. Komoroposuwm, LI ITerposcskum ta M.C. IlickyHoBuM [7].
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[Tizninre 6y10 3aPONOHOBAHO PO3IVIAHYTH y3arajbHEHY MOIEJb BU-
aLy

U = g()te + fFOu(l —u), gf #0, (2)

ae mudy3itianit KoedimieHT g i KoedilieHT ceeKTUBHOI epeBaru f 3aJie-
2Karb Big yacoBoi 3minHOI [6, 11]. 3aBusku rakuM KoedillieHTaM MOXKHA
B3STH JO yBarw BILIUB JOBTOTEPMIHOBOI 3MiHM KJIiMary abo KOPOTKO-
CTPOKOBOI CE30HHOCTI.

I'pynoBy kmnacudikario piBasib (2) Gyno BEKOHAHO y pobori [17],
O/IHAK 33/@a9a MOIIyKY TOYHUX PO3B’S3KIB TAKWX DIBHAHb TaM HE PO3-
ragaaacd. Y uiil podori s mobysoBu TOYHUX PO3B’A3KiB piBHAHb Di-
mepa 3i 3MiHHIME KOoedimieHTaMu 3aCTOCOBAHO METO/IH, MO 0a3yI0ThCI
Ha BUKOPHUCTAHHI HEBUPOIKEHNX TOYKOBUX MEPETBOPEHB, a CaAMe METOI
€KBIBAJIEGHTHOCTI Ta METO/I IEPETBOPEHD MiK KJIaCaMu IrepeHIiaaTbHIX
piBHSHB. Y pe3yabrari mobyI0BAHO MEKiTbKa CiMeil TOYHHX PO3B’s3KiB
JUJIs IIeBHMX HijKJacis kiacy (2).

Meton, ekBiBajsieHTHOCTI. Ilin MeTomoM ekBiBaseHTHOCTI aja 1O-
OyJIOBM TOYHUX PO3B’SI3KIB MU PO3YMIEMO BUKOPUCTAHHS HEBUPOIKEHUX
TOYKOBHUX MEPETBOPEHD 3 IPYIU €KBiBAJIEHTHOCTI 33/ IaHOTO KJIACY Ta TOY-
HUX PO3B’A3KiB, IO € BiAOMUME Jjid JESKWX PIBHAHB 3 IHOTO KJIACY.
Ko aBa pIBHAHHA TMOB’si3aHI MizK COOOI0 HEBUPOIKEHUM TOIKOBUM
epeTBOPEHHsAM, TO, 3a TepMminosiorieio JI.B. OBcannikoBa, Bonu Ha3uBa-
10Thest oioHMMu [10]. Toai momiGHIMM BIHOCHO TIHOTO YK TIEPETBOPEHHST
€ 1 BiMOBiTHI HAOOPY TOYHUX PO3B’SI3KiB, CUMETPiil, 3aKOHIB 30eperKeHHsT
nux piBagHb. g kjaciB 31 3MinHuME KoedimieHTaMu HAWOLIBIN edek-
TUBHE BUKOPUCTAHHS METOJIy €KBIBAJIEHTHOCTI MOJIATAE y 3BEJIEHH] eB-
HOTO PiBHAHHS 3i 3MiHHHME KoeillieHTaMu 3 JOCJIiIKyBaHOTO KIACY 10
piBHsHHSA 31 cramuMmu Koedimiearamu 3 Toro x Kiacy. Hacrymaum Kpo-
KOM € TTOOY/T0BA TOYHUX PO3B’SA3KIB JJIs MEPIIOro 3 WX PIBHAHB IMLISTXOM
PO3MHOYKEHHST BiIOMUX PO3B’S3KiB JAPYroro PiBHSHHS MEPETBOPEHHIMU
€KBIBAJIEHTHOCTI.

VY pobori [17] orpumano kpurepiii 3BigHOCTI PiBHAHb 31 3MIHHMUMU
koediuienramu 3 kaacy (2) 40 piBusuus ®iuiepa 3i crasumu Koedinien-
ramu (1). PiBasuus 3 knacy (2) moxua 38ectu 10 piasuus urasy (1)
TOAi 1 TiJIbKY TOMI, KOJMU JJI HAEAKOl JOJATHOI cTajol A kKoedimientu f
1 g 3a/10BOTBHAIOTH YMOBY

2 2
g2 — @4_3971::]@2_2&_’_3&
g

pe R )
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YmoBa (3) BUKOHYETbCs TOAL 1 TLIbKU TOAl, KoM (DYHKIHIO ¢ MOXKHA
BupasuTu yepe3 PyHKLioo [ 3a GopmyJIo:

= AAf(t)el Tt
9(t) = (aef F@)de 4 5) (Wef fyde 4 5)’

Jle A — JojiaTHa crajia, a napu crauux (o, ) i (7, d) Bu3HaueHo 3 Tounic-

TIO JI0 HEHYJBOBOI'O CTAJIOI0 MHOXKHHKA, npu 1mpoMy A = ad — vy # 0.

JI71s1 KOMITAKTHOCTI 3amicy BBegemo nosnadenns h(t) = el /()L
Orxe, kaac piBasuab Qimepa 3i 3MiHHEME KODIMIEHTAMA BUTIISALY

AAS(R(D)
(ah(®) + B)(7h(H) + )

Uy =

o € MiAKIAacoM Kjacy (2), 3BOAUTHCH TOYKOBUMHU IIEPETBOPEHHSIMU JI0
KJacuaHoro piBHsHHa Pimepa 3i cramuMu KoedimienTam,

Up = Uz + u(l — u). (5)

st Toro, o6 3HAWTH TOYKOBI MEPETBOPEHHS, IO PeasTi3yioTh II0-
ibuicrs piBusnb (4) ra (5), 3HalAEMO CLIOYATKY I'PYILY €KBIBAJIEHTHOCT].

Teopema 1. Penapamempusosaruti xaac (2) 3 nosum dosisbrum ene-
menmom h(t), wo 3adososvhse pieuanns hy = fh, € nopmanaizosanum
610MOCHO CB0€T Y3a20ADHEHOT 2PYNU EKBIBANEHMHOCT] G~. I'pyna G~
CKAGOAEMDBCA 3 NEPEMBOPEHD

(ah+ B)(vh +9) ah+

fZT(t), i‘:(sll‘—f—ég, U= WA u—y A
. hA _ &7 - ah+p
= s = —9, h = s
= Tehsporta” =19 Vh+ 06
de T(t) — dosiavna 2aadka Pynryis, wo 3adososvuse ymosy T, # 0,

01 @ 02 — dosiavri cmani, npunomy 61 # 0, napu cmaauz (o, ) i (v,0)
€ GUSHANEHUMU 3 TOUHICTI0 00 HEHYADOGOZO CNAN020 MHONCHUKG | A =

ad — py #0.

V3aranbHena rpyna eksiBajgeHTHOCTI G~ Ui perapamMerpu3oBaHO-
ro kjacy (2), Habip JOBLIBHUX €JIEMEHTIB AKOro (hOPMAIbHO MICTHUTH
dyukuio h(t), € po3UIMPEHOI0 y3arajJbHEHOIO TPYIOI0 €KBIBAJEHTHOCTI
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Juist BuxigHoro kiacy (2). O3HaueHHst y3arajibHEHOI Ta PO3IIUPEHOL y3a-
rajbHEHOl Pyl €KBiBAJEHTHOCTI i HOPMAJI30BAHOCTI KJacy HABEJIEHO,
30KkpeMa, y [13, 14].

3 reopemu 1 3HAXOAUMO MEPETBOPEHHS, IO BiOOPAKAIOTh PIBHSH-
ua (4) y piBusung (5). Taxi nepeTBOpeHHs MAIOTh BULJISIT

;. ah(t)+ 8 .
t—lnm-f—cl, fﬂ—ﬁ-i-cz, (6)
o (ah@) + B)(yh(t) +6) ~ ah(t) + B

- h(t)A TA

e €1, co — JOBLIbHI cTaMi. 3 JOMOMOTrOI IHX MEPETBOPEHb OTPUMYE-
MO pO3B’si3Ku piBHAHHSA (4) 3 BiIOMUX PO3B’g3KiB KJIACUYHOrO PIBHAHHS
®@imepa (5). [TobymoBaHo ciM’i0 TOYHUX PO3B’A3KIB piBHAHB (4):

B hA exp (gf—i— @55) @) (exp (%f—i— %5@) + C’,O, C')

vh
u = + ,
(ah + B)(vh + 0) ~h+ 6
YACTUHHUN BHUIIAIKOM SKOI B €IeMeHTapHUX (PYHKITIAX €
hA 1 ~h

(ah + B)(vh + 9) (Cexp (ij_ %5) N 1)2 + hid

B orpumannx poss’s3kax t Ta I suzHaueno y (6), o(z, ki, ko) — emin-
tuuna dyskuis Befiepmrpaca, ¢1, ¢a, C, C, C — noBinbHi crami, C # 0.

Ockinbku piBasgnHsa Dimepa JOMyCKAOTh AUCKPETHE TEPETBOPEHHS
cuMeTpii & — —x, BCi OTpuUMaHi PO3B’I3KH 3 MPOTHIEKHUME 3HAKAME T
TAKOXK 3a/0BOJIbHAIOTH piBHsuHs (4). IIle oane nepersopenusi cumerpii
u +— 1 —u TAKOXK JO3BOJILAE TOTATKOBO PO3MHOXKUTHY 3HAN/IEHI PO3B’A3KH.

Mertoa neperBopeHb MiX KJjacamu gudepeHIiaJbHuX PiB-
HHb. OKpiM MepeTBOpEeHb eKBIBAJIEHTHOCTI, [0 HE 3MIHIOIOTH CTPYKTY-
py kjaacy audepeHiaabHuX PIBHIHD, & JIUIIE IEPEBOISThH OHE PiBHAHHS
3 KJIaCy B iHITIE PIBHAHHS 3 IHOTO XK KJACy, MOXKJIUBO TaKOXK PO3TJISTHY-
TH HEBHPO/ZKEHI TOYKOBI MEPETBOPEHHS MiXK KaacaMu JAudepeHIiaTbHux
piBusinb. Leit meTon Gyso 3anpononosano y pobori [16] miis BukoHaHHs
rpymnoBoi Kjacudikaril KBa3imiHifiHuX piBHAHDL peakiiii-audy3ii 31 3min-
HuMu KoedillieHTaMu Ta CTemeneBoro HemiHiiiuicTo. [li3nime mum meTo-
oM OyJIO TOC/IIXKEHO 3 CUMETPIfiHOI TOYKM 30Dy i iHIl KJjacu PiBHSIHD
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(muB., [15], a Takoxk [18] Ta HaBeAeHi TaMm nocuaaHHs). ¥ 1iit pobori Me-
TOJI TIEPETBOPEHD MiK KaacaMu auepeHIiaabHIX PIBHIHDb 3aCTOCOBAHO
151 TOOYIOBH TOYHUX PO3B’SA3KiB.

JloBesiero, 110 ciM’st TOYKOBUX MEPETBOPEHD, TTAPAMETPU30BAHUX J10-
BinpHUM enemenToM f(t) kmacy (2),

t= /f(t)ef FOdtq  F=g, a= —e_ff(t)dtu, (7)

Binobpaxkae kjac (2) y kiac kBasuiiHiiHuX piBHAHb peakiii—audysii
3 KBa/[PATUYHOIO HEJIHHIHHICTIO Ta OJIHUM JIOBIJIbHUM €JIEMEHTOM, 110 3a-
JIE’KUTH Bi7 3MIHHOI 9acy:

iy = g(Biaz + 0’ §#0. (8)
Hosinbai enementu kiacis (2) ra (8) nos’asani dopmyson

- _ 9 _frwar
AENTON '

Jst pIBHSAHHS U; = Uge + u? Bimomi mexinbka TOYHEX PO3B’sA3KiB
(mme. [2, 9] Ta [12, c. 157]). BukopucroBytoun ix ta mepersopenHs (7),
3HAXOIMMO HOBI TOUHI PO3B’st3Kku piBHAHHA Dimepa 3i 3minHEME KOoedi-
IMi€HTaMHI

w = f(t)el FOy 4+ F)u(l — u):

12(4£V6)z(z + c1) + 120(12 £ 5v/6)0 + 12(2+£V6) ¢z + 6¢3
e JFOd (22 4 12 +10(3 + V6)O + ¢5)°

_ o fmar (T @)
u_e b ) )
p(\/é

ne © = ff(t)ef FOAAt, ¢y, co, C— JOBiIBHI cTaJIi.

)

Aemopra 6dauna npogecopy P.O. Ionosuuy 3a uinhi nopadu.
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3HaiieHo MOBHY TPyIy eKBiBajaeHTHOCTI Kmacy (1+1)-BumMipanx eBOTIONiii-
HUX PIBHSHB JPYTOTO MOPSIIKY, KA BUSIBI/IACS HECKIHIEHHOBUMIPHO0. Me-
TO/IOJIOTiI0 €KBIBAPIAaHTHUX PYXOMEX PeIePiB 3aCTOCOBAHO Yy PEryIsapPHOMY
BHUIAIKY IIPOIEIypPY HOPMAJI3aril 10 moOyI0BH PYyXOMOTO perepa IpyIH,
MOB’s13aHOI 3 TPYMOI EKBIBAJEHTHOCTI B KOHTEKCTI TePeTBOPEHb eKBiBa-
JIEHTHOCT] Mi’K PIBHAHHSMU KJIaCy. 3a JOLOMOIOIO 1100Y10BAHOI'0 PYXOMOTr0O
perepa OmmucaHo aare6py audepeHIiaJbHIX iHBApIaHTIB mi€l rpymm uepes
OTPUMAaHHS MIiHIMAIBHOI T€HEPYI0YU0l MHOXKWHE AudepeHIiaTbHuX iHBapi-
AHTIB 1 IIOBHOI MHOXKHMHU OII€PATOPIB IHBApiaHTHOrO AudEePEHIIIOBAHHSI.

We find the complete equivalence group of a class of (1+1)-dimensional
second-order evolution equations, which is infinite-dimensional. The equi-
variant moving frame methodology is invoked to construct, in the regular
case of the normalization procedure, a moving frame for a group related
to the equivalence group in the context of equivalence transformations
among equations of the class under consideration. Using the moving frame
constructed, we describe the algebra of differential invariants of the former
group by obtaining a minimum generating set of differential invariants and
a complete set of independent operators of invariant differentiation.

1. Introduction. Invariants and differential invariants of transfor-
mation groups, in particular, point symmetry groups admitted by sys-
tems of differential equations have a wide range of applications and are
therefore an intensively investigated subject. Differential invariants play
a central role in the invariant parameterization problem [1, 2, 30] and in
the problem of invariant discretization [3, 5, 7]. They are also used to
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construct invariant differential equations and invariant variational prob-
lems [22, 23], as well as in computer vision, integrable systems, classical
invariant theory and the calculus of variations [6, 22, 24].

Rather recently, finding differential invariants in problems related to
group classification became a research topic of interest. The idea is to
compute the differential invariants not for the point symmetry group of
a single system of differential equations but for the equivalence group
admitted by a class of such systems. The primary motivation for such
a survey is to study the equivalence of systems of differential equations.
Exploring equivalence, it is possible to explicitly determine point trans-
formations among systems from a class [28]. Such a mapping between
two systems of differential equations is especially helpful if wide sets
of exact solutions are known for one of the systems involved. These
solutions then can be mapped to solutions of the equivalent system. An-
other case of particular interest is the mapping between nonlinear and
linear elements of a class of systems of differential equations [19]. For
the solution of the equivalence problem, finding differential invariants
for the equivalence group is a main ingredient. There are a number of
papers where some low-order differential invariants of the equivalence
groups of various physically relevant classes of systems of differential
equations were computed using the Lie infinitesimal method; see, e.g.,
[11, 12, 13, 14, 15, 17, 32, 33, 34, 35] and references therein.

In the present paper we will be concerned with differential invariants
for a group! related to the equivalence group of the class of diffusion
equations

U = Ugy + f(u, um) (1)

in the context of equivalence transformations among equations of this
class. This subject was originally considered in [32], using the infinitesi-
mal method and restricting the order of differential invariants up to two.
We revisit the construction of differential invariants for the class (1)
from the very beginning, analyzing differential invariants of which group
should be found. Then, we apply the method of equivariant moving
frames in the formulation originally proposed and formulated by Fels
and Olver [9, 10], which was later generalized to infinite-dimensional
Lie (pseudo)groups in [6, 25, 26], and this is the setting that is needed

'In fact, this object and the “equivalence group” of the class (1) are Lie pseu-
dogroups of locally defined point transformations. We use the term “group” for
brevity since this does not lead to any confusion.
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to study differential invariants for the class (1). The advantage of mo-
ving frames is that they allow for a canonical process of invariantization,
which associates to each object, such as functions, differential functions,
differential forms and total differentiation operators, its invariant coun-
terpart. For the problem of finding differential invariants of a Lie trans-
formation (pseudo)group, this property is especially convenient. The
invariantization of the jet-space coordinate functions yields the so-called
normalized differential invariants. The invariantized coordinate func-
tions whose transformed counterparts were involved in the construction
of the corresponding moving frame via the normalization procedure are
equal to the respective constants chosen in the course of normalization.
This is why these objects are called phantom normalized differential in-
variants. The non-phantom normalized differential invariants constitute
a complete set of functionally independent differential invariants. As
a further asset, the method of moving frames also permits to study the
algebra of differential invariants by deriving relations, called syzygies,
between invariant derivatives of non-phantom normalized differential in-
variants. Finding syzygies can aid in the establishment of a minimum
generating set of differential invariants. See e.g. [6, 8, 22, 25, 26] for
more details and an extensive discussion on the computation of differen-
tial invariants for both finite-dimensional Lie symmetry groups and for
infinite-dimensional Lie (pseudo)groups using moving frames.

The further organization of this paper is as follows. In Section 2
we compute the equivalence group and the equivalence algebra of the
class (1). Section 3 is devoted to the selection of a group to be consid-
ered and a preliminary analysis of equivariant moving frames associated
with this group. The structure of the algebra of differential invariants
is determined in the main Section 4. This includes a description of a
minimum generating set of differential invariants and a complete set of
independent operators of invariant differentiation, which serve to ex-
haustively describe the set of differential invariants. Moreover, for each
k € Ny we explicitly present a functional basis of differential invariants
of order not greater than k.

2. The equivalence group. The auxiliary system for the class (1),
which is satisfied by the arbitrary element f, is f; = fz = fu, = fu,, =
fuse = fu,., = 0. By definition [27, 28, 29, 31], the (usual) equiva-
lence group G™ of the class (1) consists of the point transformations in
the space with coordinates (t,,w, us, Uy, Utt, Uty Uz, f) that have the
following properties:
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e they are projectable to the space with the coordinates (¢,x,u),

e their components for derivatives of u are found by prolongation
using the chain rule, and

e they map every equation from the class (1) to an equation from
the same class.

To begin finding the group G~, we fix an arbitrary equation of the
class (1), uy = uge + f(u,uy), and aim to find point transformations in
the space with coordinates (¢, z, u),

t=T(tz,u), &=X(tzu), a=U(tzu), (2)
that transform the fixed equation to an equation of the same class,
iy = sz + (1, ). (3)

A preliminary simplification is obtained from noting that the class (1)
is a subclass of the class of second-order (1+1)-dimensional semi-linear
evolution equations. Any point transformation between two equations
from the latter class satisfies the constraints T, = T,, = X, = 0, i.e.,
t=1T(t), T = X(t,z), and T; X, U, # 0. See [16, 18, 21] for further
details. After taking into account the above constraints, the required
transformed derivatives read

1 X 1
Up = ﬁ (DtU — )(fDxU> , Uz = szUv

where D; and D, are the usual total derivative operators with respect
to t and x, respectively. Substituting these expressions and u; = Uz, + f
into Eq. (3), we split the resulting equation with respect to u,, yielding
T, = X2. The remaining equation is

Xy
X

T -
u

The differential consequences of Eq. (4) that are obtained by separate

differentiations with respect to ¢ and z can be split with respect to

derivatives of f since they are regarded as independent for equivalence

transformations. This yields the equations

Tyt = Xpt = X = Uy = U, = 0.
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The equation (4) itself gives the f-component of equivalence transfor-
mations.

The arbitrary element f in fact depends only on u and u,. The space
with coordinates (¢, z,u,u,, f) is preserved by all elements of G™~. This
is why we can assume this space as the underlying space for G~ and
present merely the transformation components for its coordinates.

As a result, we have proved the following theorem.

Theorem 1. The equivalence group G~ of the class (1) is constituted
by the transformations

t=Cit+Co, &=Ciw+CiCot+Cs, a=p(u),
iz = Oy lug,  f=0r% (¢ f = Copluy — ¢"ul)

where Cy,C1,C,C5 € R, ¢ is an arbitrary smooth function of u and
Clgo’ 7& 0.

The infinitesimal generators of one-parameter subgroups of G, which
constitute the equivalence algebra g™ of the class (1), can be derived
from (5) by differentiation, cf. the proof of Corollary 11 in [20] or the
proof of Corollary 6 in [4]. These generators coincide with those de-
termined in [32]. As we will later need them for the description of the
algebra of differential invariants of a group related to G™ in the context
of the G™-equivalence among equations of the class (1), we present them
here. The general element of g™ is

(5)

where the components are of the form

72201t+00, §:Cll'+02t+037 ¢:¢(u)>
n= ((rb/ - Cl)u-’m 0= (QS/ - QCl)f — CoUy — gb”ufw

in which c¢g, ¢1, c2 and c3 are arbitrary real constants, and ¢ is an arbi-
trary smooth function of u. In other words, the equivalence algebra g~
of the class (1) is spanned by the vector fields

O, 2t0p + 20y — uzOy, — 2f6f, t0, — uzaf,
0, + ¢/uxau7 + (¢/f - ¢Hun25)afa

where ¢ runs through the set of smooth functions of u.
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3. Preliminary analysis of moving frames. Let us first clar-
ify the space of independent and dependent variables to be used and
the group to be considered. While formally the arbitrary element f
is a smooth function on the second-order jet space with coordinates
(t, @, u, ug, Ug, Ust, Upg, Uz ), Practically it explicitly depends only on u
and u,. This is why subsequently we will only consider the projection of
the equivalence transformations to the space with coordinates (u, u,, f).
As a shorthand, we denote v := u, and ¥ := @iz = V (u,v) := C; '¢ (u)v.
In other words, we will in fact study differential invariants of the pro-
jection Gy of G™ to the space with coordinates (u,v, f), where u and v
are the independent variables and f is the dependent variable. The in-
finitesimal counterpart of G; is the projection g; of g™ to the space with
coordinates (u, v, f).

In order to describe the algebra of differential invariants of the group
G'1, we now construct a moving frame for this group. Since it is infinite-
dimensional, we have to use the machinery developed for Lie pseudo-
groups, see [6, 25] for an extensive description of this subject.

The first step in the construction of the moving frame is the com-
putation of the lifted horizontal coframe, the dual of which yields the
implicit total differentiation operators Dy and Dg. For the equivalence
transformations (5), the lifted horizontal coframe is

dya = (D,U)du+ (D,U)dv = ¢’ du,

<p// (,D/
dpo = (D, V)du+ (D,V)dv = Z—vdu + = dv.
Cy 4
Computing the dual, we derive that
1 1
Dy = —D, — (WWUDE, Dy = Q}Dv (6)
¥ ¥

are the required implicit differentiation operators. Acting with them on
the transformation component for f, we find that

where 4,7 € Ng :==NU {0} and

1
(Lp/f _ 02(,0/1/' _ SDN’U2>

£ :":F::7
fOO f 012
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is the f-component of equivalence transformations. In particular, the
derivatives up to order 2 are exhausted by

fio =

1 11\2
W (Splfu + (P//(f _ va) /// 2 + 2(9‘;/) ’1}2) ,

1
for = G —— (@' fo — Ca’ — 2¢"v),

// my 2
foo = Cg ; (fuu - ;(fu—Qvfuv) + (Z,) 02 foe

/
o ’ 1 1\
+(5) - - @7 (w (1)) =)
- 1 12
fu = Cro? <90/fuv — "0 foo — 20"V + 4SD > )

~ 1
f02 = E(@lfvv - 2(,0//).

There are a relative invariant and a relative conditional invariant
which play a significant role in the following consideration. By taking
the difference foo - fql we exclude the inessential constant Cs, which
only arises in foo and fo1,

foo — ofor = % (P'(f —vf) +¢"0%).
1

Combining further Q(foo -0 fm) + 92 fos to exclude ¢”, we obtain

- 1 W:2f_2va+'02fmn
W = —W, where _ N _ -
G W =2f — 20 f5 + 0 fos,
i.e., W is a relative invariant of G;. In other words, the condition W =0
is preserved by any equivalence transformation in the class (1). Analo-
gously, the combination 2f1o — vfi1 gives

1 (p S = 2fu - Ufum
S = —25 + =5 —W, where _ . . (7)
A Gt S =2fa —Vfap.
This means that S is a relative invariant of G if the condition W = 0 is

satisfied. Values of the differential functions W and S determine which
normalization conditions should be chosen.
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We next find appropriate normalization conditions, which form the
basis for the construction of an equivariant moving frame. As ¢ arises
only in U, we can set U to any value including zero. The value of V
can be set to any constant excluding zero, and all these possibilities are
equivalent. We find it convenient to put V = 1 and express ¢’ = C1/v.
The constraint W = 0 singles out the singular case for the moving
frame construction, which has to be investigated separately. Within
this singular case, there is the ultra-singular subcase associated with the
constraint S = 0. Indeed, under the constraint W = 0 the equation (7)
can be solved for C if and only if S # 0.

4. Differential invariants for the regular case. In this paper, we
only consider the reqular case for moving frames of Gy, where W # 0.
In this case, the following normalization conditions can be used to de-
termine a complete moving frame

azoa 5:1a f:17 01:07 fOQZOa

In the expression for fim we presented only the summands with the
highest-order derivatives of ¢ and f, which are ¢+ and firizir, =
0,...,14, respectively. We solve the first five equations with respect to C1,
Cs, @, ¢’ and ¢" and substitute the obtained expressions into the other
equations. For each fixed ¢ € N, we solve the modified equation .in =0
in view of the similar equations with lower values of 4 and thus find an
expression for ¢("+2)_ the explicit form of which is essential for further
consideration only for ¢ = 3. This yields the following complete moving
frame:

01:W

o Cy = v vV
21}7 2 f Uf

w

202’

0" = 1oz (2 4 (7 = 0fu 407 Fu) o).

w
» =0, 90/ = 90// = mfvva

, W o (i 2\
42 .
*DH):zle(i/) <W> Jii—r +00 s =23,

/=0
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In the expression for ¢(**2) we presented only the summands with the
highest-order derivatives f; ;_;/, i’ = 0,...,i. The invariantization %/ =
t(fi;) of the derivatives f;; of f that are not involved in the normalization
conditions (8) gives rise to a complete set of functionally independent
differential invariants of G;. The lowest-order non-phantom normalized
differential invariant is I'', and it reads

4fu —20fup + (2f —2vf, + Uvav)fvv
(2f - 2va + Uvav)2 -

This differential invariant is of second order. For each tuple (i,7) with
i+ j > 3 and j # 0, the maximal orders of derivatives of f and ¢
appearing in the expression for fij are i+ j and i + 2, respectively. This
is why the maximal order of derivatives of f in the expression for fij
cannot be lowered in the course of the invariantization, i.e., the order
of the normalized differential invariant I*/ is i + j. Therefore, there are
precisely %k(kJr 1)—2 functionally independent differential G;-invariants
of order not greater than k > 2. They are given by the functions I'!
and I with 3 <i+j <kandj#O0.

Apart from finding the complete set of functionally independent dif-
ferential invariants of Gy for each fixed order by successively invarianti-
zing all the derivatives f;;, the moving frame (9) can be used to deter-
mine the operators of invariant differentiation. They are found upon
invariantizing the operators of total differentiation (6) and read

Ill _ —21}2

Di 202

1 .
_ Dy, — ~vfuDy |, D.=uD,. (10
u 2f20fv+v2fm< R > v (10)

We now aim to investigate the structure of the algebra of differential
invariants of G;. The starting point for this investigation is the uni-
versal recurrence relation, which relates the differentiated invariantized
differential functions or differential forms with the invariantization of
the respective differentiated objects. This universal recurrence relation
reads [25]

du(Q) = 1(dQ + Q™) (Q)). (11)

The first step in our study is the evaluation of (11) for the independent
variables u and v and the derivatives f;;, 7,j € N,

dpe(u) = wh + (),  dne(v) = w? + 1(n),
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Aol = dne(fij) = t(fisrydu+ fijprdo +67)
Ly L2 (i,

where w! = ¢(du), w? = ¢(dv), and

07 =D/DJ (0 — dfro — nfor) + dfiv1,; +nfij1

?

=0 —2eafy—0G-1) Z <z’> STV fi i
‘ =0
- (z’) (fﬁ(l ) ficirsr + vl +1)fi7i’,j+1)
/=1

— 62(5(]1'((5(”’0 + 61j) — ¢(i+2)(50jv2 + 2(51j’U + 252j)

is the f;;-component of the infinite prolongation of the vector field ¢d,, +
N0y + 00f. Here §;; is the Kronecker delta. The respective recurrence
relations then split into two kinds, the first being the so-called phantom
recurrence relations. For a well-defined moving frame cross-section, they
can be uniquely solved for the invariantized Maurer—Cartan forms, which
arise due to the presence of the correction term ¢(Q(*)(Q2)) in (11).
Then, plugging these invariantized Maurer—Cartan forms into the second
kind of recurrence relations, the non-phantom ones, gives a complete
description of the relation between the normalized and differentiated
differential invariants, see [6, 25] for more details. For the chosen cross-
section (8), the phantom recurrence relations read

0= due(u) =w' + 1) = w' +,
0=dn(v) =w?+u(n) =w? + ¢ — &,
0=dnl% =u(0) = ¢ — 26, — 2 — ¢,
0=dpI" ="' +4(0) = T"w' — &, — 24",
0= thO2 — Il2w1 +103w2 4 L(HOQ) — 112(4)1 +IO3w2 _ 2(5//,
0=dpl™ = I""w? +0(0°)
= Iy 4 qg(i+1) _ q§(¢+2) _ f (Z’/) Ii—i',lqg(i’-s-l)’ i €N,

/=1

where the forms ¢, ¢; and qg(i), i € Ny, are the invariantizations of the
parameters ci, ¢ and ¢ of the infinitely prolonged general element of
the algebra g;, respectively, ¢ = u(c1), é = t(cz) and ¢ = ().
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More rigorously, here the parameters ¢i, ¢o and ¢, i € Ny, are in-
terpreted as the coordinate functions on the infinite prolongation of g.
Recall that under the prolongation we consider u and v to be the indepen-
dent variables and f to be the dependent variable. In other words, these
coefficients are first-order differential forms in the jet space J*°(u,v| f).
Hence their invariantizations are also forms, which are called invari-
antized Maurer—Cartan forms.

The above system can be solved to yield the following invariantized
Maurer—Cartan forms

. 1 1
¢ = (2I12 — Ill> wh + <2103 — 1) w?,

62 — (Ill _ 112)0.)1 _ ‘[030‘)27

A N 1 1
1 / 12 11 1 03 2
__ — (=21 S99
R Gt E Gl LS
(ﬁ// _ 1112&11 + 1103(&12
2 2 ’
i—1 ;
A ~p. A Y Y . .
¢(7,+2) — (b(z-‘rl) _ Z <Z/) it ,l(b(z +1) + Izlw2’ i € N.
/=1

The explicit expression for the invariantized form é(i+2)7 1t €N, as a
combination of w! and w? with coefficients being polynomials of normal-
ized differential invariants is obtained by expanding the above expression
when successively going over the values of 7. In particular,

QZ)”/ — 3112“}1 4 (Ill 4 ;IOB> w2’
(5(4) —_ (2112 _ Ill]lQ) OJl + (Ill + %103 + 121 _ 111103) OJ2.

For i > 3, the greatest value of i’ + j' for the normalized differential
invariants 17" that are involved in ¢012) is ¢+ 1, and I w? is the only
summand with this value.
The non-phantom recurrence relations are
thll — 1210.)1 +112W2 4 [/(911)
_ (1'21 4 2([11)2 o 1'111'12 o I12)w1
4 (112 _ 111[03 + Ill _ IOS)LUQ
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dpl¥ = [t 4 TR 4 (09), i+ 23, j#£0,
with

(69) = (j =211 = (j—1) ) (2)1"""%“’“’

i'=0
_ i: (Z/) (Iifi’qtl,jag(i’) n Ii—i’,jﬂag(i’ﬂ))
i'=1
— 80i(60j + 61)¢2 — (Soj + 201; + 2027) U+,
The first non-phantom recurrence relation splits into
D[ = 2 4 g2 _ i1z g2
Di il = 12 103 4 pi_ g03,

Therefore, the normalized differential invariants I'? and I?! are ex-

pressed in terms of invariant derivatives of I'! and I°3,
['2 = DLt g 03 iy po3,
1= Di (12
(I )DL 4 7103 iy 703y,

In view of the above discussion on the invariantize forms qg(i/), i € N the
expression for ¢(60%) with ¢ + j > 3 and j # 0 implies that the greatest
value of i’ + j' for I"? involved in ¢(6") is ¢ + j. Hence splitting the

(13)

recurrence relation with d, % leads to expressions for I*t1J and I%7+1

in terms of invariant derivatives of I* 7" with ¢/ + j' < i+ j. For example,

from the non-phantom recurrence relation
dh103 _ Il3w1 4 IO4UJ2 + L(903)
712703
—_ (Ild +111[OS o
2

we derive
DLIOB _ I13 + 111]03 _ %I12103,

D,iUIOB _ 104 _ %(103)2 =+ 103.

>w1 + <I°4+IO3 o
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This implies by induction, where the expressions (13) for I'2 and I?! give
the base case, that any non-phantom normalized differential invariant
can be expressed in terms of invariant derivatives of I'! and I°3.

To find a minimum generating set of differential invariants for the
projected group Gp, we should additionally check whether 1% can be
expressed in terms of invariant derivatives of I''. We use (11) to compute
the commutator between the operators of invariant differentiation. This
is done upon evaluating (11) for the basis horizontal forms du and dv,

dpe(du) = o(¢'du) = o(¢) A t(du)

(2 103)w Aw? = —Yllzwl/\wQ,
dpe(dv) = o(¢"vdu + (¢ — c1)dv)
= u(¢"v) A u(du) = %Iogwl Aw? = -Y5w! AW
The commutation relation then evaluates as

) . ) . 1 . 1 .
DL, D] = Y0}, + YD, = (51~ 2) Dl + 31D,

see [25] for details of the technique applied. Evaluating [D, Di]I'!, we
can derive the following expression for I93:

203 fouo 22D1 It + DI Di]rtt
2f = 2vufy, + 2 fo, Di 71l + Dl

9% .=

As a result, we have proved the following theorem.

Theorem 2. The algebra of differential invariants of the group G,
which is the projection of the equivalence group G~ of the class of diffu-
sion equations (1) to the space with coordinates (u, v, f), is generated by
the single differential invariant

Afu =20 fuw + (2f = 20f, + Uvav)fvv
(2f - 2va + U2fvv)2
along with the two operators of invariant differentiation

Di — 20° Dy, — Suf,,D Di =D
T T A N TV A

All other differential invariants are functions of I'!' and invariant deriva-
tives thereof.

I = 922
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Corollary 1. A functional basis of differential invariants of order not
greater than k € Ny in terms of invariant derivatives of non-phantom
normalized differential invariants is exhausted by

(D (DL I, i+i<k—2 (D) 1%, § <k-3
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Po3B’ga3Ku cucreMu 1mmoB’d3aHUX
PiBHAHDb €MKOHAJLY

I.A. €20puenxo

Inemumym mamemamuru HAH Yxpainu, Kuis
E-mail: iyegorch@imath.kiev.ua

Haseneno xopoTkuil oryis; MeTOAy OTPUMAHHS 3arajbHOTO PO3B’s3KY CH-
CTEMU TIOB’SI3aHUX PIBHAHB €HKOHAJIY, IO 0a3YE€ThCS HA BUKOPUCTAHHI TTe-
peTBOpeHD roorpada Ta KOHTAKTHUX MEPEeTBOPeHh. Bukopucrama mpore-
Oypa JI03BOINIA TAKOXK 3HANTH 3arajbHUN PO3B 30K CUCTEMU DiBHAHD eii-
koHaJry Ta lamimbrona—koobi.

We review the approach to obtaining the general solution for a coupled
system of eikonal equations that based on using hodograph and contact
transformations of the initial system. The procedure used allowed also
finding of the general solution for a coupled system of the eikonal and
Hamilton—Jacobi equation.

1. Beryn. Mu po3risgaeMo nepeBU3HAYUEHY CHCTEMY, sIKa CKJTAIAETHCS
3 ABOX DiBHsHb efiKoHasy Juisi ABox Gyukuiit Big (1 + n) Hezanexxuux
3MIHHUX, Ta IIe OJHOTO PIBHSHHS, IO MOB’S3y€ IIi ABI (DYHKILI:

upuy, =0, vuv, =0, uuv, =1, (1)

e u=u(To,T1,...,Tn), V="0(T0,T1,...,Tn).
SIKo He 3a3Ha4YEeHO iHIIE, iHAEKCH y HE3aJIeXKHHX 3MiHHUX T, MO-
XKyTb npuitmMaTu 3HadeHHd Big 0 mo n, u = 0,1,...,n; HUKHI 1HIEKCH

y 3a/leXKHUX 3MIHHUX O3HAYal0Th MOXi/IHI 38 BiIOBLIHUMY 3MIHHUMU I,
i mapa iHJIeKCiB, 10 TOBTOPIOIOTHCS, O3HAYAE IiJICYMOBYBAHHS 33 ITUMH
ingekcamu Big 0 710 n B mpocTopi MiHKOBCHKOTO:

Tyuly = ToTo — L1x1 — *+° — Tpdn-

Mu TakoxK OyaeMo BBarKaTH, IO BC1 PYHKIII, AKi MU PO3TIISIIAEMO, €
JOCTATHBO TJIAJKHUMU JIjis iICHYBAHHSA Ta HEIEPEPBHOCTI BCiX MOTPIOHMX
TOXITHUX, Ta, 110 BCi 3aJI€3KHI Ta He3aJeKHi 3MiHHI MTPUHMAOTh 3HAYEHHST
y TIPOCTOPi AIfICHUX YHUCeT.
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Binzuauumo, mo cucrema (1) € cnenjanpbHuMm BunagkoM Oiibin 3a-
TaJbHOI CHCTEMH TIOB’I3aHUX PIBHAHD €HKOHATY

upu, =0, v, =0, u,v, = h(u,v) (2)

3 noBinbHOW dyukuieo h(u,v).
Cucrema (2) Moxke 6yTH OTpUMaHa B PE3yJIbTATI JTOKAIBHUX TTEPETBO-
DeHb CHCTEMU

upty, = p(u,v), vy, =o(u,v), uuv, =T7(U,v) (3)

3 nosimbaEMHE BYHKIAME p, 0 Ta T, Ae po — 72 < 0. Taxa cucrema

BUHHUKJIA B HaIliit pobori [5] Ak 9acTrHa yMOB peayKIiii 6araToBUMipHOTO
HeJliHiIfHOrO XBUIJIbOBOrO piBHsHHA ¢ = F(¢) 3 3acrocyBaHHsAM aH3aIly
3 JBOMa HOBUMHU HE3JIEZKHUMU 3MiHHUMU @ = ¢(w1,ws).

Sarasbuuii Buris)| cucremu tuiy (3), ska moxke 6yTu peJyKoBaHa 10
cucremnu Burssiay (1), € HacTymHUM

upty = 24A4(a,b)Ap(a,b),
v, = 2B, (a,b)By(a,b),
UyVy = Aa(a7 b)Bb(aa b) + B, (CL, b)Ab(aa b)>

ze a = a(u,v), b = b(u,v) — e noBinbHi gocTaTHBO rIaAKi GyHKIII.
IpuxJiaioM CUCTEMU TaKOrO BULVISLY €

uyu, =1, v, =-1, uuv, =0.

IIpore, cucremu MoB’s3aHUX PIBHAHDb €HKOHAJY € IMIKABUMHU 1 3 TOU-
KU 30py 0e3M0CepeaHbOr0 MPAKTUIHOTO 3aCTOCYBAHHST Y TEOMETPUYHIN
ONTHUII, PO3Mi3HABAHHI 00pa3iB, MEXaHIIl CYIIBHOIO CEPEIOBUINA Ta iH-
MAX TATY3IX.

Haitmenma posmipricrs, komu jia cucremu (1) MoxHA OTpUMAaTH
HeTpHUBiaIbHI PO3B’A3Ku — 1e n = 2, ToOTO 1e Oyae cucremMa 3 OIHIEI0
YacoBOIO TA JBOMA IIPOCTOPOBUMHU 3MiHHAMH. ¥ BHIIQJIKY OJHI€l 1npo-
CTOPOBOI 3MIHHOI MU MATWMEMO JIUIE TPUBIAJbHUI JTiHIHHWIA PO3B’I30K
u=alxotmz)+ci,v=1/2a(xoFx1)+c2, g€ a = const # 0, ¢; Ta cg —
JOBLABHI AificHI cTagTi.

VY pobori [7] namu 6yB 3Haiijenuil napaMerpudHUil 3arajibHuUil po3-
B’s130K i cucremu (1) Ta ABOX HPOCTOPOBUX 3MIHHMX (MM BUKJIIOYAJIM
CHIEIIAIbHI BUMIQIKY B MPONECI 3HAXOIKEHHS )

T+ \/% —K(2)
9'(2) ’

u =
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T2z

V1—22 B

_ gx2 p(2) T
VT is2 () [ L

0=z¢9—x12 + 22V 1 — 22

+ gg(? (:cl + \/% - k’(Z)) — k(2).

k’(z)} +r(2),

Tyr
==k (zg+ (1-2%)g), p=3(-g%+ (9 29)%).

Meron, skuit My BUKOPUCTOBYEMO, OYB PO3p0b/IeHUil Ha, OCHOBI ifeit,
npeacrasaernx B poborax P.3. 2Knanosa, [.B. Peernka ta B.I. @ymmua
[3, 4] mozno 3aranbrOro po3s’a3ky cucremu 1 Anambepa—laminbrona.

2. 3acTocyBaHHd IepeTBOPeHb rojjorpada Ta KOHTAKTHAX TIe-
peTBopeHb. Y 11boMy naparpadi po3risHeMo JIUIIe YACTKOBUN BUIIA0K
n = 2, i dyskmii

u=u(zg,x1,22), v=v(z,21,T2) (4)

Ta OyIeMo BBaXKaTH, 10 Uz, # 0 (B IHIIOMY BWNAJKY TepIne piBHAHHS
cucremu (1) Mmarume jurie crai po3s’sa3KN).

Mu nepexoaumo Bif mouarkosoi mapu (4) 10 HOBOI Iapu 3aJIeXKHUX
3MiHHUX W Ta ¥, Ta HOBUX HE3aJIEKHUX 3MIHHUX Yo, Y1, Y2:

u =4y, To=wW, T1=Yy1, IT2=Yo. (5)

Bupasu g1 moxigaux mo9arkoBol mapu (PyHKILH:

_ 1 Wy, Wy,
uﬂﬂo - ’ uﬂﬂl - ) T2 T ’
wyo wyo on
v w w
_ Yo _ Y1 o Y2
Vg = ) Uzy = Uy, — Uy, y o Umy = Vyy — Uy . (6)
wyo wyo wyo

3a3Ha4uMo, 110 y HOBUX PIBHSIHHSX, OTPUMAHKUX MiCJIsi 3ACTOCY BAHHS 116~
PeTBOpeHHd rofgorpada, Mu OyJeMo No3HaYaTH HOXiIHI 3a 3MIHHUME Y,
AK Uy, T Wy, .

[Migcranoska dopmMyst 1jis moxigaux (6) 40 mepIioro piBHAHHS CHCTE-
mu (1) gae macrynui Bupasu:

2 2
Y1 wy2 1 =0
w2 w2 w2
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Mu BUKOPHCTOBY€EMO LPHUILYIIEHHS Wy, 7# 0, i TOMy 3Hailnene piBHAHH:A
€ €KBIBAJIGHTHUM HACTYIIHOMY:

2 2 _
Wy, + Wy, = 1.

IMixcranoBka opmMyst [Uis HOXIAHUX 10 APYroro piBHsiHus cucremu (1)
A€

w? w? v2
2 2 Yy Uy Vy, Wy, 2 2 Yyo VyoVya Wy, Yyo
el T i B
Y1 Yo w2 w Y2 Yo w? w w2
Yo Yo Yo Yo Yo

i B pe3yJsibTaTi OTPUMYEMO

2 2
Uy, + Vyy —

v
2(vy, wy, + vy, w2) wyo =0. (7)
Yo

[MixcranoBka 10 Tperboro piBuganusg (1) mae

v w w w w
Yo + Y1 (Uyl + Uyo Y1 ) + Y2 (’l)y2 + Uyo Y2 ) =1.
w. w

2
w Yo Wy, Yo

vo  Wyo
BpaxoBytoun, mo wy, # 0, ME IPUXOTUMO IO BUPA3Y
Uyy Wy, =+ Uy Wy, = Wy, -
PiBusinus (7) 11€peTBOPIOETHCH HA HACTYIIHE:
2 2
Uy, F Uy, = 20y,
V pesysbrari meperBopeHb OTPUMYEMO TAKY CHCTEMY DIBHSHD:
2 2
Wy, + Wy, = L,
2 2 _
Uy, + Uy, = 21}7!07
Uy, Wy, + Vyp, Wy, = Wyq - (8)

Baznauumo, 1o cucrema (8) BKJIIOYAE PIBHAHHS €HKOHAJY Ta DIBHSHHS
lFaminprona—Ako6i, momibHi 10 yMOB peaykKiil ais piuasaus [Ipbomin-
repa, SIKi pO3MISAIAINCH B poboTi [6].
st 3acToCyBaHHS KOHTAKTHUX MEPETBOPEHD, PO3TIISIAEMO HACTYTII-
HUI HaOIp HOBUX HE3aJIeXKHUX 3MIHHUX 20 = Yo, 21 = Wy, , 22 = Y2.
Posrnsgaemo HOBI 3asekHi 3MiHHL

H(z,21,22) = 1wy, —w, v =v(%,21,22) 9)
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Ta BUIIMIIEMO CIIBBIIHOIIEHHS JIs HOXiTHUX 38 HOBUMH HE3aJIEeKHHUMN
3MIHHHMH:

H,, = Wy, H., =y, H.,= —Wy,,
Vyo = Vzg T Uy Wygyys  Vy, = Uz + Wyryy,  Uyy = Vzp + Uz Wy,
1 H, -, H.:,

w. = — W, = _— w. =
Yiy1 ’ Y192 ’ Yoy1 ’
H, . H, . H,, .,
H, . H..,

HZ z HZ z
Wygy, = _%- (10)

IMicia BiAnOBiAHOL NiACTAHOBKY y cucTeMy (8) MPUXOAUMO JIO HACTYITHOL
CUCTEMU PiBHSHb:

4+ HZ =1, (11)
2 2
z Hz z Hz z
<;1 ) +<sz—vle12) :2(%—@21]{12), (12)
Z121 2121 Z121
21 Hz z
21 7 Hz 20 — Uz 12 - _Hz . 13
v lelzl 2 (U 2 v 1 Hzlzl> 0 ( )

ITeprue piusnus (11) wiei cucremu mae 3araibHuil po3s’sa30K it QyHK-

il H:

H = 234/1 — 22 + G(20, 21), (14)

ge G — (dyHKIig CBOIX apryMeHTiB, SIBHUI BHUIJISA AKOI MU 3HAUIEMO
HUKYE 3 IHIIUX PIBHAHD II€1 CUCTEMU.
Bunanmox

Ugy

2] =Wy, = — ==l

0
— 1IIe CIeljiajbHAi BUMAI0K, KUl Ja€ TPUBiaJbHWI PO3B 430K, i Mu Oy-
JeMO MOro pO3IIdaTh OKPEMO.

3 Bupazy aig bysxuii H (14) mu orpumyemo, mwo

Z1%2
Hzo :Gzoa Hzl :_ﬁa HZQ = \/1_2%7

z
HZ()Zl = GZ()Zla H2122 = _71 (15)

V1-22
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2
22 z{%z2 22
H, . =- — + Gy = —-—— t Gz -

Vi—d (1-2)F (1-22)?

Haui, nijcranoBka BUpasdy JJisi KOHTAKTHUX 1eperBopedsb (15) ta Bu-
pasy aya noxiguux dbyskiii H y pisugaus (12) mae

) /
V21 + | Goyoy — ————= <GZO — Uzpy/1— z%)

(1-2%)

+vz0/1 = 27) <—12%Z%>

z2

~la.,., - —2 <GZO o1 z%) 0.
(1—23)2

BpaxoBytoun, 1o

(S

22

OTPUMYEMO
Gy — Vsp/1 — z% =0,
0 JIa€ HAM BUPA3 [ PyHKIHT v:

v = ————= + P(z0, 21), (16)

ne P(zp,21) — ue gesika yHKIS BiJ CBOIX apryMeHTiB, ska Ma€ OyTu
3HaiieHa HUzK4e.
3 (16) mu obumCcII0EMO BUpa3u i HOXiAHUX QYHKIHT v:

Goonn? Gz 2 G, 212
Vzog = ;OZO 222 + ona Vzy = 21021 222 (1 = 12)22 + PZl)
-2 Vi—2 — 2
G
Uz = . (17)
1— 21

MMincranoska (15), (16), (17) y (12) nae
031 + (UZZHZIZI - U21H2122)2 = 2H2121 (UZOHZIZI - U21H2021)7
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2

Gz 2172 Gz 2122 Gz V)
012+ 0 §P21 + 702 GZ1Z177§
V1—27 (1—2%)2 1—27 (1—2%)2
2
z Gy 2 G, 212
+ | P, + 07172
VI=2 VIi—zi (1-23)°
22
=2 Gy — 5
(1-22)2
Z Gopnn?
% Gzlzl _ 2 - ( 020 22 +Pz0>
(1-23)° L=z
GZ z GZ
— Gy | o2 o212 4 p |- (18)

Viead -

Jami My MOKeMO PO3KJIACTH I[i BUPA3W 33 CTEMEHSMU 3MIHHOI 2o. 3 BU-

MOTH PiBHOCTI Hy/TIO CyMH KOeillieHTiB IpH 25 MH OTPUMYEMO yMOBY
GZ Zi
B £ C— (19)
2) 2
(1 - zl)
3BiAKE MOKHA 3pO6UTH BHCHOBOK, 1m0 G, ., = 0. 3 Bumorm pismocti

HyJTI0 CyMH KOebillieHTiB Ipu 25 MH OTPUMYEMO YMOBH

2
GZ(J z1 + GZU 21

VI—d o (1-a)

2
Gz GZZZ1 GZZ%
+<— et o2t “)2

(1—,2%)2 — 2 (1—,2%

2 PZO GZ()Zl + GZO Z%

= — , 5 — Gz )
(== \ -t VIS s

G2 (1 —Z%)Z +2Gzoz1G2021(1 _Z%> +G§OZ%

2021

+ (1 - zf)(z%Gz — 221G, Gy + GEO)

ZoZ1

= 2(P20 + G2 (1 - Z%) + Gzozleozl)a

20%1
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(Gzo - ZlGZoZ1)2 = QPZU + Ggozl (20)

3 BuMOrHu piBHOCTI HYJTIO CyME KOEDIIIEHTIB IPU 23 MU OTPUMYEMO YMOBHU

P Gzozl T Gzozl T <G20G2121 + lezl )

\WVI-A (1-22)? VI=2

y (_ G | Gan | Gyl 2)
(1—2%) L=zf  (1-23)
e P+ Gzozlcjzozl G
(1-22)* Vi-a
 PGapsy — Gaye Py
(1-23)F
P (Gapey (1= 27) + Goy21) 4 (G2 Gayzy + 21 P ) (Grgzy 21 — Gy
+ G G2 (1= 2) + Gayay (Pay + Gy Gag21) + Pry Gy

)

- Gzozlpzl - Oa
Gzlzl (GZO (Gzozlzl - G ) + Ggom( Z%)
+ 2PZO + GZozlGZOZl) - O' (21)

3 ymosu (21) 3nax0A1UMO, 110
Gayzy 2Py + G2, — (Gzy — Gy 1)?] = 0. (22)

PiBHicTb Hy/II0 BUpaA3y y KBaAPATHUX JIyKKAX PIBHAHHSA (22) eKBiBaIEHT-
Ha yMOBI, gKa OyJia BU3HAYEHA B pe3y/IbTaTi 30upanHs KOeMIIieHTIB Tpu

23 (20). Taxum 9urOM, 3 KOedIi€HTIB MPU 29 MU He OTPUMAJH HiAKIX
HOBUX YMOB.

BHMOTH PiBHOCTI HYJI MH K imieHTiB Ipn TPHUMYEM
3 o) IBHOCTI 0 C oedimienTi zgo €MO

(GZOGZIZI + ZlPZ1)2

P221 + 1 _ 22 = 2C712121 (PZOGZ1Z1 - GZ021PZ1)a
1
P2 (1—-27) + (G2,G2,,, +221P., GG, ., + 21 P2)
= 2GZ1Z1 (PZOGzlzl - GZOZI PZ1) (23)

- 2Zl (PZoGz1z1 Gzozlelzlpzl)’
P2 + G2 G2 + 221Pz1 GzoGz1z1

Z1%Z1
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= 2(1 - Z%)Gmm (PeyGaizy = Poy Gagzy ) (24)

3 (18) BummBae, mo G, ., = 0, 3 (20) pobuMo BUCHOBOK, 1m0 P, ., = 0.
Takum ynnoM, mrykani GyHkuii G ra P nopuHHi Maru HacTyuHy Gop-
My

G =g(z1)z0 + k(z1), P =p(z1)z0+ r(z1), (25)

ne g, k, p, r — neBui dynkuii Big 3MiHHOI 21, YMOBH HA sKi OyIyTb
3HAMIEeH] JaJTi.
MMicas nincranosku (25) y (20) Mu orpumasn

W +g” =(g—29)" (26)
MMicast mimcranoBku (25) y (24) MM TPUXOIMMO JI0 PIBHSHHS
(p/ZO + 7"/)2 + 92(9/120 + k‘”)2 + 221 (p/Zo + T/)g(g”ZO + k//)
=2(1—27)(9"20 + k") (p(¢" 20 + k") — ' (p 20 + 7). (27)

Jani mu rpynyemo koedinientu 6ins crenenis zg. Ilpu 23 orpumyemo

2 112 12 "I/

24929+ 22099 =2(1—27) (¢"*p— ¢"9'Y). (28)

3 piBagnHa (26) Mu MoxkeMO 3HaiiTu Bupa3 g HYHKINT p gyepe3 PyHK-
1o g:

:%(g — 22199’ +(z 71) ) (29)

3Bigcu

P =9"((: —1)¢ — 219). (30)
IMicas nincranoBku Bupasis mas p ta p’ g0 (28) Mu orpumyemo, mo

9?[((22 —1)g — 219)" + ¢*9" + 2219((23 — 1)g' — 219)

—(1=20)((¢° — 22199 + (1 = 1)¢")
-9 ((21 —1)g' — z19))] =0. (31)
VY kBaJparHux JyKKax piBHsHH# (31) MU MAEMO TOTOXKHUIL HyJlb, TOMY

HOBi ymoBu Ha GyHKHI G Ta P MOXHA 3HAWTH juiie 3 KoedillieHTiB
npu 23.
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I'pynyBanns KoedillieHTiB IpH 2o A€ HACTYIHY YMOBY:
20" + 2679 K" + 2219(p'K" +1'g")
=2(1—27)(¢" (k" —1'g') + K" (pg" = 0'9))-
IMincranoeka supasis (29) Ta (30) nus p ta p’ IPU3BOIUTH 10 BUPA3iB

29" [(r +219K") (2 = 1)g' — 219) + (219 + K'g?)]
=2(1-21)g" [K'(9° — 22199 + (57 —1)g"%) =1y
—K'g'((:f = 1)g' — 219)],

SKi JAIOTh TOTOKHY PIBHICTH, TOOTO MU 3HOBY HE OTPUMYEMO HOBUX YMOB
TMIOPiBHSAHO 31 3HANIEHUMHU pPAHiIIIE.
3 Bumoru piBHOCTI HYJITO cymu KOoeilieHTiB mpu 28 MU Ma€MO, 110

%+ ¢*k"? + 220" gk" — 2(1 — 27) K" (pk” — g'1)
— (" — K" ((z2 = 1)g — 219))* =0, (32)

Ta 3 (32) BumMBaE, 10

' =k"((:3 - 1) — z19),
i Tomi, sxmo ¢’ # 0, ne Gyne eKBiBaJeHTHE yMOBI

r'g" —p'k" =0.
Takum auHOM, MU 3HafnUM aBHU Burasn Gyskmiin G ta P:

G=g(z1)z0+ k(z1), P =p(z1)z0+71(21), (33)
J1e

p=1(g>— 22199 + (27 — 1)¢7),
v =k"((23 - 1)g' — z19). (34)

3. BacTocyBaHHsI 06epHEHNX KOHTAKTHUX MEePETBOPEHD Ta TIe-
perBopenb rogorpada. Oyuknis H mae BUTIsAT

H = 234/1 — 27 + G(z0, 21),
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ne G(zp, z1) mae Burnay (33) 3 nosinbauMHu g Ta k, Ta
V= — +P(Zo,21),

ne P(zg,21) mae Buraazn (33), me dyHKUil p Ta 1 3HAXOAATHCA Y BifTio-
BignoCTi 110 (34).

OyuKIig w Moxke OyTH BU3HAYEHA 3 BUPA3y Ay H MLISXOM BUKOPH-
CTaHHS II€PETBOPEHD, 00epHeHux 10 (5) Ta (6):

w=znH, —H.

ﬂaﬂi MH MO2KE€MO 3HOBY II€PEIIO3HAYUTH 27 dK 2, TAKHUM YMHOM, MU OTPHU-
MYEMO HapaMeTpI/IqHI/Iﬁ 3arajabHui pO3B’H3OK JJId CUCTEMU (8), n=2:
GZO Z2

v = N + p(2)z0 + 7(2),

w=1y12—Yy2V1—22—g(2)yo — k(2),

Y2z / ’
0=y +——= —d =)y — ().
Vv1—z
3acTocyBaHHs EpETBOPEHb, obepHenux 10 (5) Ta (6), 1a€ MOKJIUBICTE
3HANTH MapaMeTPUIHNNA 3arajJbHUl PO3B’SI30K JIJI CUCTEMHU OB’ I3aHUX
piBHsHb efikonainy (1) s nogarkoBux yHKUiil u Ta v Ta n = 2:

1+ 2 — K (2)

oy Ve
g (2) ’
T (2) Toz ,
e o [xl . @)} T r(2),

0=a29— 212+ 22V 1 — 22

e R

e
v =—k'(zg+ (1-2°)¢), p=21i(-9"+(9—29)%),

ae g ta k — moBinbHi QyHKIIII.
4. Ocob6ausi Bunagku. Mu po3risiaan 3HAXOIKEHHS 3arajbHOTO
napaMeTpuYHOro po3s’a3ky cucremu (1) mg n = 2 3 IPUIYIIEHHAMHY,
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mo ug # 0, vo # 0, wy, # 0. Ocranua ymosa y Bimuosinuocti 10 Bu-
3Ha4eHHs 3MiHHUX (5) Oyie BUKOHYBATHCHA 3aBXK/U 1 HE CTAHOBUTHME
CTIEIiaIbHOTO BUMAIKY JJI8 TTOYATKOBOI CHCTEMH.

V Bumaaky, axmo ug = 0, nepme piBHanusg cucremu (1) marmme
BUTIAN —u? — u3 = 0, 3BiAKE u; = us = 0, T06TO TOMI dyHKIA U OyIe
CTaJIoN, & BiANOBiAHUI po3B’sa30K cucremu (1) Oyae TpuBiaabHUM.

IIle omwa ocobmuBHit BUMIAIOK

Ugy

21 = wy, = — = =1,

Ug,

TOOTO Uy, £ luz, = 0, u = u(xg £ 1,22), 1 HOUYATKOBA CHCTEMA 3BO-
JUTHCS 10 CUCTEMU 3 IBOMA HE3AJIEKHUMU 3MIHHUMY Ta TPUBIAJIbHAMHA
pO3B’sI3KaMu.

5. BucHoBKM. VY miil crarri Mu HaBeIW OV IPOUEIYPHU, AKA T0-
3BOJIAE TOOYLyBaTH 3arajibHi po3s’s3ku cucremu (1) 171s 3arajbHOTO Ta
ocobsmmBux Bunaakis. 1li pesymbpraré 703BOIATH, 30KPEMA, OMUCATH BCi
aH3aIM, gKi PeIyKYIOTh DAraToOBUMipHE PiBHSHHS efKOHATY 10 PiBHSIHD
3 MEHIIMM 9YHCJIOM MPOCTOPOBHUX 3MIiHHUX, IO JACTh MOXKJIUBICTH y3a-
raJibHUTH Pe3yJibraru, orpumani B poborax [1] Ta [2].
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MeTon BiIOKpeMJIEHHS 3MIHHUX 3aCTOCOBAHO 10 33/1adi BU3HAYEHHS TOUYHO-
PO3B’SI3HUX MOe/Iel TiIPpOAMHAMITHOI CTIKOCTI. 3 MATeMAaTUIHOI TOIKHU
30py mpobsieMa BU3HAYEHH: CTifKOCTi mamoi Tedii mpeacrtaBise co00I0
PO3B’SI3yBaHHSI CHCTEMH DiBHSIHB, IO oTpuMaHi 3 piBHsHb Han’e—Crokca
JiHeapi3aIli€io 3a OCHOBHUMU TEYiIMH Ta 3HAXOMKEHHS MHOXXWHU BCIX 11
MOKJIMBUX PO3B’#3KiB, #Ki JO3BOJIAIOTH PO3IIEILUIEHHs 30ypeHb Ha HOP-
MarbHI Moau. ITOBHICTIO PO3T/ISHYTO BUTAAOK IMUIIHAPUIHUX KOOPIUHAT.

The method of separation of variables is applied to the problem of determi-
ning exactly solvable models of hydrodynamic stability. From a mathemati-
cal point of view, the problem of determining the stability of a flow is the
solving of a system of equations derived from Navier-Stokes equations by
linearization along the main flows and finding a set of all possible soluti-
ons that allow splitting of perturbations into normal modes. The case of
cylindrical coordinates is completely considered.

Knacnana teopis miniHOI cTifiKOCTi B’SI3KMX HECTHCIUBHX IMTOTOKIB
OB’ I3aHa 3 PO3BUTKOM Y IPOCTOPi Ta Haci HECKIHIEHHO MaJnX 30ypeHb
HABKOJIO 33JIaHOIr0 ocHoBHOro 1oroky [1, 2, 3]. Cdopmysoemo 3aa4ay
rizpommHaMivHOL cTiftKOCTI, Oa3yrounch Ha piBusaHi Has’e—CTokca B 1u-
JAHIPUYHUX KOOpAuHATaxX (T, ¢, z). fK 1e 3Buyaitno pobisaTh y Teopii
CTIfKOCTI, PO3MIENNMO OIS MBUAKOCTI 1 THCKY (Dy, Oy, U2, P) Ha 2 CKIIA-
noBi: ocrosrol tedii (V;,V,,V;, P) i 36ypenoi (v,, vy, v, p),

@r:‘/;‘+vr; @LP:VQD'*'UQM @z:Vz'i_/Uza ﬁ:P—’_p (1)

Mincrasasitouu (1) B piBusnns Has’e-Crokca, 3anucane B repminax 3min-
HIX (Op, Oy, Vs, P), 1 iTHOPyIOUN BCi JOMAHKH, IO MiCTATH KBaapar 30y-
peHol aMILTITYId, a TaKOXK HAKJIAIaI04Yd yMOBY, IIO0 3MiHHI OCHOBHOL



Touno-po3B’si3Hi Moaesi rigpoguHaMidyHOl criffkocTi 79

reqii (V;,V,, V., P) cami 3amoBombusin piBuanns Has’e-Crokca, mu
OTPUMYEMO HACTYIHY CHCTEMY JIiHEAPU30BAHUX PIBHAHD IiAPOAMHAMIY-
HOI CTIKOCTI B MWIIHAPUIHUX KOOPIWHATAX:
v v oV, V,ov v, OV,
T + ‘/7. ™ + ’UT T _l’_ i T i s
ot or or r Op r Op
v oV, Vv 10
N VA AT R
0z 0z T por

(821),. 1 0%v,  0%v,  10v, 2 du, U,«)
+ )

or? + r2 8@2 + 022  rdr 1?2 dp 12

or?  r2 9p? 022 " ror  r2dp 12
8 8 8Vz Vo Ov, v, 0V, Ov, oV,
—— +— 25 T Uz

or r Op r Op 0z 0z
1 8p 8%v, 1 0%v, 0%v, 10v,
Sty + S+ e
poz or2  r2 99?2 022 r Or
ov, 10v, Ov,

it 2 T —0. 2
8T+r8<p+8z+r 0 @)
Beenemo HoBy cucremy koopmuuar t, & = £(t,r), v = Y(t, ), n =

n(t, z).
Kazarumemo, mo cucrema (2) m0MyCKae BIJOKpEMJIEHHS 3MIHHUX B

HECTAIIOHAPHIN MUIIHAPUYHIN cucTemi KoopauHaT &, 7y, 1), SKIIO AH3AIL
= T(t) exp(an + my + sS(t)) f(£),
= T(t) exp(an + my + sS(t))g (&),

v, = T(t) exp(an +my + sS(t))h(§),
p =T (t) exp(an +my + sS(t))m(S) (3)

3BOJIUTD CHCTEMY PIBHSAHD 3 YACTMHHUMU TOXigHUME (2) 70 cucTeMu 3-xX

3BUUANHUX AudepeHIfiagbHNX PIBHAHD APYTOTO MOPSIKY # OIHOTO 3BU-

qaifHOrO AubepeHIfiaabHOrO PIBHSHHS TEPIIOro MOPaaKy s 4-X yHK-
wiit f(£), g(&), h(§), 7(§) nacrynnoro Burismy:

R"(&) = Un1g'(§) + Urah/ (&) + Ursn'(€)

e (821@ 1 821}¢ v, 1 10v, = 2 Ovy up)
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+ Uraf(§) + Uisg(§) + Ursh
F7(&) = Uaig'(€) + Uzah/(§) + Uazm'(§)

+ U24f(§) + Uasg(§) + Uzeh(§) + Uzrm(€),
9"(€) = Us1g' (&) + Usah' (€) 4 Ussn' ()

+ Usa f(§) + Ussg(§) + Useh(§) + Usrm(§),
(&) = Un f(§) + Uaag(§) + Uazh(€) 4 Uam(§). (4)

(&) + Urrm(§),
(

Tyt U;; — 1e momaiHOMHE APYTOTO MOPAAKY BiTHOCHO CHEKTPaJIbHUX Ma-
pamerpiB a, s, m 3 KoedimieHTaMu, sKi cami € IAJIKUMA (PYHKITIIMEI
Bim €.

OCHOBHI KPOKU TIPOIEIYPH BiIOKpeMJIeHHs 3MiHHUX B cucremi (2) €
HACTYTTHUMU:

1. Mincrasasiemo an3arn (3) B piBHsAHHS (2) i 3amucyemo noxigui f (),

g"(&), n"(€), ['(§) B repminax dyukuiit g'(£), A'(§), ©'(£), f(£),
9(&), h(&), m(§), BukopucroBytouu pisuanus (4).

2. Maxi postasmaeno g (€), b (€), 7 (€), F(€), 9(), h(€), 7(€) ax nosi
Heszanexxui 3minai. Ockineku dynkuii (¢, ), v(¢, ), n(t, z), T(t),
Ti(t), S(t), ocuosui reuii V;., Vi, V. i xoedinientn U;; (axi ca-
Mi € mraakuMu QyHKIigMu Big £) € HE3aJIEeKHUMHU BITHOCHO IUX
3MIHHHX, MM BUMAaraTuMeMO, 1100 OTPUMAHA, PIBHUCTH MEPETBOPIO-
BaJIACh y TOTOXKHICTE mpu nosinbawx ¢ (€), ' (£), 7' (€), (&), 9(£),
h(§), m(§). Inwumu cioBaMu, MU MAaEMO DO3ILENUTH 1O PiBHICTH
BimHOCHO TMX 3MiHHWX. [licjas po3ienjeHHs MU OTPUMAEMO Tie-
pPEBU3HAYEHY CUCTEMY HENIHINHWX PIBHAHb B YACTHHHUX TOXITHUX
mis meimomux dyukuiit £(¢, 1), y(t, ¢), n(t, 2), T(t), Ti(t), S(t),
ocHoBHUX Tedwilt V.., V,,, V, i xoedimientis mominomis Uj;.

3. Ilicaa po3p’si3aHHSA BUIEOTPUMAHOI CHCTEMH MU OTPHUMAEMO BU-
YepLHUl OLUC KOOPAMHATHUX CUCTEM, B AKUX CUCTeMa PiBHsHb (2)
JIOTIYCKA€ BiIOKPEMJIEHHS 3MiHHUX B PaAMKaX HAIIOTO O3HAYEHHS.

Omxe, upobiieMa BiJOKpeMJIeHHst 3MIHHUX B cuctemi piBHsiHb (2) 3B0-
JUTHCS IO iHTErPYBAHHSI MEPEBU3HAYEHOI CHUCTEMHU DIBHSHBb 3 YACTHH-
HUMU MOXimHuMH 1715 HeBimomux dbyskuiit £(¢,7), (¢, ¢), n(t, z), T(t),
T4 (t), S(t), ocnoBuux Tediit V., V,,, V, i koedinientis nmoninomis U;;.

Huxae maBoaumo pesynbraru. s sHagBHOCTI (biduanOoro 3micry mMmu
HaKJIAJU JOJATKOBY YMOBY, 11100 OCHOBHI Tedil caMi TOYHO 3310BOIbHSIIN
piBusgaasa Has’e—Crokca.
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TpuBumipsi 36ypenHs. 3araibua Gopma 30yPeHD Uy, Uy, U; 1 D €
TaKOI0:

v, = T(t) exp <a77 +me + s/T(t)2 dt> £(9),

vo =0 exp (an -+ mp+5 [ 207 a0) g0,

v, = T(t) exp (an +mp+ s / T(t)? dt) h(§),

p = pT(t)% exp (an +me+ s/T(t)2 dt) m(€), (5)
ne

E=TW)r, n=Tt)z+ c(t).

ITum 36ypeHHsaM BiAMOBIAAIOTH ABa KJIACH OCHOBHUX TEUii, IO 3310~
BoJbHAIOTH piBHsAHHA Hap’e—Crokca. [Tons mBuakocreii ajis 060X Kiacis
BU3HAYEHO HACTYIHUM YMHOM:

Vo= a1 - T 50, s =22,
V, = B(T(t) — TTI((;), Ve = C(OT (1),

e dyuknii T'(t) i B(§) BU3HAYAIOTHCA PI3HUM YHHOM JJIsi KOKHOTO 3
IIAX JIBOX KJACIB:

Class I: T(t) = %, B(§) = _% + ?

ze dyukuii A(€) i C(€) 3a10BONbHAIOTH PIBHAHHS

(4k + 3% — dv) A/ (&) + £(—4k + 3%+ 4v) A" (€) + 4°v A" (€) = 0,
—dvko€ + (—4k + 362 — 4)C(€)
+ &(—4k 4 362 +40)C"(€) + e (€) = 0 (6)

1 PO3TMOJILT TUCKIB /TAHO HACTYMHUM YHHOM:

P vkop x?

p t 8t2
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. [ﬁ’(t) MEIOMPTE (VA”(ﬁ) - WA’(&))]

2 4¢

1 [ 16k2 — 562 + 16£2C2(¢)
+E/ 66 d& + po(t).

3OP (6) moxkyrb GyTu siBHUM 4MHOM PO3B’s3aHi B TepMiHAX HEIIOBHUX
raMmMa-QyHKIIH.

k
é—?

ne A(€) i C(&) 3a10BONBHSIOTH PIBHSHHS

Class II: T(t)=1, B(§) =

(k=v)A'(§) + &(v — k)A" () + v A" () = 0,
vkol + (k4 v)C(€) + E(k —v)C'(&) — 2vC"(€) = 0 (7)

1 BIIOBIIHUIT PO3IIO/L TUCKIB JIAHO HACTYIIHUM YMHOM:

i)

f:y%¢+x(aw+wA%®+

K+ €2C°(¢
jeeges

3OP (7) moxkyTb OyTu sIBHUM YMHOM PO3B’d3aHi B €JleMeHTApHUX PYHK-
X,

PiBusiHHS 3 BigOKpeMJIeHUMU 3MIHHUMY MOXKYTh OyTH 3amUCaHi It
000X KJIACIiB TAKWM YUHOM:

dg + po(2).

FO(Es+v—m’v — a’Cv+ aA(E) + mEC(€) + E2B'(€))
+2(mv — £C(€))g(&) + E((—v +EB(E)) f/(€)
+&(7' (&) —vf"(€)) =0,
(s +v—m’v —a’&v +a®A(€) + £B(&) + mEC(€)) g(§)
+ f(&)(—2mv 4+ £C(€) + £2C'(€))
+&(mm(§) + (—v +EB(E))g'(§) — &vg"(€)) = 0,
(&%s —mPv — a®v + al A(E) + mEC(€))h(€)
+ &(alm(€) + EF(EA(E) — vl (€) + EB(EN'(€) — Evh”(€)) = 0,
f(&) +mg (&) +&(ah(§) + f'(€)) = 0.



Touno-po3B’si3Hi Moaesi rigpoguHaMidyHOl criffkocTi

IsoBuMipHi 36ypenns. 3aramsna bopma 36ypers € TAKOM:
vy = T(t)exp <m¢ +s [ 107 dt) 5(),
v, = T(t) exp <m<p + s/T(t)th) g(&), v, =0,
p= TP exp (mp+s [Twar)n(e) =T

sIKa € YaCTUHHUM BUMaAKoM (5) mas a = 0.
[wum 30ypenHsiM BiamoBizae, 30KkpemMa, Taka OCHOBHA, Tedis:

V.= —kz4B(t), Vi=kr/24+q/r, V,=vBET(),

P 1 4¢% + k2t
— = ——k?2? kB(t) — B'(t)) — ————
Sk 4w (B — B'(1) —

P
+T2(t) (ﬂ / BZ(’E)dg — ;ukw) + po(t),

ne dyukuii T(t) i B(£) 3a10BONbHAIOTH CUCTEMY DiBHAHB

T(1) ~ 5 (QT() ~ KT(1) =0,

ko& — (2q 4 2v + Q&%) B(€) — £(2q — 2v + Q€%) B/ (€)
+20€?B"(€) = 0,

KA TMPUBOJUTD /IO HACTYITHUX BUIIAJIKIB

T(t):e%ﬂ (i—l), T(t):ﬁ (g——1>,

T() =1 (§_1>, T(t)=e*?2 (Q=0).
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Posrismatorses anaredpa eiizentepra b3 ta TpuBmmipua aaredpa Jli g 3 me-
HyJIbOBHMU KOMYTAIliHUMH CIiBBiAHONIEHHAMU [€1, €2] = €1 (= —[ez, €1]).
Ommcano asnrebpaiuni MHOXKXWHMY, 10 € 3aMUKAHHIM OPOIT BEKTOPIB CTPYK-
TYpPHUX CTaJIUX, IO BiAIOBIZAIOTH h3 1 g, a caMe: y KOXKHOMY 3 BHITAJKiB
mobyaoBaHO HAOIp IMOIIHOMIB, TAKWX, IO MHOXKWHA iX CILJIHPHUX HYJIB €
3aMUKAHHSIM OpOITH BEKTOPA CTPYKTYPHUX CTAINX. TaKMil OMIC T03BOJISE
HAJATH AJbTEPHATUBHUN IIAXiT 10 3HAXOMXKEHHS BCiX MOXKJIMBUX BUPOI-
K€Hb l)3 Ta ¢ y HOBLILHOMY HECKIHYEHHOMY IIOJIi 33 JOTOMOTrOI0 O3HAYEHHS
He3BiaHOl anrebpaiaHol MHOXKUH.

Let b3 be the Heisenberg algebra and let g be the 3-dimensional Lie algebra
having [e1,e2] = e1 (= —[e2,e1]) as its only non-zero commutation rela-
tions. We describe the closure of the orbit of a vector of structure constants
corresponding to h3 and g respectively as an algebraic set giving in each
case a set of polynomials for which the orbit closure is the set of common
zeros. Working over an arbitrary infinite field, this description enables us
to give an alternative way, using the definition of an irreducible algebraic
set, of obtaining all degenerations of h3 and g (the degeneration from g
to hs being one of them).

1. Introduction. In the second half of the twentieth century a
lot of works appeared on the study of different types of limit processes
between various physical or geometrical theories. Such limit processes
naturally lead to the notion of contraction (or degeneration). Possibly
the first work in this direction was Segal [11] who studied a limit process
of a family of some physically important isomorphic Lie groups. The
claim is that if two physical theories are related by a limit process, then
the associated invariance groups (and invariance algebras) should also
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be related by some limit process. This led to a wide investigation of
contractions of Lie algebras from the physical point of view. Possibly, the
three most famous physical examples of contractions are the following.

e Contraction of relativistic mechanics to classical mechanics was
studied in works by Inoénii and Wigner [6, 7]. Considering the phys-
ical limit process ¢ — oo in special relativity theory they showed
how the symmetry group of relativistic mechanics (the Poincaré
group) contracts to the Galilean group which is the symmetry
group of classical mechanics.

e The relation between classical and quantum mechanics can also be
expressed in terms of a limit process or, in other words, a contrac-
tion [5]. Thus, one can consider classical mechanics as the limit of
quantum mechanics under the contraction ) — a, where b is the
Weyl-Heisenberg algebra and a is the abelian Lie algebra of the
same dimension. Under this contraction the quantum mechanical
commutator [x,p] = ifi (corresponding to the Heisenberg uncer-
tainty principle) maps to the Abelian case (that is, the classical
mechanics limit) under 2 — 0.

e The porous medium equation u; = m~tA(u™ — 1) can be contrac-
ted [13] (as m — 0) to the equation u; = Alnw, which is equivalent
to the equation defining the Ricci flow on R2.

In these (and many other publications) it is shown, in particular,
how some basic properties of the “contracted theories” can be recon-
structed from the corresponding properties of the “original” theories.
In an attempt to unify such observations, Zaitsev [14], independently
of Inonti and Wigner, suggested constructing “the theory of physical
theories” based on group limits of physical theories. This amounts to
including in a uniform system several physical theories being connected
together via certain relations. Recently, different types of contractions
have been widely used in elementary particle theory, analysis of differen-
tial equations and other areas of mathematical and theoretical physics.

Working over C or R, the statement “Lie algebra h; is a contraction
of Lie algebra hs” can be rephrased as “hp lies in the closure, in the
metric topology, of the orbit of hs under the ‘change of basis’ action of
the group of invertible linear transformations”. In [4] the authors show
that over C the orbit closure in the metric topology coincides with the
orbit closure in the Zariski topology. Orbit closures with respect to the
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Zariski topology are called degenerations. The notion of degeneration is
well-defined not only over the fields C and R but also over an arbitrary
ground field. In fact, this concept of orbit closure under the action of
various groups arises naturally in many areas of mathematics (see, for
example, [10]).

In [8] we explored the possibility of investigating degenerations over
an arbitrary field using elementary algebraic techniques. For this we
needed to extend or modify techniques already used over the fields C, R
(for example contractions obtained as limit points resulting from the
action of diagonal matrices, also known as generalized Inonii-Wigner
contractions) in a way so that they can be applied to the case of dege-
nerations over an arbitrary field. In this paper, although we continue
our study of degenerations via an elementary algebraic approach, we
take a slightly different path and consider the possibility of obtaining all
degenerations (for certain examples of Lie algebras) ‘from first principles’
by direct application of the definition of an algebraic (Zariski-closed) set.
This involves obtaining explicit descriptions of the orbit closures under
consideration using polynomial equations.

The paper is organized as follows. In Section 2 we give some neces-
sary background, the setup being over an arbitrary infinite field F. In
particular, in Section 2.1 we recall some basic definitions and results on
irreducible algebraic sets and regular maps while in Section 2.2 we recall
the definition of degeneration together with some basic facts on Lie alge-
bra structure vectors and their orbits under the ‘change of basis’ action
of the general linear group. In Section 3 we perform some explicit com-
putations concerning the orbits (and their closure in the Zariski topol-
ogy) of certain given Lie algebra structure vectors corresponding to hs
and go @ a; respectively, where hs denotes the Heisenberg algebra, go
denotes the 2-dimensional non-Abelian Lie algebra and a; denotes the
1-dimensional Abelian Lie algebra. This enables us to give a descrip-
tion of the orbit closures of these structure vectors as algebraic sets via
polynomial equations and, as a consequence, determine in an alterna-
tive way all degenerations of hs and go @ a; over F. We also obtain
descriptions of the particular orbits described above as the intersection
of a Zariski-closed set with a Zariski-open set.

2. Preliminaries and generalities. We begin this section by recal-
ling some basic facts on irreducible algebraic sets. We refer the reader
to Geck [2] for more details and for proofs of the main results from the
theory we will be using.
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2.1. Algebraic sets. Fix F to be an arbitrary infinite field and
let m be a positive integer. We consider the ring F[X] = F[X7,..., X,;]
of polynomials in the indeterminates Xy, ..., X,, over F. For each a =
(a1,..., ) € F™ there exists a unique F-algebra homomorphism evy,:
F[X1,...,Xm] — F such that evy(X;) = «a; for all i. Given a =
(a1,..., ) € F™ and f € F[Xy,...,X,,] we will be writing more
simply f(a) = f(a1,...,am) =eva(f).

Definition. Let S be any subset of F[X7,...,X,,]. The algebraic set
V(S) determined by S is defined by

V(S)={a eF": f(a) =0 for all f e S}.

A subset of F™ is called algebraic if it is of the form V(S) for some
subset S C F[X1,...,X,,]. For any subset V' C F™_ the vanishing ideal
I(V) of V is defined by

I(V)={f €FX1,....,Xn]: f(a) =0for all « € V'}.

It is immediate from the above definition that if S;, Sy are sub-
sets of F[X1,..., X,,] with S; C Sy, then V(S3) C V(S1) (see [2, Re-
mark 1.1.4]).

It can be shown (see, for example, [2, Remark 1.1.4 and Lemma 1.1.5])
that arbitrary intersections and finite unions of algebraic sets in F™ are
again algebraic. The empty set @ and F™ itself are clearly algebraic.
Thus, the algebraic sets in F™ form the closed sets of a topology in F™,
which is called the Zariski topology. A subset X C F™ is open if its
complement F™™ \ X is algebraic (closed).

We will denote by V the closure of a subset V' of F™ in the Zariski
topology.

An essential role in our investigation is played by the notion of irre-
ducibility of algebraic sets.

Definition. Let Z C F™ be a nonempty algebraic set. We say that Z is
reducible if we can write Z = Z; U Zy, where Z1, Zy C Z are nonempty
algebraic subsets with Z; # Z and Z; # Z. Otherwise, we say that Z is
1rreducible.

Remark 1 (see [2, Example 1.1.13]). Our assumption that F is infinite
ensures that F™ is irreducible.
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Definition. Let s, r be positive integers and let V' C F* and W C
F” be nonempty algebraic sets. We say that ®: V. — W is a reg-
ular map if there exist fi,...,f, € F[Xy,...,X;] such that ®(a) =
(fila),..., fr(e)) forall a € V.

One can then observe (see [2, p. 23]) that regular maps are continuous
in the Zariski topology.

Remark 2 (see [2, Remark 1.3.2]). Let V, W be as in the definition
above and let ®: V' — W be a regular map. Assume that V isirreducible.
Then the Zariski closure ®(V)) C W is also irreducible.

2.2. Degenerations of Lie algebras. We keep the setup of the
previous subsection. In particular F denotes an arbitrary infinite field
but now we assume further that m = n? for some integer n > 2 we have
fixed. Also let G be the general linear group GL(n,F).

Now let @ = (a1,...,q;,) € F™ be given. For the rest of our dis-
cussion, it will be convenient to relabel the components of « as fol-
lows. For 1 < r < m relabel o, as a;(y jr),ke) Where i(r), j(r),
k(r) are the unique integers with 1 < i(r),j(r),k(r) < n satisfying
r—1=(i(r)—1)n*+ (j(r) — Yn+ (k(r) — 1). We will write a@ = (cv; ; 1)
or o = () for short. For example, in the case n = 2 (m = 8) we have
for a € F™,

o = (a17 g, (3, 0y, 05, g, 0[7,068)

= (041117041127@121704122,042117C¥212,04221,06222)~

(The above ordering in fact amounts to writing o = (%) € F™* where
the triples (4, j, k) are placed in lexicographic order.)

In a similar manner we relabel the indeterminates Xi,...,X,, in
F[X1,...,X;n] and we write F{X]| (= F[Xy,..., X)) = F[X,: 1 <
i,7,k <n.

Definition. An element X = (\;;;) € F™ is called a Lie algebra struc-
ture vector if there exists an n-dimensional Lie algebra g over F and an
ordered F-basis b = (b1,...,by) of g such that [b;,b;] = > "1 _; Aijrbk for
1 <4,j <n. Insuch a case we call A = (\;;,) the structure vector
of g relative to b. We denote by £, (F) the subset of F™ consisting of
precisely those elements of F™ which are Lie algebra structure vectors.

We refer the reader to [9] for the basic definitions and properties of
Lie algebras.
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The properties of the Lie bracket ensure that £, (F) is an algebraic
subset of F™. This is because £, (F) = V(S) where S is the union of the
following three subsets of F[X;;,: 1 < i,j,k < n] (see, for example, [9,
pp. 4-5] for a proof of this fact):

{Xiin: 1<,k <n}, {Xiyp+Xjn:1<4,j,k<n},

{ Z(Xiijklr + X Xpir + XiinXnjr): 1 <4,5,0,r < n}
%

Remark 3. We have the following natural action of G = GL(n,F) on
L, (F) by ‘change of basis’. Let g = (g;;) € G and let XA = (\;;1) € L, (F).
Also let g be an n-dimensional Lie algebra over F and b = (b1, ..., by)
be an ordered F-basis of g such that A = ()\ijk) is the structure vector
of g relative to b. Now let ' = (b},...,b,,) be the basis of g defined

by b = 37 gijbi for 1 < j < m. Also let p— (Aijr) € F™ be the
structure vector of g relative to b’ (so we have [b}, ] = 37, A;,b;, for

1 <i,j <n). We will write ' = Ag (clearly, X € L, (F)). We call g the
transition matrix from basis b to basis b’ of g.

It is well known and easy to check, that the above process describes
a well-defined (right) action of G on L, (F). (See, for example, [8, Re-
mark 2.6] where some details of such a check are given.)

Observe that the orbits relative to the action defined in the preceding
remark correspond precisely to the isomorphism classes of n-dimensional
Lie algebras over F. We denote by O(u) the orbit of the Lie algebra
structure vector g € L£,,(F) under the action of GL(n, F) described above.

Example. It is immediate that the zero vector 0 = (O, ...,0r) of Fr’
belongs to L£,(F) as it corresponds to the n-dimensional Abelian Lie
algebra over F (under any choice of basis). Its orbit consists of precisely
one point and hence it is Zariski-closed.

Remark 4. (i) For each ¢ € GL(n,F), making use of the action de-
scribed in Remark 3, we define a function ®4: £, (F) — £, (F): p— pg,
(n € L,(F)). Then &, is a regular map and hence continuous in the
Zariski topology. (To see this we fix ¢ € GL(n,F). It follows from
the change of basis process that for each p € L,(F) we get ®4(pn) =
(evy(fi)s-..,evyu(fns)) where, for 1 <i <n3, f; is polynomial in F[X]
which only depends on g.)
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(ii) In view of item (i), one can give an elementary proof of the
fact that the closure of an orbit in £, (FF) is a union of orbits (see, for
example, [8, Lemma 3.1]).

Definition. Let g1, go be n-dimensional Lie algebras over F. We say
that g; degenerates to gs (respectively, g; properly degenerates to go) if
there exist structure vectors A of g1 and As of go, relative to some bases
of g1 and go, such that Ay € O(A1) (respectively, Az € O(A1) \ O(Ay)).

It is immediate from Remark 4(ii) that if A € O(u) and v € O(X),
then v € O(p), (A, p,v € L,(F)). In other words, the transitivity
property holds in the case of degenerations.

Finally for this subsection we remark that there are no proper dege-
nerations over finite fields as finite subsets of F"™* are closed in the Zariski
topology.

3. Lie algebra orbit closures via polynomial equations. We
continue with our assumption that [F is an arbitrary infinite field.

Below, b3 will denote the Heisenberg (Lie) algebra, go will denote the
2-dimensional non-Abelian Lie algebra and ag, for £ > 1, the Abelian
Lie algebra of dimension k.

We will make use of the action of G = GL(n,F) on L, (F) described
in Remark 3 in order to perform some explicit computations concerning
the orbits (and their closure in the Zariski topology) of certain given
Lie algebra structure vectors corresponding to hz and gs @ a; respec-
tively. This will allow us to give descriptions of the orbit closures of
these structure vectors as algebraic sets (via polynomial equations) and,
in addition, obtain descriptions of the particular orbits we investigate
here as intersections of a Zariski-closed with a Zariski-open set.

We will also show how these explicit descriptions of the orbits enable
us to provide an alternative way of obtaining all degenerations of h3 and
g2 P a; over F.

3.1. The Heisenberg algebra. We consider the Heisenberg alge-

bra hz. This (3-dimensional) algebra has an F-basis é = (ey, e, €3)
relative to which the only non-zero products (commutation relations) are
[e2,e3] = e1 = —les, e2]. The structure vector of h3 relative to é is n =

(niji) € F?7 where n231 and 1321 (with 7231 = 1, 7321 = —1) are the only
nonzero components of . First we determine O(n) as a subset of F27.
For this, let g = (g;;) € GL(3,F) and suppose that M;; (4,7 = 1,2, 3) is
the determinant of the matrix obtained from g by deleting its i-th row
and j-th column. Assume further that g is the transition matrix from
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basis (e1, ea, e3) to the basis (€], €}, e5) of hs. (So (e, €h, e%) is the basis
of b3 given by € = Zle gije; for 1 < j < 3.) An easy computation then
shows that, relative to this new basis, the multiplication in b3 is given by

[6/1, 6/2] = (det g)_lMlg(Mlle/l — M12€/2 + Mlgeé),
[6’1, 6:/3] = (det g)_lMlg(Mllell — M126/2 =+ Mlgeé),
[6/2, 6%] = (det g)ilMll(MHe/l — M126/2 + Mlgeg).

It follows that there exist «, 8,,d € F such that

(€1, €3] = v0(ael — Bes + yeb),
[}, €] = Bo (et — Bes + ve3),
(€5, €3] = ad(ae) — Be; + yeb).

The above relations motivate the following definition. For o, 53,v,6 € F,
let '(a, B,7,9) € F27 be defined by n'(«, 8,7,6) = (0,0,0, ays, — B0,
v28, 36, — 326, 3vd, —ayé, 6, —728,0,0,0, a8, —a B8, arys, —a36, %5,
—Bv8, —a?8, afd, —avd, 0,0,0).

We aim to show that the subset V of F27 defined by

V={n'(a,8,7.0) € F*": a, 8,7, € F}

is in fact the (disjoint) union of O(n) and O(0) (recall that 0, the zero
vector of F?7, is the unique structure vector corresponding to the 3-
dimensional Abelian Lie algebra). It is clear from the above discussion
that O(n) C V, hence it suffices to show that any nonzero vector v € V'
belongs to O(n). For this, it will be convenient to consider the decom-
position V' = Vi U V5 U V3 where the subsets Vi, Vs, V3 of V' are defined
as follows: First, for u,v, A\, 0,7,k € F, define the elements 1, (u, v, \),
n2(7,0) and n3(x) of F*7 by

(v, A) = (0,0,0, U\, —pv X, V2N, p\, =2\, v\, —vA\, pv,
—12X,0,0,0, N, —p\, U, —p\, g2\, — v, =X, ),
—,0,0,0),
Ny (1,0) = (0,0,0,0,07, —07%,0,0, —0T,0, —0T,07%,0,0,0,0,
0,0,0,—0,07,0,0,0,0,0,0),
ns(x) = (0,0,0,0,0,k,0,0,0,0,0,—~,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0).
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We then let Vi = {ny(p, v, \): p,v, A € F}, Vo = {ny(1,0): 7,0 € F}
and V3 = {n3(k): k € F}.

In order to establish that V is indeed the union of the three sets
above, it suffices to verify that Vi = {n/(«a, 5,7,0) € V: a # 0}, Vo =
{n'(a,B,7,0) € V:ia=0and 8#0} and V3 = {n'(a,B,7,0) € V:a =
0 and 8 = 0}. That the above equalities of sets in fact hold is immedia-
te from the relations n/(1, i, v, \) = 0, (u, v, ), n,(Ba™t,va™ 1, 6a?) =
' (e, B,7,0) (for o # 0), 0'(0,1,7,—0) = my(7,0), my(vB~1, —05%) =
7'(0, 8,7,9) (for B # 0) and 7/(0,0,1, k) = m3(k), N3(67*) =n'(0,0,7,9).

Since V= V3 U V5, U V3, we can see that any nonzero element of V
has one of the following forms: m,(u, v, A) (with A # 0), n,(7,0) (with
o #0) or n3(k) (with k # 0).

Moreover, for A # 0 we have ng; (p, v, A) = 1, (p, v, A), for o # 0 we
have nga(7,0) = My(7,0) and finally for k # 0 we have ngs(k) = n3(x)
where, for A\ # 0, 0 # 0, k # 0 respectively, the matrices

AL oo 0 o1 0
gl(/”'al/a/\): H L o, 92(7—’0): 1 0 of,
-v 0 1 0o = 1
0 0 st
gs(k) =11 0 0
01 0

all belong to G = GL(3,F). This establishes that V' \ {0} = O(n).

Our next aim is to show that V is an irreducible algebraic set. For
this, let S = 51 U Se U S35 where Sy, S, S3 are the following subsets of
F[Xijkl 1 S i,j,k S 3}

S| = {X”‘k: 1 Sl,k§3}, Sy = {Xijk+ink: 1 SZ,j,k§3},
S3 = { X121 — X233, X131 + Xos2, X122 + X133, Xioo + X123 X132,
X701 — X123 X031, X191+ X132 X231, X121 X131 + X120 X031}

Observe that S C I(V). We claim that V' = V(S). It is clear that
V C V(S). To establish the reverse inclusion V(S) C V, let v =
(7i%) € F?7 be a common zero of the elements of S. Since v is a com-
mon zero of the elements of S; U Ss, we see that the shape of ~ is
determined once we determine the shape of the auxiliary vector 4 =

(7121, 7122, V123, V131, V132, V133, V231, V232, Y233) € FY. Invoking now the
fact that v is a common zero of the polynomials of degree 1 in S3 we
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see that in fact 4 has shape (7121, Y122, Y123, Y131, Y132, — V1225 Y231, — 7131,
~v121). We will consider the cases v231 # 0 and 7231 = 0 separately. If
A = Vo317 # 0 we can set 4 = 1312~ and v = 191 A 7! from which we can
deduce that y123 = 2\ (since V35, — V12377231 = 0), Y132 = —p?\ (since
Vg1 + 71327231 = 0) and ~y120 = —pr (since v1217131 + 1227231 = 0).
Hence « € V1 whenever 7931 # 0.

For the case 7231 = 0, by similar argument, one can show that if
Y132 # 0, then v € V5 and if 130 = 0 then v € V3. We conclude that
V =V(S) and hence V is an algebraic set.

Next, we consider the map ®: F* — F?7: (o, 8,7,9) = 0'(«, 8,7, 9).
Clearly ® is a regular map having V as its image. Thus, ®(F4) =V =
V. Invoking Remarks 1 and 2, we see that V is irreducible. It follows
that O(n) is not closed in the Zariski topology. (Note that if O(n)
were Zariski-closed this would imply that V' = O(n) U {0} is reducible,
being the union of two nonempty closed sets.) Hence, O(n) is properly
contained in O(n). Also O(n) C V since O(n) C V and V is an algebraic
set. We conclude that O(n) = V = O(n) U {0}. In other words, over
an arbitrary infinite field, the only proper degeneration of h3 is to the
Abelian Lie algebra as. We remark here that this is a well-known fact
and has been proved using different methods over various fields, see for
example [1, 3, 8, 12]. In the discussion above we presented an alternative
way of obtaining it, based on the definition of an irreducible algebraic
set.

3.2. The algebra g; @ a;. In this subsection we perform a similar
investigation for the algebra g = go @ a;. Note that this algebra has an
F-basis b = (b1, ba, b3) relative to which the only non-zero commutation
relations are given by [by,ba] = by = —[b2,b1]. Let p = (pijr) € F?7 be
the structure vector of g relative to the basis b. Suppose now that g €
G = GL(3,F) is the transition matrix from b to the basis &' = (b}, b, b})
of g. It is then easy to show that

[0}, b5] = (det g) " M3 (My1b} — Mysby + Mysbh),
[ ll>bé] = (det g)_lMSQ(Mllbll — M12b/2 + ]\413[72})7
by, b5] = (det g) " Mgy (My1b] — Misby + Mysbh),

where, as before, M;; denotes the determinant of the matrix obtained
from g by deleting its i-th row and j-th column (in particular, the M;; are
elements of our field F). It follows that there exist x1, ¥1, w1, X2, Y2, ws, d
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€ F such that

(b7, 05] = dx2(x1b} — ¥1bly + wiby),
[ 117bé] = 6¢2(X1b/1 - ¢1b12 +W1bg)7
(b5, b3] = dwa(x1b] — 1h1bhy 4+ wib).

This prompts us to define p’(x1, %1, w1, X2, ¥2,ws,d) € F27 by

P (X1, %1, w1, X2, 2, w2,8) = (0,0,0, x1x20, =11 X20, W1X20,
X120, =126, w1120, —x1Xx20, Y1 X260, —w1X29,0,0,0,

X1w20, —P1wad, w1wad, —X1%20, P11h20, —w11h2d, —x1Wd, Yh1W2d,
—w1w26,0,0,0),

and the subset U of F27 by U= {P/(X17¢17w17 X27¢27w27 6) X1 ¢17 w1,
X2, Y2, w2,0 € F}.

It is then clear that O(p) C U. We want to show that U is an
algebraic set containing V' = O(n) U {0} (we keep the notation for V,
n, ' and also for S, S, Sa, S3 introduced in the previous subsection).
The inclusion V' C U is immediate from the fact that n'(«, 8,7,0) =
p/(Oé7 67 Y Ys 6) Q, 6)

Next, we define the subset T of I(U) by T = S; U S U T3 where

Ty = { X121 X132 — X122 X131, X121 X232 — X1220X031,
X131 X032 — X132 X031, X121 X133 — X123 X131,
X121 X233 — X123X231, X232 X123 — X122 X233,
X1220X133 — X123 X132, X132 X233 — X133 X232,
X233 X131 — X133X031}

(recall the definition of S; and Sy in Section 3.1).

Now let S" = TU{ X121 — Xa33, X131+ Xo32, X120+ X133} CTUS3.
It is easy to check that V' C V(S’). We also have V(S') = V(T'U S3).
To see this last equality of sets, note first that V(T'U S3) C V(S’) since
S" C TUSs. On the other hand, any v € V(S’) is a common zero of
every polynomial in T'U S3. Hence, we also have V(S') C V(T U S3).
Since V- C V(57), we get V. C V(T'US3). But TUS3 D S, s0 V(TUS3) C
V(S) = V. We conclude that V (= V(S)) =V(T'US3) = V(5).

We aim to show that U = V(T'). This would imply that U is an
algebraic set (and also provide an alternative way of seeing that V. C U
in view of the observation above).
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Clearly, U C V(T). In order to establish the reverse inclusion, it
will be convenient to decompose U as a union of three subsets which
contain among them all elements of V(T'). With «, 8,7, v, 6, p,0,T,
¢,0,¢,k € F, define the elements p,(a, 3,7, 1, v, ¢), ps(o,7,p,¢) and
p3(07£’ H) € F27 by

p1(, 8,7, 1, v, 9) = (0,0,0, pa, —puf, pry, ve,, —v B, vy, —pa, ufs,
— 117,0,0,0, pa, =93, ¢y, —ve, v, —v,
— oo, 9B, —$7,0,0,0),
py(o,7,p,¢) =(0,0,0,0,0,—0¢,0,7,—7¢,0,—0,0(,0,0,0,0, p,
—pC,0,—7,7¢,0,—p, p¢,0,0,0),
p3(6,€,5) = (0,0,0,0,0,0,0,0,£,0,0,—6,0,0,0,0,0, ,0,0, —¢,
0,0, —k,0,0,0).

Also define the subsets Uy, Us and Us of F2” by Uy = {p; (v, B,7, i, v, $):
o, B,7, v, ¢ € F and o # 0}, Uz = {py(0,7,p,¢): 0,7,p,¢{ € F} and
Us = {p3(97£a’%): 9357’4’ € F}

It is then immediate from the relations p,(«, 8,7, p, v, @) = p'(x1 =
«, '@[}1 = ﬁv w1 =79 X2 = K, 7/)2 =V, W = d)a 0 = 1); pZ(JaTa,O?C) =
Plxi =09 =—-1Lw =—(x2=0,% =7, wa =p,0 =1) and
p3(9?£?"{) = pl(Xl = 07 ’(/}1 = 07 w1 = 17 X2 = 9) ¢2 = 57 w2 = R, 0= 1)
that U; C U fori=1,2,3.

We now show that V(T') C Uy UUs UUs. Let v = (y1) € F27
be a common zero of all polynomials in T. As T D S; U Sy, similarly
to the Heisenberg algebra case, we will work with the auxiliary vector
A = (7121, V122, Y123, V131, V132, V133, V231, V232, 1233) € IFo. Again, we will
need to consider different subcases. We begin by considering the case
Y121 # 0. Sincey € V(T'), we get 4 = (y121, V122, V123, 1131, ’7122’713171_2117
V123713171215 V2315 V12277231 V1215 V12372317101 ) For example, to see that
Y132 = 71227131717211, note that -y is a zero of the polynomial X791 X130 —

X199X131 which belongs to T. On setting u = 1, v = 71317172117 ¢ =
Y231Y101s @ = Y121 (# 0), B = —7y122, ¥ = 7123, We see that v =
p1(a, B, 7, u, v, ¢) where o # 0, so v € U;. Next we consider the case
~v121 = 0. We split this case into the subcases 122 # 0 (where, by similar
argument as above, we can show that v € Us) and 7122 = 0. It remains to
consider the case when both 7121 and 7125 are equal to zero and the next
step is to split this case into subcases according to whether 123 # 0 (we
can show then that v € Us) or 123 = 0. Continuing in a similar fashion,
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we finally deduce that V(T') is indeed a subset of U; UUz UUs. Summing
up the above discussion, we see that U C V(T') C U;UU,UUs C U. This
forces U = Uy UUy; UU;s = V(T). Recall now that V.=0(n)u{0} C U.
In order to show that U = O(p)UO(n)U{0}, we find, for each § € U\V,
an invertible matrix ¢g(§) € G such that § = pg(9).

In the table below we summarize the results of this computation,
listing also the corresponding matrices g = ¢(d). We first split into
subcases according to whether § € U \ V is of the form p, (with a # 0),
P, or ps and as it turns out, depending on the values of the elements of
F involved, we need to split into further subcases.

It is now useful to recall that V' = V(S’) where 8" = T U {X32; —
Xos3, X131 + Xoso, X122 + X133} CTuUSs. Let p/ = (p;jk) eU. It
follows that p’ € V if, and only if all three conditions pjs; — phss = 0,
Pia1 + Phae = 0 and plag + pi33 = 0 are satisfied. In particular, in the
case p' = py(a, B,7,1,v,$), we have p/ € V if, and only if, all of the
conditions pa — ¢y = 0, vao — ¢ = 0 and —uf + vy = 0 are satisfied.
For p; to be an element of U; we have the restriction o # 0, so in
this case, the third of the last three conditions follows from the other
two (this is because the conditions pa — ¢y = 0 and va — ¢ = 0 are
equivalent to the conditions p = ¢ya~! and v = ¢Ba~! if a # 0). For
simplicity, in the table below we will write A1 = pa— ¢y, As = va—¢f.
Similar observations can be made in the cases p’ has form p, or p; (as
it can also be seen from the table). Moreover, in the table below, vector
p1 = p1(a, By, 1, v, ¢) will always be considered under the restriction
a # 0, compare with the definition of set Uj.

p; | conditions transition matrix g det g
v ¢ 0
P A1 #0, A2 #0 uB—vy A1 Az A1 A
L — 0 «
_ [ 8 a apTlyTlAy
o e e L a3
v [ 982" 4 0
A; =0, Ay #0, ! 0 0
P ¢=0 —yv 0 av —a?v
(=p=0,v#0) | 7+8 a «
A1 =0, Ay #0, v ¢ O
P 6#0, v=0 0 0 A —A2
(=n=0) LB a 0
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- 0 o?py  agp
) 21;;0’ ;‘30—0’ a 'BA1 AL 0 —pA}
s Y I —0471141 0 ’771A1
S
A1 #0, A2 =0, K 2
0 —
P1 v=0 (= p#0) gn gcx X wra
= o ¢
A1 #0, A2 =0, . 2
P1 - _ 0 A 0 A7
B=0(=v=0) 4 0 o
P1 A1 =0, A2 =0 p1€O(17) —
[0 -0 -7
py | p#£0, 7(—0#0 -0 p{ p p(r¢ — o)
! 0 0
(7 p 0
Py | pP#0,7C—0=0 0 p¢ p I
1 0 o0
[0 o T
ps | p=0,7C—0 #0 7(—0c 0 O (¢ — 0)?
| O ¢ 1
py | pP=0,7(—0=0 p2 € 0(n) —
[ 1 ¢ tx+0) 1
p3 | K#0,£#0 £ -k 0 K
|1 0 0
[ —6x=1 0 1
p3 | K#0,£=0 0 -k 0 K
! 0 0
o e 1 1
p3 | K=0,£#0 -£ 0 0 =£
L0 1 0
ps | K=0,£=0 p3 €0(n) —

The computation above establishes that U = O(p)UO(n)U{0}. Now
recall that U (= V(7)) is Zariski-closed. In fact, by similar argument as
in the case of the set V', we can show that U is irreducible, considering
now the regular map ®: F” — U = U C F?7: (x1, 41, w1, X2, V2, wa, ) >
(0,0,0, x1x20, —¥1x20, w1X20, X1¥20, =190, w1928, —X1X20, Y1X20,
—W1X2(5, 0, O7 O, Xl(,UQ(S, —¢10J25, OJ1WQ5, —X1w25, wlwg(s, —OJ1¢25, —X1W25,
1,[}1&)25, 760“4)2(5, 0, 0, 0) = [),(Xl7 1,[)1, Wi, X2 1,[)2, w2, 5)

Since U is Zariski-closed and O(p) C U, we get O(p) C U. Invoking
the fact that U = O(p) U O(n) U {0} we can deduce that h3 and ag
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are the only possible Lie algebras which gs @ a; can properly degenerate
to. In order to establish that go @ a; in fact degenerates to both bs
and ag it suffices to show that O(p) = U. Since U is irreducible and
O(n) = O(n)U{0} we get that O(p) is not Zariski-closed. It follows that
O(p) is properly contained in O(p). If n &€ O(p), then O(n)NO(p) =
since O(p) is a union of orbits (see Remark 4(ii)). It would then follow
that O(p) = O(p) U {0}, contradicting the fact that U is irreducible.
We conclude that n € O(p). It follows that O(n) € O(p) and hence
O(m) € O(p). Since 0 € O(n), we get that 0 € O(p). Summing up, we
have shown O(p) C U = O(p) UO(n) U{0} C O(p). Hence, U = O(p)
as required.

We remark here that it is well-known that, over an infinite field, any
Lie algebra degenerates to the abelian Lie algebra of the same dimension.
Also note that already in [1] it is shown that g degenerates to h3 in the
case the ground field is R. In view of [8, Lemma 3.9] the technique
used in [1] can be extended to obtain a degeneration from g to hs now
over an arbitrary infinite field. In the discussion above we provided an
alternative way of obtaining this particular degeneration using the notion
of an irreducible algebraic set.

We close this subsection with some general comments regarding our
sets above. First, we can observe that O(p) = U \ O(n) = O(p) \ O(n)
so O(p) is open in its closure (compare [2, Proposition 2.5.2] for the
case of an algebraically closed field). Now let W be the union of the
three principal open sets {a € F** . fila) # 0} for ¢ = 1,2,3 where
Jf1 = X121 — Xo33, fo = Xi31 + Xo32 and f3 = Xj20 + Xi33. Since
O(p) =V(T) and O(n) = V(S') where 8" = TU{ f1, f2, f3}, we see that
O(p) = V(T)nW. This in fact verifies that O(p) consists of precisely
those points in U (= O(p)) which do not correspond to unimodular Lie
algebras (compare, for example, with [8, Remark 4.12]).
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New generic realizations of conformal Lie algebra and two de Sitter algebras
are obtained. Deformation of the Poincaré algebra to the de Sitter ones is
constructed.

1. Introduction. Each well-established physical theory has its own
certain fundamental invariance group and, therefore, realizations (repre-
sentations by first-order differential operators) of their Lie algebras are
effectively used for reduction, integration, differential invariants, etc., see
e.g. [1,2, 3,5, 8].

In this work we consider three types of conformal groups: standard
conformal group C(3,1) and two conformal groups of pseudoeuclidian
spaces C(3,0) and C(2,1). For the respective Lie algebras ¢(3,1), ¢(3,0)
and ¢(2,1) we construct the maximal possible (generic) realizations using
the algebraic approach proposed in [7]. Some covariant realizations of the
conformal and de Sitter algebras are well known, but we first represent
realizations in fifteen and ten essential variables respectively. Realiza-
tions in smaller number of variables can be obtained from the given ones
by means of projection with respect a subalgebra.

The paper is arranged as follows. Fist we outline the algorithm for
construction of realizations and define the conformal Lie algebra. Then
we obtain it’s generic realization and we do the same for the both de
Sitter Lie algebras s0(4, 1) and s0(3,2). And, finally, we include naturally
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the contraction parameters to de Sitter algebras in such a way, that
contraction results are the Poincaré algebra.

2. Definitions and conventions.Let V be an n-dimensional vector
space over the field of real numbers. Consider a Lie algebra g on V'
spanned by a basis {eq, ea, ..., e,} with the structure constants C’fj e R,
here and below 4,5,k = 1,2,...,n. We denote an open domain of R™
as M and Vect(M) is the Lie algebra of smooth vector fields on M with
the Lie product defined as commutator (i.e., the Lie algebra of first-order
linear differential operators with analytical function coefficients).

A realization of a Lie algebra g in vector fields on M is a homomor-
phism R(g) = R: g — Vect(M). The realization is called faithful if
ker R = {0} and unfaithful otherwise.

In Lie theory realizations are considered locally at some neighborhood
U, C M C R™ of a point z € M and in most of the cases without loss of
generality the realization can be considered in a neighborhood of a zero
point x = 0.

Denote local coordinates of a point 2 € M as (x1,...,Z;,), then in
coordinate form a realization R(g) is performed by the images =;(z) of
the basis elements e; of a general form

i(x) = R(e;) = Y _ &ulwr, 22, .., 2m) 0, (1)
=1
hereafter 0, = a% and the coefficients &;(x1,x2,...,%,) are smooth

(analytic) functions.

Let us fix a point © € M and let R, be a realization of g at this
point. Consider the linear map R,: g — Vect(M)(z) that transforms
a vector v € g to it’s image R(v(x)) at . The matrix that corresponds
to this linear map is the n by m matrix £ formed by the coefficients of
the realization (1)

e 2 2 &
g(z) _ 21. 22. . 2171.

bn(®) Eun(®) . Eum(®)

The rank of the linear map R,, or, equivalently, the rank of the
matrix £(z) at a point z is called a rank of realization R at point
and is denoted rank R,. The realization rank value possess the obvious
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inequality 0 < rank R, < n, where n is the dimension of a Lie algebra g.
The second inequality is dictated by the number of rows in matrix &,
which is equal to the number of basis vector fields of g.

A realization R of a Lie algebra g is called transitive if the action of
the local Lie group corresponding to R is transitive. Or, equivalently
(see [4]), a realization R of a Lie algebra g is called transitive if rank
R,=mforallpe M.

For many practical applications it is necessary to decide if two given
sets of first order differential operators (with the isomorphic commuta-
tion relations) can be transformed to each other or not. This task is
rather complicated even in the case of small number of operators and
variables.

Roughly speaking, two realizations are equivalent, if they can be
transformed to the identical form by means of non-singular automorphic
basis changes (e; — €;) and 1 to 1 changes of variables (z; — y; = ¢i(z))
with non-zero Jacobi determinant.

Let us have a diffeomorphism of M such that for the corresponding

T,y € M we have Y1 = Sol(mlvuwxm)a Yz = SDZ(xlv"'?xm)a sy Ym =
©m(x1,...,Zm). Then the realization of the form (1) transforms to the
following:
He) = S e 9, =S [ Ey () 200)
) = S, =35 (S e 2 ) g,
=1 =1 \I'=1

Note, that the coefficients él(y) are written in terms of y using the
inverse transformation o~1.

It is obvious that application of transformations from Aut(g) to the
realization R does not change the rank of R, and none of diffeomorphisms
of M can change the realization rank either. Therefore the equivalent
realizations have the same ranks.

Let a realization R(z): g — Vect(M) has a rank r = rank R < m at
a regular point x € M, where m = dim M. Then there exists a locally
equivalent realization R(y): g — Vect(M) at a regular point y € M such
that the coefficients of basic vector fields &;(y) =0 for all i = 1,...,n,
Il =r+1,...,m. To prove this let us construct the desired diffeo-
morphism. Since the realization rank is equal to r it is known from
the theory of invariants [9] that there are m — r functionally indepen-
dent invariants Ji(z1,...,Zm)s- .., Jm—r(Z1,...,Zm) of the realization
R. The diffeomorphism of the form y, = x4, a = 1,...,7; yppp = J,
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b=1,...,m—r gives the following zero coefficients of the realization R:

Eirav)(y) = R(eg)(Jp) =0foralli=1,...,n,b=1,....,m—r.
The above variables y1,...,y, are called essential and the rest of
non-zero variables from y, 1, ...,y are called additional.

Example 1. Consider two-dimensional abelian Lie algebra 2A4;. It is
well-known that the basis elements of this algebra can be realized by two
operators of translations

Rl(el) = 81, R1(€2) = 02.

It was shown in [10] that there are exactly two inequivalent realiza-
tions of 241, and the second one is

Rg(el) = 81, R2(62) = .18281.

In these cases rank Ry = 2 and rank Ry = 1.
Consider the formal sum of these realizations R3 = Ry + Re (R; for
the variables (z1,22) and Ry for the variables (z3,24)), namely

Rg(el) =0+ 83, R3(62) = 0o + 2405.

As far as [0 + 05,02 + x403] = 0, then R3 do realize the Lie algebra
2A; in the space of four variables (z1, 2,23, 4) and rank Rs = 2, what
means that the number of essential variables is equal to 2.

Indeed, the diffeomorphism ¢ given by the non-singular functions

Sol(xl,...7$4):I17 @2(_’131,,,,’1;4):.%27

03(x1,...,x1) =1 — 3 + Toxa, Qa(T1,...,24) = T4

transforms the realization R3 to the equivalent realization R; in 2 essen-
tial variables.

In case of transitive realizations all variables are essential and, since
rank R < n, any transitive realization of a Lie algebra is realized in not
more then n variables.

A recent paper [7] establishes the one-to-one correspondence between
inequivalent transitive realizations of a Lie algebra g and Int-inequivalent
subalgebras of g. Moreover, this relation was extended to the non-tran-
sitive case as well, see [4].
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The coefficients &} (z) of the generic realization

= ig % i=1,2,...,n,

k=1 k

can be recovered from the left-invariant differential one-forms

Zw )da

using the duality w!(z)&i(x) = 6L and the coefficients w!(x) of the dif-
ferential one-forms are constructed as follows:

wh(z) = (AD (21) A® (22) ._.A(i—l)(xi_l))i7

where i = 2,3,...,n, 1 = 1,2,...,n, w{ = §!, and the matrices AP
p=1,2,...,n, are the exponential solutions of the system

AP () = —ad., AP (1), AP(0)=1I.

All the rest of transitive realizations of a fixed Lie algebra are cons-
tructed by means of projection of the generic realization using the known
set of Aut(g)-inequivalent subalgebras and the following rule.

Let h = (em41,---,€n) be a subalgebra of g = (ej,...,e,) with
a complementary space {eq, ..., €}, then, using the above approach and
the shortcut 9; = 6%7 we will obtain the realization of basis elements in
the form

R(e;) = fil(xl,mg, ey T )01+ E (X1, T, e T ) O
+§Zn+1(1'1,$2, . ,J?n)am+1 + e —|—§?($171‘2,. .. ,Jj‘n)an

The realization projected on the coordinates x1,xo,...,x,, is well
defined and has the form

pry, R(e;) = EN (w1, @0y T)O1 F -+ EM (21, T2, o, T ) O

The subalgebra that corresponds to the given realization is the kernel
of its linear map at the origin of coordinates. In other words at the point
x = 0 € R™ the realization vectors that form a basis of corresponding
subalgebra are identically equal to zero.
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Example 2. Consider the realizations

Ri: e1 =01, ex =201, e3=x101+ 2220,

R2I €1 261, 62:1‘181—33262, 63282.
At the origin of coordinates z = 0 their basis vectors have the form

Rl(l’:O): 61:(91, 62:0, 63:0,
RQ(Z‘:O)I 61:81, 6220, 63:82.

Therefore the realization Ry corresponds to the subalgebra (es,es)
and Ry corresponds to (e3).

The structure of realizations constructed by means of the algebraic
method reminds a tree diagram, namely: a realization corresponding to
a subalgebra by can be constructed by means of projection from a real-
ization corresponding to a subalgebra b if ho C by.

Note that all inequivalent realizations of a fixed Lie algebra can be
obtained by the above method, as far as any realization corresponds
to a quotient group G/H that acts effectively on some subspace M,
where H is a subgroup that corresponds to some subalgebra .

In this paper we use the above method to construct the realizations
of three conformal Lie algebras in maximal possible number of essen-
tial variables, that is we construct realizations that correspond to zero
subalgebras.

3. Conformal Lie algebra. First of all we consider a conformal
group and it’s 15-dimensional Lie algebra ¢(3,1). The conformal Lie
group C(3,1) = SO(4,2) = SU(2,2) of the Minkowski space is the max-
imal invariance group of the Maxwell equations in the flat space-time.
This group in many aspects unite all physical groups. It is generated by
10 Poincaré generators P, J,,, dilatation generator D and generators of
special conformal transformations K, hereafter p,v = 1,2,...,4. The
non-zero commutation relations of the Lie algebra are

[Juws Jpo) = Gupdve = Gupduc + GuoJpw — GuoJpus (2)
[Juvs Pol = 9upPo — Gup Py (3)
(s Kpl = gupls — gupKp, (4)
[Py Ku] = 2(90 D + Jpu), (5)
[PuaD] :Pw (6)
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(K., Dl =—-K,. (7)

Here g, is the metric tensor of the Minkowski space gi11 = g22 = g33 =
—g44 = 1

It is possible to consider conformal groups C(p,q) of the pseudoeu-
clidian spaces with metric tensors

g1 =922 =" =0pp = ~Gp+ip+l = = ~Iptqp+q = 1 (8)

and u,v=1,...,p+qg=n.
Consider the group SO(p + 1,q + 1) = span{lu}, Iap = —Ip, with
the commutators

[Iaba ch] = gaclbd - gbcIad + gadch - gbdlcav
where gqp are from (8) and gn41.n+1 = —9gn+2,n+2 = 1. Then matching

pr = Lpvy P,u = I,u,n-l—l - [p,,n+27 Kp, = Ip.,n-&-l + I,u,n+27
D = In+1,n+2

we get the isomorphism C(p,q) ~ SO(p + 1,¢q + 1). Therefore a number
of well-known groups (like de Sitter groups) are conformal groups of
pseudoeuclidian spaces. Consider the well-known realization of the con-
formal group

P,=0,, Juw=2,0,—2,0,, D=u,0,
K, =2z,x,0, — :C28#;

hereafter the summation with respect to the repeated indices is implied
and 22 = 2% + .- +22.

Let us define the subalgebra that corresponds to the given realiza-
tion. To do this we study the realization at the point x = (0,0,0,0)
and see that the kernel of this linear map coincides with the subalgebra
span{J,,, D, K,}. Indeed, this is proven by the construction and projec-
tion of the generic realization of ¢(3,1) with the following complemen-
tary part {P,, Juu, K, D} taken in the lexicographical order. To make
formula more readable we have introduced the shortcuts:

sinx; =s;, cosx; =c¢;, tanxz; =t;, sinhax; = sh;,
coshx; = ch;, tanhxz; =th;, i=1,10.
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Rgeneric(c(?’a 1))
P1:81, P2:82, P3:83, P4:84,
Ji2 = 1201 — 1104, + 05,

J13 = 301 — £103 — thess05 + 506 + 2%587
c

Jig = 2401 — 2104 + 2 35 + t786¢506 + C5C607

S9S6C5C8 + thgs709s5 ~+ S9SgS5

Os
C7Co
C55658 — S5C8 S5S8 + C5S6Cs
- 09 + 010,
Cr C7Co
Cs
Ja3 = 302 — X205 + —thgcs05 — 506 + — O,
Ch6
t7cs
Jog = =402 — 2204 + s 05 — t7555606 — 85C607

thgs7coCs — SgSeCsSs + SgCsSs

Os
C7Co
C5C8 + S5S5658 S556C8 — C5S58
09 — oo,
Cr C7Co
tocsCe
J34 = —x403 — 2304 + cet705 — 5607 + c 08
7
58Ce CeCs
— ——0y + —0ho,
c7 C7

K, = ( — ;v2 — ac3 + x4)81 + 2212902 + 2212303 + 211240,

xab7s
( o + abrss _ $3th685> 0Os
chg

— 2(1‘4'5786 + 333)0586 — 2x4C5C607

x4t9SgCsC T3S T4t9S5S
2(4 9267578 +l’4t7th6S5+73 > +74 9%5 8)88
cr chg cr
C556S8 — S5C8)T
+2(568 58) 489
Cr
S588 + C556C8 ) T4
— 2( o ) 810 — (21’11’11 — Ch7C5C6)811
7C9

+ (Sh7Sth5C6 + Chg(S5C8 — 8688C5) — 21311’12)612

+ (shgshio(sscs — c58658) + chio(secscs + S558)
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+ shrchgshigcsce — 221213)013
+ (Sthhlo(S5C8 + C5S688) + Sh10(8608C5 + 8588)
+ shrchgchigcsce — 221214)014 + 221015,

KQ = 2x1x281 + (71’12 + .%22 - £B32 + m42)8z2 + 2.%21’383
5t

LaCst — X1 — {L‘3C5th6> 85

Ch6

+ 2($3 + {B4t786)S5a6 + 22485¢607

T4ty T3c
+2 ( (56C855 — 0558) — x4thrycs — 35) Os
cr ch

C5C8 + 555658 ) T4 B + 2 (8586C8 — C588) 4
(¢4 C7C9
— (221325011 + Ch785C6)811 + (Ch9(0508 + S5SgSg)

+ 2292404 + 2 <

— 2( 810

— shrshgsscg — 2:023712)812 + (Sthh10C5C8
+ chigcsss — shyshygchgsscg — chigsssges
+ shgshiosssess — 22213) 13
+ (shgchlo(c5c8 + 8586Cg8) + ship(sscs — s586Cs)
— shrchgchygssce — 29E29614)514 + 222015,
K3 = 2212301 + 2w2230,, + (—xf — 2+ xg, + $i)83 + 2w3x404
— 2thg(x185 + @acs)0s — 2(xat7ce — X1C5 + T285)0s

S5 + ToC tgcge
+2.134Ss(97+ (Il 5 1285 —2I4 976 8)08

ChG C7

CgC8T4

S Cel
8674 810 — (Ch786 + 256‘3:611)311
9

+2 0y — 22
Cr

— (CthGSS + 21‘31‘12 + Sh7Sh9$6)812

+ (ch10c6c8 — shgshigcgss — shrchgshigsg
— 223213) 013 + (chigcscs — shgchyocgss
— shrchgchygsg — 2w3214) 014 + 223015,
Ky = —2212401 — 229240, — 2242303 — (ajf + 33% + x§ + xi)&;

tr(x185 + 22C5)
Ch6
— 2(x2ce85 — T1C6C5 + 356)07

+ 2 65 + 2t7(1‘1$6C5 — I2S6S5 + I3C6)66
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to
+ 2 ?($QS556C8 — X1S6C5C8 — T3CaC8 — L1555y
7

— 5628805) — th6t7(1'185 + 1’2C5)> 88

2
- *($2 — 858658 + £1C556S8 + T3C6Sg — T185Cs
Cr

2
— xaC5C8)0g + —— (T1C586C8 — T25556C8 + L3C6C8
C7Co

+ @18588 + 2c588) 010 + (224711 + shy)Ony
+ (2z4212 + chyshg)d12 + (2z4213 + chrchgshig)Ors
+ (224714 + chrchgchyg) 014 — 224015,
D =210, + 220 + 2303 + 2404 — 211011 — 212012 — 713013
— 214014 + O15.

4. De Sitter Lie algebras. Consider de Sitter groups SO(4,1)
and SO(3,2) that are the groups of isometry transformations of pseu-
doeuclidean spaces with metric forms z? + 2% + 23 — 23 + 22 and 2% +
x3 + 23 — 23 — 22 respectively. Them are the movement groups of 4-
dimensional Riemann spaces of a constant curvature (de Sitter spaces).
Both de Sitter spaces describe the expanding Universe, where the ra-
dial velocities of galaxies are approximately proportional to distances
from any space point. For the de Sitter Lie algebras we can use the
isomorphisms ¢(3,0) ~ s0(4,1) and ¢(2,1) ~ s0(3,2) with the conformal
commutation relations (2)—(7) for the metric tensors g11 = gaa = g3z = 1
and g11 = g22 = —g33 = 1 respectively. Then, constructing the generic
realization by the method given in second section (with the complemen-
tary part {P,, J,., K,, D} taken in the lexicographical order), we have
got two following realizations. Note that it is possible to construct one
realization for both de Sitter algebras (putting the parameter to the
commutation relations that changes the tensor sign), but this essentially
complicates calculations and appearance of realizations.

Rgeneric(c(370)):
Py =01, Py=0y, P3=03 Jiog=1x201— 2102+ 0Oy,
J13 = 1‘3(91 — 13163 — th5S484 + c485 + :%86,
5
Cyq

Ja3 = 302 — x903 — thscaOs — 5405 + — 0,
Ch5
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Kl = (IZZ% - l‘% - x%)&l + 29’511}262 + 2’131%383
+ 2($3S4th5 — 3’32)84 — 2x3C405 — 2%8@
Clis
+ (cqc5 — 2x127)07 + (sachg — cyshsshg — 22128)0s
+ (C4S5C6 + 8486 — 2$1$9)89 + 2$1({910,

Ky = 2x12901 + (.T% — 33% — Z‘%)ag + 2wox305
x3C
+ 2(%1 + (E3C4th5)84 + 2138405 — 2037486
5
— (S4C5 —+ 2I21’7)87 —+ (S4S586 —+ C4Cg — 2338132)88

+ (c486 — $485C — 2@229)Jg + 222010,
K3 = 2212301 + 2192305 + (xg — x% — x%)ag
— 2(x184 + xocq)th50ys + 2(x104 — 2284)05
+ 2w86 — (s5 + 2x327)07
chsy
— (586 + 2x823)03 + (c5c6 — 2w9x3) 0y + 23010,

D = 2101 + 905 + 1303 — x707 — 1808 — L9009 + O19.

Rgcncric(c(2a 1))
Pr=01, Po=0y P3=03 Jio=2201—2102+ 04,

S
J13 = —56381 — 1‘183 + S4t534 + C485 + C—486,

c
Jog = =302 — 2203 + Cat50s — 5405 + 0*436’
5

K= (3?% - $§ + x§)61 + 2212902 + 2212303
— 2(1‘2 + I384t5)84 - 2x3c485 — 2@86
cs
+ (C4Ch5 — 2.731]}7)87 + (S4Ch6 + C4Sh5sh6 — 2%1338)88
+ (S4Sh6 + c4shschg — 21’13?9)89 + 2x1010,
K2 = 2%1%281 + (.’ﬁ% + fE% - x%)ﬁg + 2%2%383
J)304a
6

— 2(1‘3041?5 — 1‘1)84 + 2238405 — 2
C5

— (2$2$7 + S4Ch5)(97 + (C4Ch6 — s4shsshg — 21‘21‘8)88
+ (C4Sh6 — S4Sh5Ch6 - 2£E2{Eg)89 + 2£E2(910,
K3 = —2x12301 — 22020302 — (ﬂf% + x% + x§)83
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+ 2(t5(z184 + x2¢4)014 + 2(x104 — T284)05
X184 + ZoC
+ 2%5{, + (2z327 + shs)07
5
+ (chsshg + 2231w5)0s + (chschg + 2w329)09 — 223010,

D = 2101 + 2905 + 1303 — v707 — 1x808 — L9009 + O19.

5. Connection to the Poincaré Lie algebra. Classical Poincaré
algebra p(1, 3) is ten-dimensional and formed by the operators {P,,, J,.}
with the commutation relations (2) and (3). Extending this set of com-
mutation relations by the following ones

[P,P)=7J.,, T€R (9)

we get the well-defined 10-dimensional Lie algebra which is the deforma-
tion p7(1,3) of p(1,3) to the both de Sitter algebras at the same time.
Indeed, for 7 =0 p7 (1, 3) coincides with the Poincaré algebra, for 7 > 0
p7(1,3) ~s0(4,1) and for 7 < 0p7(1,3) ~ s0(3,2). So, one can construct
uniform realizations for the both de Sitter and Poincaré algebras apply-
ing the algebraic method to the structure constants from the deformed
relations (2), (3) and (9). The inverse connection between de Sitter and
Poincaré algebras is provided by standard Inénii-Wigner contraction [6)
with respect to the six-dimensional subalgebra so(3,1).

The result of the paper can be used for construction of differential
invariants and respective invariant differential equations [9].

[1] Fushchych W., Nikitin A., Symmetries of equations of quantum mechanics,
Allerton Press Inc., New York, 1994.

[2] Fushchych W., Tsyfra I., Boyko V., Nonlinear representations for Poincaré and
Galilei algebras and nonlinear equations for electromagnetic field, J. Nonlinear
Math. Phys. 1 (1994), 210-221.

[3] Fushchych V., Zhdanov R., Symmetries and exact solutions of nonlinear Dirac
equations, Mathematical Ukraina Publisher, Kyiv, 1997.

[4] Gromada D., Posta S., On classification of Lie algebra realizations,
arXiv:1703.00808.

[5] Hernddez Heredero R., Olver P., Classification of invariant wave equations,
J. Math. Phys. 37 (1996), 6419-6438.

[6] Inoni E., Wigner E.P., On the contraction of groups and their representations,
Proc. Nat. Acad. Sci. USA 39 (1953), 510-524.

[7] Magazev A., Mikheyev V., Shirokov I., Computation of composition functions

and invariant vector fields in terms of structure constants of associated Lie
algebras, SIGMA 11 (2013), 066, 17 pp.



112 M. Myronova, M. Nesterenko

[8] Olver P., Applications of Lie groups to differential equations, Springer, New
York, 1993.

[9] Olver P.J., Differential invariants and invariant differential equations, Lie
Groups Appl. 1 (1994), 177-192.

[10] Popovych R., Boyko V., Nesterenko M., Lutfullin M., Realizations of real
low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360,
arXiv:math-ph/0301029.



36ipHuk npaup lHcTuTyTy matematuku HAH VYkpainn 2019, 1. 16, Ne 1, 113-130

YIOK 517.912:512.816
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Iloxazano, mo yci pisagaag llIpsomiarepa 31 3MIHHEM ITapaMeTPOM MAacCH,
AKi JomyckaioTh aareGpu inBapianTaocTi po3mipHOCTi Ginbme narn (oB-
HUIi CIIMCOK TAKWX PIBHSIHL HaBeneHo y po6oti [J. Math. Phys. 58 (2017),
083508, 16 pp.], € TouHO PO3B’s13HUMU. 3HANLEHO y SBHOMY BUIJISLI] BiIIO-
BiZHI PO3B’A3KHU Ta MOKA3AHO IX CYNEPCUMETPUYHY IPUPOY.

It is shown that all PDM Schrédinger equations admitting more than five-
dimensional Lie symmetry algebras (whose completed list can be found in
paper |J. Math. Phys. 58 (2017), 083508, 16 pp.] are exactly solvable. The
corresponding exact solutions are presented. The supersymmetric aspects
of the exactly solvable systems are discussed.

1. Introduction. Group classification of differential equations con-
sists in the specification of non-equivalent classes of such equations which
possess the same symmetry groups. It is a rather attractive research field
which has both fundamental and application values.

A perfect example of group classification of fundamental equations
of mathematical physics was presented by Boyer [3] who had specified
all inequivalent Schrodinger equations with time independent potentials
admitting symmetries with respect to Lie groups, see also [1, 7, 10],
where particular important symmetries were discussed, and [14], where
the Boyer results were corrected. These old results have a big impact
since include a priori information about all symmetry groups which can
be admitted by the fundamental equation of quantum mechanics. Let
us mention also that the nonlinear Schrodinger equation as well as the
generalized Ginsburg-Landau quasilinear equations have been classified
also [11, 15] as well as symmetries of more general systems of reaction-
diffusion equations [16, 17].

In contrary, the group classification of Schrodinger equations with
position dependent mass (PDM) was waited for a very long time. There
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were many papers devoted to PDM Schrodinger equations with particu-
lar symmetries, see, e.g., [5, 8, 20, 21]. But the complete group classifica-
tion of these equations appears only recently in [18] and [13, 19] for the
stationary and time dependent equations correspondingly. A system-
atic search for the higher order symmetries if the PDM systems started
in [12]. So late making of such important job have to cause the blame for
experts in group analysis of differential equations, taking into account
the fundamental role played by such equations in modern theoretical
physics!

Let us remind that the PDM Schrodinger equations are requested for
the description of various condensed-matter systems such as semicon-
ductors, quantum liquids, and metal clusters, quantum wells, wires and
dots, super-lattice band structures, etc.

It happens that the number of PDM systems with different Lie sym-
metries is rather extended. Namely, in [13] seventy classes of such sys-
tems are specified. Twenty of them are defined up to arbitrary parame-
ters, the remaining fifty systems include arbitrary functions.

The knowledge of all Lie groups which can be admitted by the PDM
Schrédinger equations has both fundamental and application values. In
particular, when construct the models with a priory requested symme-
tries we can use the complete lists of inequivalent PDM systems pre-
sented in [19] for d = 2 and [13] for d = 3. Moreover, in many cases
a sufficiently extended symmetry induces integrability or exact solvabil-
ity of the system, and just this aspect will be discussed in the present
paper.

It will be shown that all PDM systems admitting six parametric Lie
groups of symmetries or more extended symmetries are exactly solvable.
Moreover, the complete sets of solutions of the corresponding stationary
PDM Schrédinger equations will be presented explicitly.

There exist a tight connection between the complete solvability and
various types of higher symmetries and supersymmetries. We will see
that extended Lie symmetries also can cause the exact solvability. More-
over, the systems admitting extended Lie symmetries in many cases are
supersymmetric and superintegrable.

2. PDM Schrodinger equations with extended Lie symmet-
ries. In [13] we present the group classification of PDM Schrédinger
equations

Ly = (i;—H>¢:0, (1)
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where H is the PDM Hamiltonian of the following generic form

0
0z,

(2)

H= %(mapamﬁpam’y + mwpamﬁpama) + V) Pa = —1

Here m = m(x) and V= V(x) are the mass and potential depending
on spatial variables x = (x1, z2, z3), and summation with respect to the
repeating indices a is imposed over the values a = 1,2, 3. In addition, «,
B and v are the ambiguity parameters satisfying the condition a+g+v =
—1.

The choice of values of the ambiguity parameters can be motivated
by physical reasons, see a short discussion of this point in [13].

Hamiltonian (2) can be rewritten in the following more compact form

H = %pafpa‘i"/; (3)
where

V:‘A/Jr%(aJF'Y)fanFO‘Vf;;a (4)
with f =L, fo= 2L and f,, = Af = 5=,

In the following text representation (4) ‘will be used.

In accordance with [13] there is a big variety of Hamiltonians (4)
generating non-equivalent continuous point symmetries of equation (2).
The corresponding potential and mass terms are defined up to arbitrary
parameters or even up to arbitrary functions.

In the present paper we consider the PDM systems defined up to
arbitrary parameters. Only such systems admit the most extended Lie
symmetries. Using the classification results presented in [13, 18] we
enumerate these systems in the following Table 1, where ¢ = arctan i—f
and the other Greek letters denote arbitrary constants parameters, which
are supposed not to be zero simultaneously. Moreover, A and w are either
real or imaginary, the remaining parameters are real.

The symmetry operators presented in column 4 of the table are given
by the following formulae

P o=p = —i
i = Di laxi’

Mij = wip; — x;p;, Moi = 3(K'+ P), My =3(K'+P),
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Bi = Asin(At)Mi2(X*¢ +v) cos(At), By = &Bll,

B} =sin(At)D — cos(At) (Aln(r) + %), Bj = %B%,

N{ = wcos(wot)Ls — sin(wot) (i0; — w’e7°), Nj = %Nll,

Nt = wcos(wot)D + sin(wot) (0, —w’r™7), N3 = %Nll, (5)

where K; = x,x,p; — 2x; D and indices i, j, k, n take the values 1, 2, 3.

Rather surprisingly, all systems (except ones given in items 4 and 5)
presented in Table 1 are exactly solvable. In the following sections we
present their exact solutions. To obtain these solutions we use some
nice properties of the considered systems like superintegrability and su-
persymmetry with shape invariance. Let us remind that the quantum
mechanical system is called superintegrable if it admits more integrals
of motion than its number of degrees of freedom.

In accordance with Table 1 we can indicate 11 inequivalent PDM
systems which are defined up to arbitrary parameters and admit Lie
symmetry algebras of dimension five or higher. Notice that the systems
fixed in items 4 and 5 admit five dimension symmetry algebras while the
remaining systems admit more extended symmetries.

3. Systems with fixed mass and potentials. Firstly we consider
those systems whose mass and potential terms are fixed, i.e., do not
include arbitrary parameters. These systems are presented in items 1, 2
of Table 1 and others provided the mass does not depends on parameters
and parameters of the potential are trivial.

3.1. System invariant with respect to algebra so(4). Consider
Hamiltonian (3) with functions f and V presented in item 1 of Table 1:

H=1p,(1+7%)°p, — 3%, (6)

The eigenvalue problem for this Hamiltonian can be written in the fol-
lowing form

Hi =2EY, (7)

where E are yet unknown numbers.
Equation (7) admits six integrals of motion Mup, A,B = 1,2,3,4,
presented in equation (5). Let us write them explicitly

Mab — xapb _ xbpa7 M4a — %(TQ _ 1)pa _ xaxbpb + %xa. (8)
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Table 4. PDM systems with extended Lie symmetries.

inverse

no mass f potential V' symmetries
2 M1, Myo, My
1 r2 41 —3r2 ’ ’ ’
( ) Ma1, M31, M3
2 Mo, Moa, M,
2 7,2 -1 _3,,.2 01, 02, 03>
( ) Moy, M3y, M3o
3 l‘% Vln((ﬂg) Pl, Pg, ]\4127 D+t
73 KT3 + AT Ps + kt, D +itd;, Mo
5 leg Az1 + kX3 P+ kt, Py, D+ito,
6 LI+2 e Py, Py, M3, D+ iotdy,
3 3 o#0,1,-2

~o+2 g SO AAP
TorTe e D +iotd,, 0 #0

8 72 202+ up+vin(f) Bl BY, D+ut, Py
9 72600 KETP 4 %2(3*“‘9 Ni, N}, P3, D, K3
10 r2 vin(r) + 2 In(r)2 B2, B2, Ly, Lo, Ly
1 j2to Kr 4 Lo Ni, N3, Ly, Ls, Lg

Operators (8) form a basis of algebra so(4). Moreover, the first
Casimir operator of this algebra is proportional to Hamiltonian (6) up
to the constant shift

Ci1 = 3$MapMap = 3(H - 9),

while the second Casimir operator Cy = e apcpMapMcp appears to be
zero.
Thus like the Hydrogen atom system (7) admits six integrals of mo-
tion belonging to algebra so(4) and is maximally superintegrable.
Using our knowledge of unitary representations of algebra so(4) is
possible to find eigenvalues E algebraically

E =4n* +5, (9)

where n = 0,1,2,... are natural numbers.
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To find the eigenvectors of Hamiltonian (6) corresponding to eigen-
values (9) we use the rotation invariance of (7) and separate variables.
Introducing spherical variables and expanding solutions via spherical
functions

1 l
¢ - ; Z ¢lm(r)ym7 (10)
lm
we come to the following equations for radial functions

(_(T2+1)2 (88; 1+ 1)) —ar(r? + 1)% —2r2> Oim

r2

= (4n2 + 1) Plm,

where | = 0,1,2,... are parameters numerating eigenvalues of the squa-
red orbital momentum. The square integrable solutions of these equa-
tions are

Oim = C2 (2 +1) 7T AUE (4, B, [C] - #2) | (11)
where
A=-n+l+1, B=-n+3, C=I1l+3.

F(---) is the hypergeometric function and C}},, are integration constants.
Solutions (11) tend to zero at infinity provided n is a natural number
and [ <n —1.

Thus the system (7) is maximally superintegrable and exactly sol-
vable.

3.2. System invariant with respect to algebra so(1,3). The
next Hamiltonian we consider corresponds to functions f and V pre-
sented in item 2 of Table 1. The related eigenvalue problem includes the
following equation

Hp = —1(0,(1 = r2)20, + 6r%) 0 = Evp. (12)

Equation (12) admits six integrals of motion M, p,v =0,1,2, 3, given
by equation (5), which can be written explicitly in the following form

Mgy = 2p® — a®p?,
Moo = 5(r* +1)p" —a®a"p" + §2%, a,b=1,2,3. (13)
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These operators form a basis of algebra so(1,3), i.e., the Lie algebra of
Lorentz group.

As in the previous section, the corresponding first Casimir operator
is expressed via the Hamiltonian, namely

Cy = MM — M**M** = {(H +9), (14)

while the second one appears to be zero.
Using our knowledge of irreducible unitary representations of Lorentz
group we find eigenvalues of Cy and Cj in the form [2, 9]:

a=1-j8—ji, c2="2ijoj1,

where jo and j; are quantum numbers labeling irreducible representa-
tions. Since the second Casimir operator Cs is trivial, we have ¢; = jo =
0. So there are two possibilities [9]: either j; is an arbitrary imaginary
number, and the corresponding representation belongs to the principal
series, or j; is a real number satisfying |ji| < 1, and we come to the
subsidiary series of IRs. So

ji=1i\, e =1-32=X+1, (15)
where A is an arbitrary real number, or, alternatively,
0<i <1, e=1-ji (16)
In accordance with (14) the related eigenvalues E in (12) are
E=-5-ji (17)

In view of the rotational invariance of equation (12) it is convenient
to represent solutions in form (10). As a result we obtain the following
radial equations

(-(ﬂ Ly (aa; - z(ztl)) e 1)% - 27‘2> Pim

r

= (E+4)¢um. (18)

The general solution of (18) is

oim = (1—12) 727" (Ck U F (14, B, [, )
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+Cp,r ' F (A, B, [C), %)), (19)
where

A=—-k+l+1, B=-k+3, C=1+3,
A=—-k-1, B=-k+3, C=L1-1, k=iv-E-5

and is singular at » = 1. However, for C'lkm =0 and k£ = j; the solutions
are normalizable in some specific metric [18].

Thus the system presented in item 7 of Table 1 is exactly solvable too.
The corresponding eigenvalues and eigenvectors are given by equations
(15), (16), (17) and (19), respectively.

3.3. Scale invariant systems. Consider one more PDM system
which is presented in item 3 of the table and includes the following
Hamiltonian: Let us note that the free fall effective potential appears also
one more system specified in Table 1. Thus, considering the inverse mass
and potential specified in item 3 we come to the following Hamiltonian

H = _1 i i + i + 2 872 + 872
T g\ Oxs 3 Oxs 3 Oxs 3 dz3 = O3
+ vin(xs). (20)

[l

Equation (12) with Hamiltonian given in (20) can be easily solved by
separation of variables in Cartesian coordinates. Expanding the wave
function v via eigenfunctions of integrals of motion P, and Ps:

1ﬁ = exp(—i(klml + ]ﬂgxg))q)(lﬁ, ko, 1'3) (21)

and introducing new variable y = In(z3) we come to the following equa-
tion for ® = ®(ky, ko, x3):

%P ~
T 9y2 + (K + K3) exp(2y) + 2vy) © = E®, (22)
where E = 2F — 1.

Here we consider the simplest version of equation (22) when parame-
ter v is trivial
0?®

“0r + (ki + k2) exp(2y)® = E®. (23)
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This equation is scale invariant and can be easily solved. Its square
integrable solutions are given by Bessel functions

w=0f K, (VB + BinGs),

where C’,fl k, are integration constants and E are arbitrary real parame-
ters.

It is interesting to note that there are rather non-trivial relations
between the results given in the present and previous sections. Equa-
tion (23) admits six integrals of motion which are nothing but the fol-
lowing operators

P17 P2; Kla K27 M127 D7 (24)

which are presented in equations (5).

Like operators (13) integrals of motion (24) form a basis of the Lie
algebra of Lorentz group, and we again can find the eigenvalues of Hamil-
tonian (23) algebraically by direct analogy with the above. We will not
present this routine procedure since there exist strong equivalence rela-
tions between Hamiltonians (23) with zero v and (6). To find them we
note that basis (24) is equivalent to the following linear combinations of
the basis elements

Mo1, Moz, Moa, Ma1 Myo, Mo, (25)

whose expressions via operators (24) are given by equation (5). To re-
duce (25) to the set (13) it is sufficient to change subindices 4 to 3, i.e.,
to make the rotation in the plane 43. The infinitesimal operator for such
rotation is given by the following operator

Mys = §(Ks + Ps) = 5 (r® — 1)ps — z3zeps + 33,

which belongs to the equivalence group of equations. Solving the cor-
responding Lie equations and choosing the group parameter be equal 5
we easily find the requested equivalence transformations.

One more scale invariant system is presented in item 8 where all pa-
rameters of potential are zero. The relation Hamiltonian looks as follows

2
g s 0 0 9,0

O0xy Orq "‘6% 0z’ =12 (26)
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Considering the eigenvalue problem for (26) it is convenient to use the
cylindrical variables

8 x
F=y/22 422, ¢ =arctan—>, x3=2 (27)
T

and expand solutions via eigenfunctions of M'? and P3 = —i2:
U =expli(kp + wz)]|Ppw(F), £=0,£1,42,..., —o0o<w < 0.

As a result we come to the following equations for radial functions ® =
D, (7):

0.0 0 = 9
(Té)?"rﬁr+r8~+w )(P (E - r*)®.

Square integrable (with the weight ) solutions of this equation are
1 ~ 9 .
D = =Jo(wF), a=kr"+1-FE, (28)
T

where J,(w7) is Bessel function of the first kind. Functions (28) are
normalizable and disappear at 7 = 0 pr0V1ded a < 0. The rescaled
energies E continuously take the values k2 < E < oco.

The last scale invariant system which we have to consider is fixed in
item 10 where v = A = 0. We will do it later in the end of the following
section.

4. Systems defined up to arbitrary parameters. In previous
section we present exact solutions for systems with fixed potential and
mass terms. In the following we deal with the systems defined up to
arbitrary parameters.

4.1. The system with oscillator effective potential. Let us
consider equation (1) with f and V are functions fixed in item 10 of
Table 1, i.e.,

oy (10 2 0 A2 9
1[%—( 202" aa—&—uln()—i—?ln(r) .

These equations admit extended Lie symmetries (whose generators
are indicated in the table) being invariant with respect to six-parametri-
cal Lie group. Let us show that they also admit hidden supersymmetries.
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In view of the rotational invariance and symmetry of the considered
equations with respect to shifts of time variable, it is reasonable to search
for their solutions in spherical variables, i.e., in the following form

U = e Ry (1) Yign (9, 0), (29)

where ¢ and @ are angular variables and Y}, (p, ¢) are spherical func-
tions, i.e., eigenvectors of L? = L? + L3 + MZ, and M. As a result we
come to the following radial equations

B ORym ORym B ORym
"“or " or "or
)\2
+I(1+1)+vin(r)+ > ln(r)2> Ry, = 2ERy,. (30)

Introducing new variable y = v/21In(r) we can rewrite equation (30)
in the following form

92 22 -
——— I +1 “v?) Ry (y) = ERin(y), 1
(- s 10+ 1+ v+ 502 Bontt) = ERunly) (31)
where E = F — i.

Let A # 0 then equation (31) is reduced to the 1D harmonic oscillator
up to the additional term [(I+1). The admissible eigenvalues E are given
by the following formula

E=n+I1(l+1),

where n is a natural number. The corresponding eigenfunctions are
well known and we will not presented them here. The same is true for
supersymmetric aspects of the considered system.

If parameter A is equal to zero then (31) reduces to equation with free
fall potential slightly modified by the term [(I + 1). The corresponding
solutions can be found in textbooks devoted to quantum mechanics. If
both parameters v and \ are zero, equation (31) is solved by trigono-
metric or hyperbolic functions. The corresponding PDM Schrédinger
equation is scale invariant, i.e., belongs to the class considered in the
previous section.

4.2. The systems with potentials equivalent to 3d oscilla-
tor. Consider now the system represented in item 11 of the table. The
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corresponding equation (1) takes the following form

51/) IR P 9 | W2
3t ( 23ar 0, + Kkr +T20 . (32)

Like in previous section we represent the wave function in the form given
in (29) and came to the following radial equation

82Rl 8Rl
2042 m 20+1 m

+ (r* (11 +1) + k) + w*r ) Ry = 2E Ry (33)
Using the Liouville transform

o

— 5 a+3
r—z=1r°9  Run— Ry, =272 Rin,

we reduce (33) to the following form

55
1
_028 Ry n (Z(Z—F )+§+w

9.2 o 22:2) le = QEle, (34)

where § = 2 (o +1)(0 + 3) + 2k.

Equatlon (34) describes a deformed 3d harmonic oscillator including
two deformation parameters, namely, o and k.

Let

2% = —0% — 30 — 2,
then equation (34) is reduced to the following form

, 02 (2+1)2—

Et 22'2> Ry = 2ER;,,. (35)

Hlle = <—

Equation (35) is shape invariant. Hamiltonian H, can be factorized

Hl = al a; — Cl, (36)
where
9 +
a=—-—0—+4+W, a"=0—+W,
0z z
20+ 1
W:ﬂ—i—wz, Cr=w(2l 420+ 1).
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The superpartner H; of Hamiltonian (36) has the following property
FIl = alal"' +C=Hi4o +C.

Thus our Hamiltonian is shape invariant.

Thus to solve equation (35) we can use the standard tools of SUSY
quantum mechanics and find the admissible eigenvalues in the following
form

E,=w(no+l+o+3)=w2n+l+3)+dw@n+1), (37)

where § =0 — 1.

Equation (37) represents the spectrum of 3d isotropic harmonic os-
cillator deformed by the term proportional to §.

For equation (34) we obtain in the analogous way

Enfg( o(2n+1)++/(2l+1)2 +R), (38)

where & = 8(k + 1) + o(0 + 3). The related eigenvectors are expressed
via the confluent hypergeometric functions F:

_wr® . En £, w _
R, =e 207" T F —-n,— —n,—r 7|,
ow o

where n is integer and F,, is eigenvalue (38).

4.3. System with angular oscillator potential. The next system
which we consider is specified by the inverse mass and potential presented
in item 8 of the table. The corresponding Hamiltonian is

)\2
H = p,r2pa + 7g02 + op + vin(r).

The corresponding eigenvalue equation is separable in cylindrical vari-
ables, thus it is reasonable to represent the wave function as follows

P = V() D(p) exp(—ikzs). (39)

As a result we obtain the following equations for radial and angular
variables

(=FO:70; — 707 + vIn(F) + k*F — p) ¥(7) = 0 (40)
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and

82 )\2 ) ®
<mﬂ+2whwu>(wQ (41)
where pu is a separation constant.

For X nonzero equation (41) is equivalent to the Harmonic oscillator.
The specificity of this system is that, in contrast with (31), it includes
angular variable ¢ whose origin is

0< <o (42)

For trivial A our equation (41) is reduced to equation with free fall
potential, but again for the angular variable satisfying (42).

The radial equation (40) is simple solvable too. In the case k = 0 we
again come to the free fall potential.

4.4. Systems with Morse effective potential. The next system
we consider is specified by the inverse mass and potentials represented
in item 9 of Table 1. The corresponding Hamiltonian is

2
H= —aﬂxa?ﬂe”“’% + ke + %e_‘w.

Introducing again the cylindric variables and representing the wave
function in the form (39) we come to the following equations for the
radial and angular variables

82 a 2 2y ~ ~
- ain‘f‘afy +M+I€e ‘IJ(T‘):/L\I/(T)
and

<ew <aa:2 T u) + “;eW> B(p) = BD(y). (43)

Dividing all terms in (43) by exp(cp) we obtain the following equation
82 w2 —20 —0p T
< (8902 + K= u> + 5e “’) O(p) = e TPED(p).

or

(_ (;@2) L gmare E—) D(p) = ED(p), (44)

where we denote E = p — k.
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Formula (44) represents the Schréodinger equation with Morse poten-
tial. This equation is shape invariant and also can be solved using tools
of SUSY quantum mechanics. We demonstrate this procedure using
another system.

Considering the mass and potential presented in item 6 of Table 1 we
come to the following Hamiltonian

H = %pal‘g+2pa + Kx§.
Equation (12) with Hamiltonian (20) can be solved by separation of
variables in Cartesian coordinates. Expanding the wave function v via
eigenfunctions of integrals of motion P; and P, in the form (21) and in-
troducing new variable y = In(z3) we reduce the problem to the following
equation for ®(kq, ko, x3):

O o+2 9 | o o
<ax3x3+28x3 + 25T2k2 4 2513> d =2E9, (45)
where k% = k? + k3.

Dividing all terms in (45) by 2§ we can rewrite it in the following
form

0? 0
<8y2 — (o + 1)8—y — 2F exp(—oy) + k* exp(2y) + 2n> ¢ =0.
In the particular case 0 = 2 we again come to the equation with
Morse effective potential.
One more system which can be related to Morse potential is repre-
sented in item 7 and include the following Hamiltonian

H= %pa exp(A\@)7 T2p, + vexp(Ap)7.

The corresponding equation (12) is separable in the cylindrical vari-
ables (27) provided o - A = 0 and again includes the Morse effective
potential.

Let us return to equation (33) and solve it using approach analogous
to the presented above. In other words, we will change the roles of
eigenvalues and coupling constants.

First we divide all terms in (33) by 72° and obtain

ale

2 9?Rim
or

or?

— (20 +4)r
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+ (w?r™* + pur~2°) Ry, = €Rypm, (46)
where
e=-l(l4+1)—-2k, p=-2E. (47)
Applying the Liouville transform
r—p=1I(r), Ry,— Ry = efaT%le

we reduce (46) to a more compact form
. 52 . .
H, Ry, = <_8p2 +w2e 2P 4 (2wv + wa)e_‘m) Ry = €Rypm, (48)
where

o+3\° nw o
— —_ — = - . 49
cTF ( 2 ) YT ow 2 (49)

Like (44) equation (48) includes the familiar Morse potential and
so is shape invariant. Indeed, denoting p = 2w(v + §) we can factorize
Hamiltonian H, like it was done in (36) where index ! should be changed
to v and

W=v—-—we % (C, =1

and the shape invariance is easy recognized.

To find the admissible eigenvalues € and the corresponding eigen-
vectors we can directly use the results presented in [4], see item 4 of
Table 4.1 there

™m>

E=¢,= 7(” - n0)27 (le)n = ygineigLn (y)7

where y = 27“’7““’.

Thus we find the admissible values of &,. Using definitions (47)
and (49) we can find the corresponding values of F which are in per-
fect accordance with (38).

Discussion. The results presented above in Section 2 include the
complete list of continuous symmetries which can be admitted by PDM
Schrédinger equations, provided these equations are defined up to arbi-

trary parameters. All such systems appear to be exactly solvable.
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It is important to note that the list of symmetries presented in the
fourth column of the table is valid only for the case of nonzero parameters
defined the potential and mass terms. If some (or all) of these parameters
are trivial, the corresponding PDM Schrédinger equation can have more
extended set of symmetries. For example, it is the case for the potential
and PDM presented in item 3 of the table, compare the list of symmetries
presented in column 4 with (24). The completed list of non-equivalent
symmetries can be found in [13] which generalizes the Boyer results [3] to
the case of PDM Schrodinger equations. As other extensions of results
of [3] we can mention the group classification of the nonlinear Schrédinger
equations [15] and the analysis of its conditional symmetries [6].

Thanks to their extended symmetries the majority of the presented
systems is exactly solvable. In Sections 3 and 4 we present the cor-
responding solutions explicitly and discuss supersymmetric aspects of
some of them. However, two of the presented systems (whose mass and
potential are presented in items 4 and 5 of Table 1) are not separable, if
both arbitrary parameters x and A are nonzero. And just these systems
have the most small symmetry. On the other hand, all systems admit-
ting six- or higher-dimensional Lie symmetry algebras are separable and
exactly solvable.

In addition to the symmetry under the six parameter Lie group, equa-
tion (32) (which we call deformed 3d isotropic harmonic oscillator) pos-
sesses a hidden dynamical symmetry with respect to group SO(1,2).
The effective radial Hamiltonian is shape invariant, and its eigenvalues
can be found algebraically. In spite on the qualitative difference of its
spectra (37) and (38) of the standard 3d oscillator, it keeps the main
supersymmetric properties of the latter. We show that the shape invari-
ance of PDM problems usually attends their extended symmetries.
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Ommcano rpymnoin eKBiBaJIEHTHOCTI KJIacy 3arajbHUX PiBHSHB Bioprepca—
Kopresera—ne ®piza 3 nmpocropoBumu koedinienramu. [lokazamo, mo meit
KJIaC 3BOIUTHCS CIM’€I0 TIEPETBOPEHb €KBIBAJIEHTHOCTL A0 CBOTO IIiIK/IACY
3 YOTHPUBUMIPHOIO 3BMYAWHOIO IPYTIO0 ekBiBasjeHTHOCTI. IIpoknacudiko-
BAHO JOIYCTHMi II€PETBOPEHHS IBOrO MiAKJIACy Ta BHOKpEMJIeHi IiIKJIa-
cH, 110 TOTMYCKAI0Th MAKCUMAaJIbHI HETPUBiaIbHI YMOBHI I'DYIIN €KBIBAJIEHT-
HOCTi. BUABIISIETHCS, IO BCI BOHM MAIOTh PO3MIPHICTH OLIBINY 3a YOTHPH.
3okpema, 3HANIEHO [eKiJIbkKa HOBHX KJIACIB AudepeHiaIbHUX PiBHIHB,
HOPMAJIi30BAHUX B y3arajbHeHOMY ceHcl. 2KO/eH 3 HUX He JOIYCKAE EIUHY
edeKTUBHY y3arajbHeHy I'DYIy €KBiBaJEHTHOCTI.

We describe the equivalence groupoid of the class of general Burgers—
Korteweg—de Vries equations with space-dependent coefficients. This class
is shown to reduce by a family of equivalence transformations to a subclass
with a four-dimensional usual equivalence group. Classified are admissible
transformations of this subclass and singled out its subclasses admitting
maximal nontrivial conditional equivalence groups. All of them turn out to
have dimension higher than four. In particular, few new examples of nontri-
vial cases of normalization in the generalized sense of classes of differential
equations appeared this way. Neither of classes discussed possesses a unique
effective generalized equivalence group.

1. Introduction. A number of evolution equations that are impor-
tant in mathematical physics are of the general form

us + C(t, x)uuy, = iAk(t,x)uk + B(t, ). (1)
k=0
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In particular, this includes Burgers, Korteweg—de Vries (KdV), Kuramo-
to—Sivashinsky, Kawahara, and generalized Burgers—KdV equations.

Here and in the following the integer parameter r is fixed, and r > 2.
We require the condition CA™ # 0 guaranteeing that equations from the
class (1) are nonlinear and of genuine order r. Throughout the paper we
use the standard index derivative notation u; = du/dt, ux = O%u/0x".

The class (1) and its various subclasses were subject to studying from
the symmetry analysis point of view, see [6] for an extensive list of refer-
ences. Recently, the class (1) became a source of examples of nontrivial
equivalence groups [6]. In fact, the first examples of classes with gener-
alized and extended generalized equivalence groups are of the form (1)
(with some additional restrictions). Moreover, detailed studying thereof
allowed the authors to introduce the concept of an effective generalized
equivalence group of a class of differential equations. Furthermore, the
structure of this class is so flexible, that a “reasonable” singled out sub-
class thereof is likely to possess normalization properties in some sense.
Nonetheless, it is not the case for a subclass F of equations with the
arbitrary elements being time-independent,

ug + C(x)uu, = Z A¥(x)up + B(z), where A"C #0. (2)
k=0

The aim of this paper is to thoroughly study admissible transformations
of the class F. In a nutshell, the results of this paper comprise the
following four facts. Any equation in F is mapped by an equivalence
transformation of F to an equation in the subclass F of reduced general
Burgers—Korteweg—de Vries equations with space-dependent coefficients,
singled out by conditions C' = 1 and A' = 0. The subclass F is not nor-
malized in any sense, and its usual equivalence group is four-dimensional.
Classified are admissible transformations of the class F and singled out
are its subclasses admitting maximal nontrivial conditional equivalence
subgroups of the equivalence group of F,

a+2
ao1

.7:"171: Up + WUy = ( by +a01|x+ﬁ|“)u

b a+1
+o+9) (balo P+ tafo4 gl - LT
01

r .
+Zaj(x+ﬂ)J|x+ﬁ|auj with  aa,ag; # 0,

Jj=2
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T
Fror: g+ uu, = Z aj(x + B) |z + B|*u; + agou
=2

1
+ (z+B) (bz|$ + B> — (aaimza%a

with (a4 2)a, #0,
-7:-1,001 Up + Uuy = Z a;(z+ B)j_QU/j + bo(z + 8)
j=2
+bo(z+B)75 with a, #0,

T
ﬁH,O: Up + Uty = Zaj(x + B)juj + agou + by with a, # 0,
j=2

T
Fia: w4 uuy = Zaj(x + B)Yu; + (apr In|z + B| + ago)u
j=2

2 2
+(z +B) (—azlhﬁ & + 8] + (Clil—a()o;m) ln|x—|—,3|—|—b0)

with  a,agy # 0,
s
2
Frn: up +uug = E a;e*“u; + (ap1e™ + ago)u + bae”*”
j=2

2
@00901 oz _ %00 + ago

with aa, # 0,
«Q 2c

r
fIV,l: Ut + UUy = Zajuj + apgu + by + by

j=2
r—1
with  «a, Z la;| # 0,
j=2
r—
ff\?g U + Uy = AplUy + Qg + 7@ “op agz + by

with  aa,. #0, r > 2,

Vo Ut uuy =aguy +biz+by with aa, #0.

The class Fi1,0 is normalized in the usual sense.

All these subclasses but ]:—II,O are normalized in the generalized sense.
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The main result of the paper is described in the following theorem.

Theorem 1. The usual equivalence group of the class F of reduced
general Burgers—Korteweg—de Vries equations with space-dependent co-
efficients is four-dimensional. The list of mazimal nontrivial conditional
equivalence subgroups is exhausted by the generalized equivalence groups
of the normalized subclasses ‘7:—1717 .731,01, ]:—1700, ]:—1171, Fan, Fivoa, Ff\i%,

V.o and the usual equivalence group of the normalized subclass Firo-
The equivalence groupoid of the class F is generated by its usual equiv-
alence group and the equivalence groups of the above subclasses.

For all classes normalized in the generalized sense, we can take their
effective generalized equivalence subgroups as maximal conditional equiv-
alence groups. Denote by Fy the complement to the union of the above
subclasses in the class F. It is a normalized class in the usual sense, and
its equivalence group coincides with that of F.

Corollary 2. The class F is a union of the normalized (in either the
generalized or the usual sense) classes Fi1, Fi,01, Fi1,00, Fi1,1, Fi1,0, FIII;
Fiva, Fivo, Fivo and Fo.

The structure of this paper is as follows. Firstly, we remind in Sec-
tion 2 theoretical foundations related to equivalence within classes of
differential equations. Following [6] in Section 3 we recall the structure
of the equivalence groupoids of the superclass of general Burgers—Korte-
weg—de Vries equations, its subclass of equations with time-independent
coefficients and gauging of these classes to the corresponding subclasses
of reduced equations. In Section 4 we give the complete classification of
admissible transformations of the class F of reduced general Burgers—
KdV equations with space-dependent coefficients. In [6] there were found
subclasses of the class F possessing admissible transformations that are
not generated by the equivalence transformations of F. But the ques-
tion of a structure of equivalence groupoids of these subgroups was not
addressed there. Here we fill this gap by comprehensive description of all
these subclasses and their equivalence groups (for subclasses normalized
in the generalized sense we present either the entire generalized equiv-
alence group, or its effective generalized equivalence group or both of
them). By partitioning if necessary these subclasses we achieve a nor-
malization of “subsubclasses” in either usual or generalized sense. Thus
we present the superclass F as a union of normalized classes of differential
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equations described in Theorem 1. For the two normalized subclasses to
be able to have a closed form of group transformations we apply a non-
standard approach, the technical crux of which is as follows. First we
gauge the class under consideration by a family of equivalence transfor-
mations thereof to a nice normalized subclass. Then every equivalence
transformation in the class under consideration would be a composition
of the gauging mapping, an equivalence transformation within the nice
subclass and the inverse of a (not the same as before because we con-
sider not symmetry but equivalence transformations of the superclass)
gauging mapping. This procedure may explain an appearance of gener-
alized equivalence groups for most of the considered subclasses. In fact,
the determining systems of ODEs are exactly solvable for all but the
two equivalence groups and this procedure is only lurking in the back-
ground, but we could use it almost everywhere. In this case, even if
a nice underlying subclass is normalized in the usual sense, we compose
its equivalence transformations with transformations from the families
parameterized by arbitrary elements of the superclass, and thus para-
meterize the equivalence transformations thereof by arbitrary elements,
making them generalized.

2. Equivalence of classes of differential equations. We recall
the essential notions for the present paper only. See [6, 8, 9] for more
details. Let Ly denote a system of differential equations of the form

L(:v, u(™, H(x, u(r))) =0,

where 2 = (11,...,2,) is the n independent variables, u = (u?,...,u™)

is the m dependent variables, and L is a tuple of differential functions
in u. We use the standard short-hand notation u(") to denote the tuple
of derivatives of u with respect to  up to order r, which also includes u
as the derivatives of order zero. The system Ly is parameterized by the
tuple of functions 6 = (6% (x,u(),...,0%(z,u(")), called the arbitrary
elements running through the solution set S of an auxiliary system of
differential relations in 6. Thus, the class of (systems of) differential
equations L|s is the parameterized family of systems Ly, such that 6 lies
in S.

Equivalence of classes of differential equations is based on studying
how equations from a given class are mapped to each other. The notion
of admissible transformations, which constitute the equivalence groupoid
of the class L|s, formalizes this study. An admissible transformation is
a triple (6,0, ), where 6,0 € S are arbitrary-element tuples associated
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with equations Ly and L; from the class L£s that are similar, and ¢ is a
point transformation in the space of (x,u) that maps Lg to Lj.

A related notion of relevance in the group classification of differen-
tial equations is that of equivalence transformations. Usual equivalence
transformations are point transformations in the joint space of indepen-
dent variables, derivatives of u up to order r and arbitrary elements that
are projectable to the space of (amu(rl)) for each ' = 0,...,r, with re-
spect the contact structure of the rth order jet space coordinatized by
the r-jets (z, u(’“)) and map every system from the class £|s to a system
from the same class. The Lie (pseudo)group constituted by the equiva-
lence transformations of L|s is called the usual equivalence group of this
class and denoted by G™.

Each equivalence transformation 7 € G™ generates a family of admis-
sible transformations parameterized by 6,

G~ 5T = {(0,T0,.T)|0 €S} cg,

and therefore the usual equivalence group G™ gives rise to a subgroupoid
of the equivalence groupoid G~. The function 7 is the projection of the
space of (x,u("), 0) to the space of equation variables only, 7(z, u(", §) =
(z,u). The pushforward 7T of T by 7 is then just the restriction of T
to the space of (z,u).

The projectability property for equivalence transformations can be
neglected. Then these equivalence transformations constitute a Lie pse-
udogroup G™ called the generalized equivalence group of the class. See
the first discussion of this notion in [3, 4] and the further development
in [8, 9]. When the generalized equivalence group coincides with the
usual one the situation is considered to be trivial. Similarly to usual
equivalence transformations, each element of G™ generates a family of
admissible transformations parameterized by 6,

G”>T {0, T, 7 (Tlozor(z))) |0 €S} CG™,

and thus the generalized equivalence group G™ also generates a sub-
groupoid H of the equivalence groupoid G™.

Definition 3. Any minimal subgroup of G~ that generates the same
subgroupoid of G~ as the entire group G~ does is called an effective
generalized equivalence group of the class L|s.

If the entire group G~ is effective itself, then its uniqueness is ev-
ident. At the same time, there exist classes of differential equations,
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where effective generalized equivalence groups are proper subgroups of
the corresponding generalized equivalence groups that are even not nor-
mal. Hence each of these effective generalized equivalence groups is not
unique since it differs from some of subgroups non-identically similar to
it, and all of these subgroups are also effective generalized equivalence
groups of the same class.

The class of differential equations L|s is normalized in the usual (resp.
generalized) sense if the subgroupoid induced by its usual (resp. generali-
zed) equivalence group coincides with the entire equivalence groupoid G~
of L|s. The normalization of L|s in the usual sense is equivalent to the
following conditions. The transformational part ¢ of each admissib-
le transformation (6’,0”,¢) € G~ does not depend on the fixed initial
value 6’ of the arbitrary-element tuple # and, therefore, is appropriate
for any initial value of 6.

The normalization properties of the class £|s are usually established
via computing its equivalence groupoid G~, which is realized using the
direct method. Here one fixes two arbitrary systems from the class,
Lo: L(z,u™,0(x,u)) =0 and L;: L(z,a",0(z, ")) = 0, and aims
to find the (nondegenerate) point transformations, p: #; = X*(z,u),
a* = U%z,u), i =1,...,n, a = 1,...,m, connecting them. For this,
one changes the Varlables in the system ﬁ by expressing the derivatives
@) in terms of u(") and derivatives of the functlons X% and U® as well as
by substituting X* and U® for #; and ®, respectively. The requirement
that the resulting transformed system has to be satisfied identically for
solutions of Ly leads to the system of determining equations for the
components of the transformation .

Imposing additional constraints on arbitrary elements of the class,
we may single out its subclass whose equivalence group is not contained
in the equivalence group of the entire class. Let £|s/ be the subclass of
the class £| s, which is constrained by the additional system of equations
S'(z,u,0@)) =0 and 1nequahtles > (2, u(™), 0 #£ 0 with respect to
the arbltrary elements 6 = 0(x,u("). Here S’ C S is the set of solutions
of the united system S =0, ¥ # 0, S’ =0, ¥/ # 0. We assume that the
united system is compatible for the subclass £|s/ to be nonempty.

Definition 4. The equivalence group G™~(L|s/) of the subclass L|s is
called a conditional equivalence group of the entire class L|s under the
conditions 8’ = 0, ¥/ # 0. The conditional equivalence group is called
nontrivial if it is not a subgroup of G™(L|s).
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Conditional equivalence groups may be trivial not with respect to the
equivalence group of the entire class but with respect to other conditional
equivalence groups. Indeed, if 8’ € §” and G~ (L|s/) C G~ (L|s~) then
the subclass L|s/ is not interesting from the conditional symmetry point
of view. Therefore, the set of additional conditions on the arbitrary
elements can be reduced substantially.

Definition 5. The conditional equivalence group GZ‘S/ of the class L|s
under the additional conditions &’ = 0, ¥’ # 0 is called maximal if for
any subclass L|s~ of the class L|s containing the subclass L|s/ we have

£|5/ ¢ AC‘S//

3. Preliminary analysis of equivalence groupoid. We start
studying admissible transformations of the class F by presenting the
equivalence groupoid of its superclass (1) and then descend therefrom to
the class under study.

Proposition 6. The class (1) is normalized in the usual sense. Its usual
equivalence group Gy, consists of the transformations in the joint space
of (t,z,u,0) whose (t,z,u)-components are of the form

t=T@t), &=X(tz), a=U' (t)u+U'tz),

where T = T(t), X = X(t,z), Ul = UY(t) and U° = U(t,x) are
arbitrary smooth functions of their arguments such that Ty X,U"' # 0.

Following [6] we can gauge the arbitrary elements C' = 1 and A =0
by a family of equivalence transformations of the class (1) and obtain
the class of reduced general Burgers—KdV equations

up + Uy = Z Al (t,x)uj + At 2)u + B(t, z). (3)
j=2

As before, the arbitrary elements run through the set of smooth functions
of (t,x) with A"C # 0.

Theorem 7. The class of reduced (1+1)-dimensional general rth order
Burgers—KdV equations (3) is normalized in the usual sense. Its usual
equivalence group G~ consists of the transformations of the form

X!t X} X7?

t="T(t =Xt X0t U= — — — 4
0. #=X'Wa+ X0, a=utger Tt @)
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g (XN o o Xt Tu
— J —
A T, Al A Tt A” 42— T, ) (5)

. X! 1 (X1> 1 (XO D C D ¢ A
B=_—=B+— (L) 2+~ t) ( +>A076
(T3)? L \T /, Ty \Ti T; T; ©)

where j = 2,...,7, and T = T(t), X' = X(t) and X° = X°(t) are
arbitrary smooth functions of their arguments with Ty X' # 0.

The subclass F of general Burgers-KdV equations with space-depen-
dent coefficients is singled out from the class (1) by the constraints
Af =0,k=0,...,7, By = 0 and C; = 0. Therefore, its usual equiv-
alence group GN— is a subgroup of G, that consists of transformations
preserving the above constraints.

Proposition 8. The usual equivalence group GZ of the class F of
general Burgers—Korteweg—de Vries equations with space-dependent co-
efficients consists of the transformations in the joint space of (t,x,u, )
whose (t,x,u)-components are of the form

t=cit+cy, &=X(x), @=chu+U%),

where c1, ca and ¢y are arbitrary constants and X = X(x) and U° =
U%(z) are arbitrary smooth functions of x such that c; X,ch # 0.

The existence of classifying conditions [6]

T; ~ T; ~ tUl TtU1
X AL AT = X.C-
) ”((Xm)t 0 Ty NG+ (Xx t

Qe

:07

for admissible transformations of the class F implies that it is definitely
not normalized in any sense. At the same time, we can gauge the arbi-
trary elements C' and A' again by means of equivalence transformations
of the class F and produce the class F of reduced general Burgers-KdV
equations with space-dependent coefficients,

Up + uly = z’”: Al (z)uj + A°(x)u + B(z).

Proposition 9. The usual equivalence group G% of the class F is four-
dimensional and consists of transformations of the form
~ ~ C3

t=cit+ca, T=c3x+cqy, U=—u,
C1
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- i - 1 -
Al = @AJ, A= —A° B= —= B,
C1 C1 (61)
where j = 2,...,r, and ¢’s are arbitrary constants with cic3 # 0.

Nor the class F neither its superclass F are normalized in any sense.
Thus, the problem of describing the equivalence groupoid G% of the
class F should be considered as the classification of admissible trans-
formations up to G%-equivalence, see [9, Sections 2.6 and 3.4]. The
class F is a subclass of the class (3), whence G is a subgroupoid of the
equivalence groupoid of the class (3), and the results of Theorem 7 are
valid here, although they should be further specified. This is achieved by
differentiating the relations (5)—(6), solved with respect to the source ar-
bitrary elements, with respect to t. This gives the classifying conditions
for admissible transformations,

— (Tu X
(X/z+ X)) AL + (;j- ‘X1>AJ—0 (7)
o T 1 (. X} T
Xlo+ XP)AG+ A0 = o (255 -
( t‘r+ t) x + Tt Xl Tt (8)
- Ty XM\ ~ T .
(X2 + XO) B + ( o x1> B= D (xla+ X0
XU Xt XD\ 4 XU (T X+ XY ©
ST\t xt . T2 \ X1 T )

where the initial space variable x should be substituted, after expanding
all derivatives, by its expression via &, * = (¥ — X°)/X!. Note that
admissible transformations with Ty = X? = X! = 0 are generated by
the usual equivalence group G'%.

4. Nontrivial conditional equivalence subgroups. In [6] with
a help of the method of furcate splitting, cf. [5, 7] the classifying condi-
tions (7)—(9) for admissible transformations of the class F were solved,
but the obtained admissible transformations were presented superficially.
More precisely, they were parameterized by solutions of some ODEs.
Here we study the question in more depth and present explicit forms
of group parameters of the nontrivial conditional equivalence groups.
Besides, following [6] for simplicity we consider only subclasses of the
classes JF1 and Fp, defined below, admitting proper subgroups of maxi-
mal conditional equivalence groups. In fact, these subgroups are the quo-
tients thereof by the space-translations. Note that given in Theorem 1
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are the subclasses admitting maximal nontrivial conditional equivalence
subgroups.
I. The class Fi of equations

s
up + Uty = Z a;z? |z|*u; + (aoo + ao1|z|*)u
j=2

+.’E(b0 + b1|$|a + b2|1'|2a)

with aa, # 0 naturally partitions into two G% -invariant subclasses F71 o
and F7; singled out by the conditions ag; = 0 and ag; # 0, respectively,
since the arbitrary element ag; is easily shown to be transformed by the
rule ag; = c4ap; under admissible transformations of the class, ¢4 # 0.
The class Fr,; admits additional admissible transformations if and only if
ago = (a+2)by/ag; and by = —b?3(1+«)/a?,, so we reduce the arbitrary-
elements tuple of the class by agg and by and denote the subclass obtained
again by Fi .

Proposition 10. The class Fr1,1 is normalized in the generalized sense.
Its generalized equivalence group consists of the point transformations in
the relevant space, which are of the form
- X! X}
, &= X"z, =—u-=t
T, T,

~ ~ _ ~ _ 7 _92 7 _
a = o, aj = C4aj, apl = C4001, b2 = C4b27 b1 = Cs,

T

Sl
=g}

T

)

where T is a smooth function of t and the arbitrary elements 6,

~ efblat/am _ 1
Cs | CQ—————— +co | + 1

_ 1
T(t,0) = =1
(t,0) = —In “hrajao:

Cs5

?

0 = (a, a;,a01,b2,b1),
taking the form at the singular points

e*blat/a(n _ 1

T(t,g) =C1 + C2 Zf 55 =0 and bl # 0,

—bloz/am
— 1
T(t,@) = 575 In |E5(51t + 52)| Zf Cs 75 0 and by =0,

T(t,@) =cit+¢ca Zf (E5ab1) = (an)v
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¢’s are arbitrary functions of 0 with ¢1¢4 agzz’ Z’"Zgigigzg # 0 as well

as X1(t,0) = (6,T,) "/ z'fa is odd or rational in the reduced form with
an odd numerator and X' (t) = e|ésTi| "/ with ¢ = +1 and &,T; > 0
otherwise.

Remark 11. The function T is a solution of an ODE smoothly depen-
ding on parameters, so it is a smooth function of these parameters and
initial conditions [1, Corollary 6, p. 97] («, by and ag; are the parameters
of the equation in this case, ¢’s are the initial conditions). This argu-
mentation is valid for the group parameters in the equivalence groups
below, where appropriate, as well. In fact, in these cases it follows from
the transformation for A° (the equation (5)) that the function T satisfies
the equation

1
i (3),

for some constants vy and 4, having the general solution

eft— 1
T3 +eo | +1).

The continuity of this function is evident and at the singular points the
function takes the form

1
T(t)=—1In
(t) 5

e’ —1

T(t) =C

+co if y=0andd#O0,
1

T(t) = —In|y(cit +e2) +1| if y#0and =0,
Y

T(t) = cit + ¢ it (v,6) = (0,0).

The transformations in Proposition 10 indeed form a group, which is
straightforward to show. Therefore the equivalence group of the class Fy ;
is a local Lie group of transformations (all equivalence group here and
below in the paper are finite-dimensional so we do not need to talk about
Lie pseudogroups). If the function T is of the form % In |y(c1t + c2) + 1|
and yco = —1, then T'(t) degenerates into an affine function. To avoid
this, in all such situations thereafter we implicitly assume otherwise.
g) stands for the determinant of the corresponding
Jacobian matrix. Thereafter, we will not call attention to these facts.

The notation
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Since the arbitrary element « is invariant under admissible trans-
formations, it is convenient to consider the two subclasses F 00 and Fp,o1
of Fi,0 singled out by conditions o = —2 and a # —2, respectively. To
achieve an extension of a number of admissible transformations in the
latter class we need to consider its subclass (denoted again Fi 1) singled
out by the conditions by = 0 and by = —(a + 1)ady/(a + 2)2.

Proposition 12. The class F1,01 is normalized in the generalized sense.
Its generalized equivalence group consists of the point transformations of
the form

o B X! X1

t=T@t), i=X'(t)r, 0= =u—“lua,

T; T;

a = «, Ezj = E4aj, &00 = 55, bQ = Eibg,

where T is a smooth function of t and the arbitrary elements 6,

eaooat/(a+2) -1
Cs (Cl .

T(t,0) = ; In

+02) +1
Cs

agor/(a+ 2)

The function T takes at the singular points the following forms
eaouat/(a+2) -1

Ty P

+¢ if ¢5=0 andaoo#O,

— 1

T(t,e) = jlnlég)(élt-i-ég)—‘rl‘ if ¢ # 0 and agg =0,
Cs

T(t79) = Elt + C2 Zf (55,0,00) = (0,0)

_ . . o O(Gasiedonsd
Here ¢’s are arbitrary functions of 0 with ¢ycy —88((?;2’ < ;{;’; b;)) # 0 as well
yeeeQry )

as X'(t,0) = (E4Tt)*1/a7 if a is odd or rational in the reduced form with
an odd numerator and X*(t,0) = e|cyTy| 7Y/ with ¢ = £1 and &,T; > 0
otherwise.

A description of the equivalence group of the class i g is more com-
plicated and we present its equivalence groupoid first. In accordance
with our standard approach we consider its subclass singled out by the
conditions agg = b1 = 0.

Proposition 13. A point transformation connects the two equations in
the class Fi1,00 if and only if its components are of the form
X! X}

'E: T(t), §7=X1(t)x, U = fu—fx,
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where (X'(t))? = c4Ty and the smooth function T of t satisfies the equa-

tion
T, 1/ T\
tt tt 5 9
— ] — = =] =2byT7 — 2bg.
<Zt>t Q(Zt) 0=t 0

Here ¢y is an arbitrary constant and c4T; > 0.

The last equation is an autonomous ordinary differential equation
on T which can be integrated in quadratures with standard techniques,
but proceeding this way one can write an explicit form of the general
solution only for specific values of parameters. On the other hand,
for any equation in Fi oo there is an equivalent one to it in the sub-
class fﬁ %30 singled out by the condition by = 0. The corresponding point
transformation is t = T'(t), # = Tz, @ = u/vVT; — Tuz/(2\/(T})3),
where a smooth function T of t is a solution of the equation (T3 /T}), —
1 (Tw/ T,)* +2by = 0, for which the general solution can be found explic-
itly, although a particular solution will suffice for our purposes. Thus, if
by = b> > 0, then T'(t) = €®* is a particular solution; if by = —b% < 0,
then T'(t) = tan(bt) is a particular solution, b > 0 in both cases.

Proposition 14. The class II"(JEO is normalized in the usual sense. Its

usual equivalence group is constituted by the point transformations of the
form

t=T@t), =X'(tz, @=—"u-— Loz,
a2 = caaz, by = c3by,

where X1(t) = ev/cyTy with ¢ = £1, T = (c1t + c2)/(cat + ¢o) and ¢’s
are arbitrary constants, with 6 = c1co — cacs # 0 and ¢y, ¢1, co and c3
being defined up to a nonzero constant, and c46 > 0.

On the other hand, any admissible transformation of the class Fi oo
can be represented as a composition of an admissible transformation with

a source equation in Fi g9 and a target equation in 117%307 an admissi-

ble transformation generated by an equivalence transformation in .Fﬁ %30
and an admissible transformation back. In this way we avoid implicit
quadrature expressions arising in a previous approach. Note that the
parameter-function 7" is defined as a solution of a third-order ODE pa-
rameterized by by and by and thus should be parameterized by three
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constants to agree with the Picard-Lindel6f theorem. This is indeed the
case.

Proposition 15. The class Fi o is normalized in the generalized sense.
Its effective generalized equivalence group is constituted by the point
transformations of the form

t=P*T(P'(t), &=./P?P!X"({)z,

_ 1<X1 xp,  X'\/P ;1 p2x! ))
_ vE L)

U= —5 u — +
P2 \ TP} 2T;(P})3/2 T; 2p?

:(34),)

~ 7 2
Clj = C4aj, b2 = C4b2,

ot (o ()
(Y E))

where t = P(t), t = T(f), t = P2(t), X'({) = e(caT)V?, T = (st +
c2)/(cst + cp), with § = cico — cacs # 0, ¢’s are arbitrary constants,

t if bo=0,
PY(t) = { tan(y/=bot) if by <0,
2Vt if by > 0;

P2(t) runs through the set of smooth functions {t L1n It], 5= arctant}
with c4d >0, ¢;, 1 =0,1,2,3, are defined up to a nonzero constant and
P2 >0 and e = £1.

The arbitrary element bo of the target equation takes the value of c2
it P*(y) = _-Inlyl, of —c3 if P?(y) = 5~ arctany and of 0 otherwise.
The functions P?(T(P'(t))) give a three-parameter family of solutions
to the nonlinear third-order equation on T above parameterized by bg

and by.

Remark 16. The point transformations in Proposition 15 form a group
by construction, and thus constitute an effective generalized equivalence
group of the class F1 9. To obtain the entire generalized equivalence
group thereof one allows ¢’s to vary through the set of arbitrary smooth
functions of the arbitrary elements of the class.
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I1. A class Fqp of differential equations of the form

T
Up + Uy = Z a;xiuj + (apy In |z| + ag)u
j=2

2 2
+x (_‘121 In? |z] + (CLZl - a002a01> In|z| 4+ bo>

is partitioned into two subclasses Fi19 and Fi1,;1 that are singled out by
conditions ag; = 0 and ag; # 0, respectively, and invariant under the
admissible transformations of the class Fip.

Proposition 17. The class Fir,0 s normalized in the usual sense. Its
equivalence group is constituted by the point transformations of the form

04663t

- _ . _
t=cit+cy, T=cue®®z, U= . (u+ c3z),
1
70,]’ ~ 7@004’263 ZNJ 7bofc§
J — T apo = ) 0 — 2
c1 c1 (c1)

where ¢’s are arbitrary constants with c1cq # 0.

The class Fi1,0 is the only owner of a conditional group normalized
in the usual sense.

Proposition 18. The class Fii1 is normalized in the generalized sense.
Its generalized equivalence group Gy, is constituted by the point trans-
formations of the form

Xl

- _ 5 _ 5 C4001
t=ct+3c, =Xz, uz_—(u—&—iea‘“tmx),
C1 2
o _a a1 _
aj =—, @ap1=—, @ = —(ago — ao1Cs),
&] C1 C1
- 1
2 2 | - ~

by = = (4bo — ag (€3 + €3) + 2a00a0183) ,

1

where X! := exp (63 + ¢4 exp( “02“)), and ¢’s are smooth functions of the

. . _ 0
arbitrary elements aoo, ao1, a; and by with ¢15

(@25--,8r,801,d00,b0)
(az;-.-,ar,a01,a00,b0) # 0.

To extract an effective generalized equivalence group from the genera-
lized equivalence group, we set ¢ := c2/ag1, 3 := —c3/ap1 and get rid
of the dependence of other ¢’s on the arbitrary elements.
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Proposition 19. An effective generalized equivalence group éﬁ,1 of the
class Fi1,1 is constituted by the point transformations of the form

~ Xl t
s 5o e X0 (o Sy
@01 C1 2
= a; apr .
(Lj:—]’ apgr = —, agp = 7((100"_03)7
1 C1 c1
= 1
bO = 4—2 (4b0 + ((101 — 2&00)63 — Cg) R
€1

where X1(t) := exp (,% +csexp(29t)) and ¢’s are arbitrary constants
with ¢ # 0.

The effective generalized equivalence group CA?INM is not a normal sub-
group of Gﬁ,p which is readily seen after writing the time-transformation
out. Therefore, it is not unique as an effective generalized equivalence
group as conjugate subgroups in C_?INM are also effective generalized equiv-
alence groups. Thus, the existence of a class of differential equations with
unique nontrivial (proper) effective generalized equivalence group is still
a question.

III. A class of differential equations of the form

s
wp + Uy = E a;e*“u; + (ap1e™” + ago)u + bye?e®
Jj=2

+ b1* + by with aa, #0
admits additional admissible transformations if and only if

2
apo + aoo apoao1
—20 _ "F and by = -2

b =
0 20 «

Proposition 20. The class Fii1 is normalized in the generalized sense.
Its generalized equivalence group is constituted by the point transforma-
tions of the form

i c = ¢ T,
t:T, j:é5$——51n|E4Tt|, a:s(u_tt>7
o O[Tt

_ ~ _ ~ _ bt 9
. Gj =CaGlaj, Qo1 = Caa01, Qoo =C3, by = CyCsbo,
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where the function T of t and the arbitrary elements 6 is defined by

edoot — 1
C3 <51 +52> +1

_ 1
T(t,0) = —In -

C3

)

and takes the following values at the singular points
_ edoot _ 1
T(t79) = EIT + C2 if ¢3 =0 and agy 75 0,
00

= 1

T(t,&) = g In |53(61t + 52)| Zf appg = 0 and C3 7é 07
3

T(t7 0) =cit+ ¢ Zf (CLOOa 63) = (07 O)a

(8,d2,...,8r,800,801,b2) 0
(av,a2,...,ar,a00,a01,b2) 7& !

¢’s are smooth functions of 6 with 6164652

To find an effective generalized equivalence group of the class Fij; we
resort to the following heuristic speculation. The arbitrary element agg
may take any real value. Thus, it sufficient to parameterize agy to be
ago + ¢3, cg3 € R. We preserve the number of initial conditions parame-
terizing 7" and guaranteeing the necessary domain for values of agg. To
satisfy another condition of an effective generalized equivalence group we
drop any dependence of remaining ¢’s on the arbitrary elements. In fact,
we chose a correct parameterization for them already in the theorem.

Proposition 21. An effective generalized equivalence group Gﬁl of the
class Fi1 is constituted by the point transformations of the form
- c @
t="T, £205x——51n|C4Tt|, U= — (u—), a=—,
a
a; = cachaj, o1 = csapr, Gpo = ago +c3, by = ciesba,

where the function T is equal to

etoot — 1

(@ +c3) (e

aoo

1
Tt)=——1n
apo + €3

)

+CQ>+1

and takes the following values at the singular points
edoot — 1 )
T(t) =c———— + 2 if ¢3=—agy #£0,
Qoo

1
T(t) = . In|es(cit + )| if ago =0 and c3 # 0,
3
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T(t) = Clt + C2 Zf (CLoo, Cg) = (0, 0),
and c’s are arbitrary constants with cicqcs # 0.

Guided by the same logic as for the class 1,1, we can show nonuni-
queness of effective generalized equivalence groups for Fy; as well.

IV. Finally we discuss the last subclass F1y of F admitting additional
admissible transformations. It consists of equations

r
U + Uy = Z a;juj + agu + bix + by.
=2

Since the arbitrary elements a; are scaled under the action of the equiv-
alence group of the class, it is reasonable to single out two subclasses of
the class under question: Fry,o with a;j =0 forall j =2,...,7 -1, and
complementary to it the subclass Frv,;1 with at least one a; nonzero.

Proposition 22. The class Frv 1 is normalized in the generalized sense.
Its generalized equivalence group is constituted by the point transforma-
tions of the form

o _ _ _ X! X9
_ Al 0 ~ ol 0 ~ ¢

t=T1t+71", z2=X o+ X", uffl +F’

o (Xl)r - Qg 6 o b1

aj Tl aj, aop ﬁa 1 (Tl)Q’

~ 1 1

bo = (T1)2 (X b() + Cg) 5

where

EleAlt + EgeAzt + C3 Zf Al 7é 0, D>0,
cit + (_326)\2t +cC3 Zf Al = 0, D> 0,

RO(.0) = d e et e i b0, D=0,

’ cit? + Got + 3 if bp=0, D=0,
b1t/ (e, sin(v/—Dt)
4¢3 cos(v/—Dt)) +¢ if D<O0,

where D = b7 + 4ag and Ao = (b + VD)/2 with |M| < |\, X1,
T T' and &’s run through the set smooth functions of the arbitrary

o ) . 71771 0(@2,..,dr,d0,01,b0)
elements 0 = (a;, ap, b1, by) with X'T o abrbe) # 0.
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Here the function X°() is a solution of the ordinary differential equa-
tion X3, — b1 X{, — apX? = 0 and thus it smoothly depends on the
parameters by, ag and all the initial conditions.

The equivalence groupoid of the class Fiv ¢ depends essentially on the
order r of equations therein. So we consider both the cases separately.
First assume that » > 2 and denote the class of such equations Fjy, g.
This class admits additional admissible transformations if and only if
by = aZ(r —1)/(r — 2)2, so we reduce a tuple of the arbitrary elements
thereof by the element b;.

Proposition 23. The class ]-'I’"\?g is normalized in the generalized sense.
Its generalized equivalence group is constituted by the point transforma-
tions of the form

where the pair of smooth functions (T, XO) of t and the arbitrary ele-
ments 0 equal to

(€1t + o, Crt> + Gt +C5) if ap=0 and c3 =0,

1 o B 65’]"2 C t+ C
( Inlcz(eit + é2)l, = o 1/r
3 G(r=1 |t + /(e
30X (5 )
_c30<t+_c2_) )ifaozoandcs#(),
2 C1C3
T —2 1 agrt Gy E5(r—2)° (56610_2 + 67)
( — hl —er—2 +T ) 72( 1) t 1/7'
c3T C1 C1 c3(r ’52/51 Te T072’
(r — 2)2b0 51 . _
=2 ¢ ) 0,
+ (r—1)a3 ¥ a0t #
— 92 2
_ agrt  _ CsCy 29Tt _  agrt . _ (T_Q) bo o1
( To e A GeTE A -

if ag#0 andész =0,
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where ¢’s are arbitrary smooth functions of 6 with C4Tt% #0 as

well as X'(t,0) = e(¢4Ty)Y" with ¢ = +1 and &,T; > 0 if r is even and
e =1 otherwise.

The function X° in the second pair in the second set gives a general
solution of the linear inhomogeneous equation on X°(t),

boX1 1 <X?> X? c§(r—1)X0

2T, Sk A e

T

parameterized by the function T in the set and the corresponding X ().
Any particular solution of this equation seems impossible to be found
with standard techniques. Here instead, we used a method used for the
class Fr,00 with gauging the arbitrary elements ao and by to O first and
composing equivalence transformations thereafter.
Due to the above condition on the arbitrary elements b; and ag, the
class Fy 0 admits additional admissible transformations if and only if
ag = 0. Abusmg notations we denote the subclass singled out by this
condition again by F{yg.

Proposition 24. The point transformation of the form
- X X
t=T@t), z=X'Mz+X°0), 0="u+ o+t

connects the source and target equations in the class Fyy, 0 if and only

if (XY)2/T; = const # 0, the parameter function T runs through the
solution set of the system

Ti 1 /T’
— ) —= = =920,72 -2
<Tt>t Q(Tt) ' b

and the parameter function X° of t satisfies the equation

1 /X0 - o, - X1
ﬂ(ﬂ)f_le —bo—boﬁ.

The last equation is linear inhomogeneous with respect to X°(7') for a
given T'(t), while the differential equation on 7 is integrated in quadra-
tures as an autonomous equation on In |T3| with standard techniques.
Nonetheless, using the similar trick as was used for the class F oo, one
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can do better. More precisely, we gauge the arbitrary elements by and by
to zeros by the point transformation of the form

~ ~ - (3 Tttl‘ X?
t="T(t =Tz + X°(t =+ -+
t), & w+ X0(t), @ \/Tt+2(Tt)3/2+Tt’

where
(T, X°) = (e2V0!, dbo(2¢/b1)¥2e¥Prt)  if by > 0;
—bo(—b1)3/4> .
T,X% = (t —bt), ————2 f b <O,
( ) ( an( 1t) o5/ —bit 1 1

obtaining the subclass -7:1\/: 6o of .7-'1\,: 5- Thereafter we present the equiv-
alence groupoid of Fjy; 0 by composing an equivalence transformation
within the subclass Ffy VOO with point transformations mapping equa-
tions in the superclass to equations in the subclass and vice versa.

Proposition 25. The class {\?30 is normalized in the usual sense. Its
usual equivalence group is constituted by point transformations of the
form

- X! X}
t=T@F), Z=X'Mz+X° a="cu+Lta, ay=-cyao,
T, T
where X (t) = e(ca6)Y?/(cst + co), T = (c1t + c2)/(cst + co), X° and
¢’s are arbitrary constants with 6 = cycg — cacz # 0, ¢, c1, co and c3
being defined up to a nonzero constant, c4d >0 and € = £1.
The point transformation T# 50 which maps an equation in Fiv oo to
an equation in Fyy g is of the same form as above,

P(i i 07 i T X?
t=T(), z=\/|GIz+X°@1), u= + L
NE 2EEE T
where T(T(t)) =t and )N(O(g) _ —(XO/Tt)(T(f)), that s,
o Inli| b N
(7,50 = (20 o)y 5o,
2v/b; b1

(T,X%:(amn(t) 9°> it by <0.

V —51 ’ bl
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Proposition 26. The class }-1\/0 is normalized in the generalized sense.
Its effective generalized equwalence group 1is constituted by point trans-
formations of the form

t=PX(T(P'(t))),
i=/PPIX )z +/P2(X'R' + X°) + R?,

ao Xl + X'Pj Xl\/P P—Q—X1
\/P2P}MT; 2T;\/P2(P})? ,/ 27, pP2)2\/Pt
X! XlR1 P2 2
fy + (X'R"+ X°) + =,
TA \/* P1 T; (P2)3/2 P

i . 1 1 P} L (PN
az = cqaz, 61=W<W<bl+ (Ptlt) 4<Pilt>>
SL(ERY 1 (P
2\ P2, P2 ’

_ 1 bo 1 (R 1 (R2 -

o= g +(t))+ () ~mur

O PRz \ (P2 T PE\PL),) T P2\ P2 '
1/2

where t = PY(t), t = T(t), t = P2(t), X' () = e(caTp)V/?, T = (1t +
c2)/(est + co) with § = c1co — cacz # 0;
(t, —bot?/2) if by =0,
(PH(8), R (£) = { (tan(v/=bt), —bo(=b1)*/*/ cos(v/=bit)) if b <0,
(2011, dbo(2v/by) ¥ 2eVP) if by > 0;

X9 and c¢’s are arbitrary constants and the pair of smooth functions
(P2(t), R%(t)) runs through the set

; cet? Inl|t| ¢ arctant  cg
’ 2 ’ 2C5 ) Cg ) cs ) C% )

with ¢;, i = 0,...,3, being defined up to a nonzero constant, c4d6 > 0,
Pt—2>0 and € = £1.

In the notation of Proposition 26, the point transformation 7pz g2
maps an equation in Ffy; voo to an equation in ]-‘TV% with arbltrary—
element tuples (bo, b1) equal to (cg,0), (cg, c2) and (cg, —c?), respectively.
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ITonirmomiaabHI PO3B’I3KM MO/IEJTi
HEeJIIHITHOT'O cepeJIOBUIIA
3 KOJMBHIUMHW BKJIIOYEHHSIMUI

C.1. Cxypamiscorut, I.A. Cxypamiscvka,
I.B. Byxyp, O.M. Macaosa

Inemumym zeopisuru im. C.1. Cybbomina HAH Yxpainu, Kuis
E-mail: skurserg@gmail.com, inna.skurativska@gmail.com

Y crarri #HOCIiKYIOTHCA MOJHOMIaIbHI PO3B’43KU HesHINHOI cucreMu
HAPYII, axa onucye AUHAMIKY CKJIQJHOTO CepeIOBHINA 3 KOJUBHUMH BKJTIO-
YeHHAMU. 30KPeMa TOKa3aHo, M0 KoedilieHTr po3B’ 3Ky IIPU CTAPIINX MO-
HOMaX 33/I0BOJIbHAIOTH CYTTEBO HEJIHINHY NMHAMIYHY CHCTEMY TaMiIbTo-
HOBOrO THITy. ¥ Iiif cucTeMi IpU 3MiHI KepyI0doro mapaMeTpy MOZeJi iCHy-
OTh IEePioArYHi, KBA3iMepioaudHi Ta XAOTHUYHI PEKUMU, BUBYCHHS SAKUX
3A1CHIOBAIOCHh HA OCHOBI aHasi3y mepepisis Ilyankape ta cuekTpy Jidiry-
HOBCBHKUX ITOKa3HUKIB.

The paper considers polynomial solutions to a nonlinear system of PDE
describing dynamics of complex medium with oscillating inclusions. In
particular, it is shown that the coefficients of leading monomials satisfy
a strongly nonlinear dynamical system of Hamiltonian type. This system
may have periodic, quasiperiodic, and chaotic regimes when the model’s
control parameter is varied. The observed regimes were studied by means
of analysis of Poincaré sections and spectra of Lyapunov exponents.

1. Beryn. 3 anasizy eKCIEPUMEHTAJIBHUX JAHUX CTOCOBHO ITPOTIKAH-
Hs1 (PI3UUHUX TPOIECIB ¥ FeTEPOTEHHNX CEPETOBUINAX BUILINBAE HEOOXII-
HICTh YIOCKOHAJIEHHS KJIACHIHUX MOJeseil MeXaHIKW CYILIbHOTO Cepeio-
BUIIA JIAXOM BPAXyBAaHHS BHYTPIMIHIX 9aCOBO-IIPOCTOPOBUX MACIITADIB
Ta A0JATKOBUX cTyneHiB cBobomu. Taka curyaris, 30Kkpema, CKiaiacs
3 ONHUCOM IIOIMUPEHHS KOPOTKUX AKYCTUYHUX XBWJIb y TBEPAMX Tijlax
Ta TBEPJAUX IOJIIMEPAxX, 3 OHMCOM IIOBEIHKM IOJIKPUCTAJIYHUX T Ta
TPAHYJIHOBAHUX CEPEIOBUIN B YMOBAX CKJIAJIHOTO a00 TPUBAJIOTO HABAH-
TayKeHHsI, BUCOKMX IPAJI€HTIB Tomo [3, 9].
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Hamarannsi onucaru mOBemiHKY TDaHYJIbOBAHUX CEPEIOBHUIN y KOH-
TUHYaJIbHOMY HAOJMKEHHI YU MPOIecH JoKasizaril medpopmarii y rere-
POTEHHMX MaTepiajax MOKa3aIu HeOOXiTHICTh y3araJbHEHHS KITACUIHUX
MOJe et 3 METOI0 BPAXyBaHHS MiKPOCTPYKTYPHU, TUHAMIKHA CTPYKTYPHUAX
€JIEMEHTIB Ta B3aEMO/Iil MiK HUMHA. Y Miif pOOOTI PO3IIIAIAIOTHCA MOJIEII,
SAKI BPAXOBYIOTh KOJUBAJIbHY JUHAMIKY CTPYKTYPHUX €JIEMEHTIB.

2. BpaxyBaHHSI KOJIMBHUX CTYIEHIiB CBO0OOAW B MaTeMaTWY-
HUX MOJeJIgX CTPYKTYPOBAHUX CepeoBHUIIN. K 3a3HadeHo y po-
6orax [9, 10], cTpyKTYpHi €JeMeHTH TIPUPOIHUX Ie0CEPEIOBHII TTepedy-
BAIOTH y TOCTIMHOMY KOJWBAJLHOMY pyci. s BpaxyBaHHS KOJWBHOI
JUHAMIKHA CTPYKTYPHUX €JI€MEHTIB IeOCepe/IOBUINA B PaMKax Teopil cy-
MiJIBHOT'O CePEeJIOBUINA MOXKHA BUKOPUCTATH y3arajbHeHi pIBHAHHS CTAHY
[14, 15, 16] abo Ge3m0cepeiHbO ONUCATH AMHAMIKY KOJIMBAHb y JIOJATKO-
BOMY piBHSHHI pyxy. [0 OCTAaHHKLOTO BHUTIAIKY HAJIEXkKATh MOJETL y BU-
IJIST B3a€MHO TIPOHUKAKOUNX KOHTHHYyMiB [1, 2, 7, 11, 12, 15, 16, 17, 22]

0%u o FPw  Pw

- = — - R 2 — =
o2 ~or Mor op tW(w-uw=0

2 3
E1 8u E2 8’1,6 E3 8u
c=——+—|—| +— (=) , (1)
p 0r p \Ox p \ Oz
Jie U — 3MIIeHHsT OCHOBHOTO CEPEIOBUINA TYCTHHW p, W — 3MIIeHHs
OCITIJTIOIOYOTO BKJIIOUEHHS TYCTHHE M0 3 BIACHOI0 YaCTOTOIO W.
OcranHe piBHAHHS € PIBHSHHAM CTAaHY HECYYOrO CepeIoBuIa. BUKO-

Hytoun 3Hepo3Mipenns moneni (1) srigmo 3 dopmynamu t = 7¢, © = 7T,
U = Ccol, W = CoW, W = WT, 3AIULIEMO 11 y TAKOMY BUIJIs/Ii

’u  Oo Pw  w 9
oz " or Mo o T w-w=0

ou ou\ ou\®
azela—l-ez o +e3 9 ) (2)

2
— (< — B2 - 2 _ B
peer= (%) ea= 7%, es = =L
3a3HaunMo, M0 KyOidHe PiBHSAHHS CTAHY € JOBOJII MOITUPEHUM CEPesT
MoOJIesIel IPUPOIHUX MarepianiB. 30KpemMa, KoedilieHTH e; OB’ A3y I0Th-

s 3 ocobsuBocTsMu rpadika piBHsiHHA crany HacTyuHuMm dunom [20]:

ou ou\ 2 ou\®
U—Al%"‘AQ (8%‘) +A3<8$> 5

Es
3
cgT3p’
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3+n
4 )

g2
g1

me Ay = 50 Ay = pln A3 = = < 0, napamer-

61 1 2

n
= 0 y Toumi 3 KOOpJANHATAMHI

sien

pu 01 Ta €1 BI/I6I/IpaIOTbCH i3 yMOBH, IO %=
(e1,01). Jna Gararbox marepianis |n| > 1.

Bapro Takoxk 3a3naduTH, 10 MOAIOHI MOIENTl BUHHKAIOTH K KOHTH-
HyaJIbHI HAOJMKEHHST IUCKPETHUX JIAHITIOTIB YaCTUHOK, 3B’ SI3aHUX TEB-
HUMU cuytamu B3aemozil [8, 13]. Takox Taki Mozesi y TOBrOXBHIBOBOMY
HaOJIMKEHH] OMUCYIOTh PO3MOBCIOIZKEHHS 30yPEHDb y CEPEeIOBUINAX 3 ITy-
XUPIFEME Ta3y, M0 He PO3YMHAETHCH [6].

3. IMosriHOMiaJIbHI PO3B’A3KM MOJEJIi B3a€EMHO IMPOHUKAIOYNX
KOHTHHYYMIB. 3a3HauuMo, 1o y poborax [2, 11, 15, 16, 17, 22] gerasib-
HO BHBYEHO XBHJILOBI pO3B’si3kM Momesi (1), siki omucyroThest HesiHii-
HUMW aBTOHOMHUMU 3BUYAWHUMY AUQEPEHIAJTHHUMA DIBHIHHSME, IO
JIO3BOJISI€ BUKOPUCTATH CyYacHi JOCATHEHHS B Tajly3i YUCIOBOTO Ta AKic-
HOTO aHaJi3y AuHamMidauX cucreM. HaromicTs, iHim po3s’s3ku BKa3aHOI
MO/IeJIi peTejIbHO He JIOCJI/I?KYBAJIUCh.

Hapasi posrisaemo mosinoMianbi po3s’asku Momem (2). ¥V mpomy
BUMAJIKY PO3B’s30K cucTemu (2) OyIeMo IIyKaTh y HACTYIHOMY BUTJIfA-
mi [18]

u=a, + asx + azx?, w = by + box + bsx?, (3)
ze koediuienru a; = a;(t) ra b; = b;(t) € bynkuisimu TinbKu yacy.
Hincrarmvo (3) B (2) Ta Bummmenmo xoedimienTn mpn MonoMax x*.
IIpu z°:
d? d?b
—2aze; — 4asazes — 6(],2&363 + dtcgl +m dt21 =0,
d2b,
W—f—w (bl —al) =0.
Ipu z':
d2a2 d2b2
—8a§eg 24a2a363 + — a2 + mW =0,
d2b,
¥+w (bg—ag) =0.
Ipu z2:
d?a d2b d2b
3 3 3 3 2 _
—24a3es + e +m Fro o 0, 2 v (bs — a3z) = 0. (4)
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st cipouienns cucremu (4) npuitmemo, mo 24es = —p < 0, ag = x,
b3 = y, Ta BUKOHAEMO HACTYIIHI MACIITAOHI IEPETBOPEHHS

dAxmo napamerpu T = %, q = %, TO TPUUAEMO JO TAKOI CHCTEMH

piBHsHb (HEXTYIOUM PUCKAMU HAJ| 3MIHHUMHU):

2 2
d*z 3 d*y
de2 +z :m(y_x)a +(y_$):0a
sKA 3aJIEXKUThH JIMIIE BiJl OJHOTO IapaMerpy 3B 3Ky m.
Jlerko mokaszaru, 10 OTPUMAHA CHCTEMA € raMiJbTOHOBOWO. JlificHO,

3a JIOJATKOBOI 3aMiHU 3MIHHOI Y = \/ya MOXKHA OTPUMATHU CUCTEMY

d2.'1/' 3 Yy dzy Y
az te :m(\/m”)’ ae TVl s ) =0

AKa Ma€ IIpeJaCcTaBJI€HHA BUIY

d%x oV d3%y ov

a2 T or AR oy

. 4 2 .
Ae norenmian V = % + & (\/y—m — :c) , IO JO3BOJISE 3anucaTu QpyHKIIO
laminbrona y Burasmi

dx dy
1,2 1.2
H = 3p; + 50, + V(z,9), Pe= 30 Pv= qp (5)
KA HA, TPAEKTOPIAX CHCTEMU HADYBAE CTAJNX 3HAYEHB, TOOTO % =0,

a orxke, H = h = const.

Posrastremo crpykTypy (pa3oBoro mpocTopy CHCTEMHU Ta i1 3MiHYy TIpU
BapiloBaHHS MMapaMeTpiB cucTeMu. Iy mMbOro BUKOPHUCTAEMO TEXHIKY TIe-
pepisiB Ilyamkape, a y AKOCTI Kepyodoro mapamMerpy BuOepeMo mapa-
Merp h — enepris cucremu. IlogaTkoBi yMOBHU [I/TsT iHTErpYBAHHS CHCTe-
MH BHOEPEMO TaKUM 9MHOM 11100 BOHU 33/I0BOJIbHSINA raMigbronian H.

Pisusgaua H = h = const aBnisge coboi0 TinmepmoBepXHIO B 4-BUMip-
HOMY (»a30BOMY IPOCTOPI AMHAMIYHOI CHCTEMH, Ha #AKi#l iHTerpasbHa
TPAEKTOPis JIUIMAETHCA yBeCh HACTynHuil uac. g TpaekTopis dopmye
TpuBUMipHU (HAB0BUIT MOPTPET, SIKUH MOYKHA BUBYATH 33, JTOMOMOTOI0
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mepepizis [lyankape, manpukiam, miommuono © = 0. Toxal y miit miommuwi
TOYKH [EPETUHY TPAEKTOPil 3 CiIHOIO IIOMmuHOI (OPMYIOThH mepepi3
ITyanxape.

Badikcyemo 3nadenus nmapamerpy m = 0,01 ta 3HaYeHHST 3MIHHOT X
y nouarkosuii Mmoment yacy x(0) = xg = 0,45. Inmi noyarkosi ymoBu
BuGepemo y dopui y(0) = ¥ (0) = 0 Ta 4(0) = \/2h — mag — 2§ /2.

V skocri kepytodoro mapamerpa subdepemo h. Ilpu manux h kosmBau-
Hs OJIM3bKi 10 rapMOHIYHAX, aJjie Ipu 3pOoCcTanHi h ix ¢popMa moInHae yce
OiIbINe BiZpi3HATHCH Bi TApMOHIYHUX i BIINBOM HeiHiiftnocTi. Tumo-
Buii mepepi3 Ilyankape, gkuit BiAmoBimae KBa3inmepioanyHiit TpaeKTOpii,
300paxkeno uHa puc. la. Ilogamnbie 3pocranus h cipudnHs€e yCKJIIAQIHEHHS
FeOMETPHUYHOI CTPYKTYPH MePePiziB, M0 CYIPOBOIXKYETCA PO3ILIICHHIM
3aMKHYTOI KpUBOI Ha (pparMeHTH, yTBOPEHHS HA MICIi muX (pparMeHTiB
HOBUX 3aMKHYTUX KPUBUX i, HAPEIIITi, MOSBOIO 00JIACTEN 3 XaOTHIHO 3a-
MOBHEHUMHY TOYKAMU. J0KPEMa, Ha puc. 10 mpeCcTaBlIeHO Takuii mepepis3
[Tyankape 3 xaoTu4HOIO 00s1acTiO, OOy moBanuit npu h = 0,79.

-1.00 0.00 Voo -1.30 0.00 1.30

Puc. 1. Ilepepis Ilyaunkape npu h = 0,705 (a) Ta h = 0,79 (6).

4. Aaropurm obuucaenus CJIII. /I BCTaHOBJIEHHST XapaKTEPY
BUSIBJIEHUX DEXUMIB BHKODHCTAEMO JISTYHOBChKI MOKa3HUKH [5], sKi €
y3araJbHEeHHAM BJIACHUX 3HAYEHD CTAIIOHAPHUX TOYOK JWHAMITHOI CHC-
TeMH Ta MYJIbTUILIIKATOPIB TPAHUIHUX IHKJIB HA BHUIAJI0K OLIbII 3a-
raJbHAX TPAEKTOPiit. BoHn xapakTepu3yiOTh CTIHKICTD i€l TPAEKTOPIT,
TOOTO CTPYKTYPY a30BOTO IPOCTOpPY MOOJM3Yy BHIIIEHOI TPAEKTOPII.
Towmy amasi3 1miel yacTuam (Ha30BOr0 MPOCTOPY MOXKHA POOUTH Y JIiHil-

do

HOMY HaOJIMKeHHi, gKe 3a/J0BOJIbHs€ Bapialiiine pipusnusa G = DF®.
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3okpema, Jjis CTAliOHAPHOT TOYKH, KOJIA TPAEKTOPIEIO € cTanuil po3-
B’SI30K, PIBHAHHSA y Bapialisx € CHCTeMOIO i3 cramumu KoedimienTamu
3 PO3B’SI3KOM, III0 € CYTEPIIO3UINEI0 TaCTHHHUX PO3B’sI3KiB m; =exp(A;t),
Je \; — BJIaCHI 3HAYEHHS MATPWII JIiHEAPW3AILil.

Toni ssimyHOBCHKMIT MOKA3HUK \; = tliglo +1n(|my|). B inmmx Bunaz-

Kax m;(t) He € CTPOTrO eKCIOHEHIIHOI0 (DYHKIIE, ajle 3aBIsSKH OCepeI-
HEHHIO 33 BEJIMKWII TPOMIXKOK YaCy I BEJIUYNHA 30ira€ThbCs 10 €KCIO-
HeHIIIHOT MajizKe 3aBXKau (st MaiiKe BCIX MOYATKOBHX YMOB).

3a3HaduuMo, M0 BU3HAYEHHS MOKA3HUKIB JIAMyHOBA 3ilITOBXYETHCS
i3 npobaemamu ducsioBoro xapakrepy [21], ockinbku He 36epiraerbes Jii-
HiffHA HE3AJIEKHICTD [IPHU 9UCJIOBOMY iHTerpyBanHi. /s Bupimenns i€l
mpobIeMu BUKOPUCTOBYIOTH Tporeaypy oproronasizarii ['pama—ITTmiz-
ta [21]. ¥ skocTi mepeBipKy MPAaBUIBHOCTI OOYMCIIEHHS OKA3HWUKIB BH-
KOPHCTAEMO TOH (PaKT, IO CyMa MOKA3HHUKIB JOPiBHIOE CEPETHBLOMY 3a
9acoM 3HAYEHHIO CJIiJly MaTPHIll JliHeapu3ailiii.

3okpema, Bubepemo 3uadeHHs napamerpa h = 0,705 Ta no4arkoBy
rouky {0,45;0;1,1779;0} ma mpodini mocnimkysanoi TpaekTopii, dhazo-
Buil moprper sgKoi 300paxkeno Ha puc. 1(a). Y pesyabrari poboTu mpo-
rpaMu OTPUMAEMO CIIEKTP A = {:I:S 21074 £5 - 10*4}.

OckinbKE cuCTEMA raMiTBTOHOBA, TO CYyMa MOKA3HUKIB OBUHHA Oy TH
HYJILOBOIO, IO JjId 1€l cucreMu 3abesnedyerbed 3 Tounicrio ~1076,

s tpaekTopii puc. 1(6), moGymoBaHoi MpW 3HAYEHHI TMapaMeTpa
h = 0,79 3 mowarkosoi moukn {0,45;0;1,2479;0}, cnekTp MOKA3HWKIB
JlamynoBa A = {:I:0,0176; +7- 10_4}. HasBHiCTh /107aTHOTO MOKA3HUKA,
BKa3y€ HA HECTIfKiCTb TPAEKTOPii, M0 CyIPOBOIKYETHCS MOSBOIO XAO0-
TuaHOro mepepisy Ilyamkape.

5. Bunmagok cijabko 3B’sa3aHol cucreMu. Po3risgHemMo jgerajibHo
BUMAJIOK CUCTEMU, KOJIM MmapamMeTrp m = em K 1 manmii i cucremy

d?x 3

g T =me(y — ),

d?y

o ly—m) =0 ©

MOKHA BBasKaTHU CJIA0KO 3B’I3aHOIO.
Jist mOCTiIzKeHHsT PO3B’sI3KiB TaAKOI CUCTEMU BUKOPUCTAEMO DE3YIIb-
taru pobit [19, 23]. Bukonaemo y cucremi (6) HacTymHy 3aMiHy 3MIHHAX
=t +ir, P2=y+1iy,
.. .. . —
qpl:xilxa wQZyilya 1= -1
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YV HOBUX 3MIHHUX crCcTeMa HAOYyze BUTTISILY
1= 5 W1+ 9D + 3 (0 =) meg (e 95—+ vi) =
g —ithy + 3 (1 —¥7) = 0.

Habnukenuit po3B’si30K OTPUMAHOI CHCTEMHU TITYKATAMEMO Y BUTJISA
Y1 = prelt, Py = poet,

AKHH OMHICY€ PE30HAHCHUI BUIIAI0K KOJUBAHD ITOOJU3Y BiAIOBIIHOI 9ac-
TOTU. ¥ PE3YAbTATI OCEPEIHEHHS 3a MBUIKOI0 3MiHHOIO OTPUMAEMO aM-
IUTITYqHE PIBHAHHSA

¢14 5 (1 —me) o1 — L|p1|Pp1 + megpy =0,
@F — 3 (1 —me) o} + o1 o} — imeps =0,
P2+ 501 =0, ¢5— 507 =0. (7)

JIerko mepekoHaTHCh, MO0 OTPUMAHA CUCTEMa MAa€ TEPIHUi iHTerpaJl

lo1]? + melp2|?> = N = const.

Ile mo3Bosisie BBeCcTH HOBI 3MiHHI 3TiHO i3 CIIBBIAHOMIEHHAMUI

152

@1 = N sin fe'®t sin fe

N
2= —==
14 v/me
migcranoBka skux y (7) upuBoauTh 10 cucremu BigHocHO 6 Ta J:

t9+ 5(1—me) — %NQ sin? 0 4 /me ctg 20 cos § = 0,
) + $vVmesind = 0. (8)

OTrpuMana cucTeMa Mag CTaIlioHapHi TOYKK 3 KoopanHaramu d = 0 Ta 6,
110 3aJ0BOJIbHSIE PiBHAHHS

G(0) = 3 (1 —me) — 2N?sin® 0 + /me ctg 20 = 0.

Anasnizyroun rpadiku Gynkuii G(6) (puc. 2) uporsrowm ii uepiogy m
MOKH& II€PEKOHATUCH, 110 KIJIbKICTh CTAIlOHAPDHUX TOYOK 1 IX THIl 3a-
sexarb Bin Besmuwmam N. ificro, npu N = 1,1 byukuis G(0) mae
JBa KOpEHi, dKi € IMeHTPaMHW, OTOYEHUMHU 3aMKHYTUMHU TPAECKTOPiAMU
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Puc. 2. T'padiku byskmii G(0) npu N = 1,1 (uyukrupna jinis) Ta
N = 1,5 (cyuinbha KpuBa).

cucremu (8). Ilpu 3pocranni N cunocrepiraerbes nedopMmyBaHHs rpa-
dika, MO0 CIPUINHIOE TIOSABY JOJATKOBUX TBOX KOpeHiB. Kopiab, B KO-
My noxigua Gp(6) > 0, Binmosinae cimmosiit cramionapwiit Touri, depes
Ky MPOXOAATH 11 cemaparpucu. HassuicTs y hazoBomy mpocTopi cucre-
MH (8) CiZI0BOI TOYKH CIIy>KHUTh O3HAKOIO TOTO, IO B cucTeMi (6) MOKYTH
peasiizyBaTuch XaOTUYHI PE2KUMHU, 1110 BUHUKAIOTH YHACJIIOK YTBOPEHHS
CTOXaCTUIHOTO Tapy [4].

6. BucHoBku. Takum unHoM, y poOOTi MOKa3aHO, IO MOJIETb CKJIa-
JTHOTO CEPEIOBUINA MAE MOIHOMIATbHI PO3B’A3KH, TOBEIIHKA, IKAX Y Ia-
ci Moxke OyTH $K TEePioAWYHOI0, KBI3IiMEPIOANIHOI0 TAaK i XAaOTUIHOIO.
XaoTu9Hi peKUMU MOB’sI3aHI 3 YTBOPEHHSIM CTOXACTHYIHOTO I1apy B OKO-
JIi cemapaTpUCHUX KOHTYPIB Ci/IJIOBUX TOYOK CHCTEMM.
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BukopucroByioun kimacnuanmit Meron JIi-OBcsnHiKOBa, 3HAWIEHO MaKCH-
MaJbHy airebpy iHBapiaHTHOCTI DIBHSIHHS, siKe BUILINBAE 3 DIBHAHHS Ifi-
HOYTBODEHHs a3lAChbKUX OIIIOHIB. 3a JOIOMOIrOI0 OIepaTopiB IHel aJre-
OpU TIPOBEIEHO CUMETPIfiHY PemyKINio i mo6yJ0BaHO IHBAPiaHTHI TOYHI
PO3B’I3KM K I[HOTO DIBHSIHHS, TaK 1, BIAIIOBIIHO, PIBHSHHS I[iHOYTBOPEHHS
a3lCbKUX OIILIOHIB.

Using the classical Lie-Ovsyannikov method, a maximal invariance algebra
was found for a equation that follows from the pricing equation of Asian
options. Using the operators of that algebra symmetric reduction is carried
out and invariant exact solutions are constructed for this equation, as well
as for the pricing equation of Asian options, respectively.

1. Beryn. Tpagumiitnoro Momesnaio B Teopil (piHaHCOBUX PHUHKIB €
momens bieka—Illoyn3a, sgka OmucyeTbes JiHIAHUM audepeHniaTbHuM
PIBHSIHHSIM B YAQCTWHHWX MOXiTHUX JIPYrOro MOPSIIKY 3 JIBOMA HE3aJje-
sKHUMU 3MiHHEME [8]. OHaK MpakTHYHI JOCTIKEeHHST BKa3ylOTh Ha Te,
110 1151 MOJIEJIb BiAMOBIAHO /10 3pO0/IEHUX MPUITYIIEHD JaJIeKa Bijl a1eKBa-
THOCTI peabHUM TIPOIecaM, sKi BifOyBalOThCs Ha (HiHAHCOBHX PHHKAX.
Towmy B ocTaHHI AECATHIITTI JOCTIAHAKA TEPEHILIN 10 OLIbIT CKIaIHIX
Mozeneil nuanamMiku (piHAHCOBUX PUHKIB, sIKi OIMUCYIOTHCS PIBHAHHIMH 3
OLJIBITNIOI KiTBKICTIO HE3AJIEXKHUX 3MIHHUX a00 HETIHIHWUMEI pPiBHSIHHS-
Mu. MeTonu JOCTiIKeHHsT TAaKUX MOJiesieil TOCUTh pi3Hi, 30KpeMa d4acTo
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BUKOPUCTOBYIOTH uncesibhi merou [10]. dk 3aBxkau, Kosiu MOBa iije npo
MPOIIECH, MO0 MOIEIIOITHC AU EPEHIiaIbHUMU PIBHAHHAME, BAXKJIABO
MaTH TOYHI PO3B’SI3KM TaKUX pPiBHSHBL. OIHUM 3 HAUOLIBIT eheKTUBHUX
METO/IB, IO JO3BOJISIIOTH 3 ICHUTH TONTYyK PO3B’sA3KiB, € METOIM IPYIIO-
BOro aHauizy [4, 5]. Ileprmi JOCIiIXKeHHS TPYTOBUX BJIACTHBOCTEHN JIiHIi-
Horo piBaguusa Baeka—I1loynsa 6yso nposenero B pobori [12]. B ocranni
POKH MEeTO/IaMU CUMETPIfiHOro aHaJli3y JIOCIKYIOTHCS Pi3Hi JiHiiHI Ta
Hesiiniiini monudikauii piBusinnga Baeka—Illoynza [1, 9, 11, 13, 14, 15].

s poboTa mpucBsYeHa CUMETPIHHOMY aHAII3y Ta MOOYIOBI TOYHUX
PO3B’a3KiB JIIHIHHOTO PiBHAHHS I[IHOYTBOPEHHS a3ifCHKUX OIMIIOHIB B He-
nepepsromy vaci 7 € [0; T [7]:

1 ,.,0°V vV _av -

aVv
or
pe T — repmin uii kourpaxry; V. = V(71,5,4) — dyukuis Baprocri
omifiony; S — BapTicTh 6a30BOr0 akTuBY; A — ycepegHeHe 3HAYEHHS
BCIX HAsBHUX I[iH 6a30BUX aKTHBIB S 10 MOMEHTY 4acy 7T; r i ¢ — craJi,

10 OMHUCYIOTh OE3PU3UKOBY BiICOTKOBY CTAaBKY i BOJATHIBHICTD AKIII
Bignosinno. Piusaunus (1) 3a momnomorow 3aminu

V(T> S, A) = f(Ta S, A)u(t(7—7 S, A),fﬂ(’r, S, A)ay(Ta S, A))7 (2)

ne dyukuis f(7,5,A) i HoBi He3asexkHi 3MmiHHI ¢, T, Yy BU3HAYAIOTHCS,
BimmoBigmHO, hopmymamu

02
= sfmequ(TfT), t= %(T -7), =S5,
y=5% m=—2, g¢=m>+m, (3)

3BOOUTHCA IO piBHHHHH

ou  ,0%u  Ou

e u=u(t,z,y).

2. Cumerpiiiai BiaactuBocTi. s 10CaiKeHHs cuMeTpiiiHuX BJia-
cruBocreii piBHsHHS (4) BUKOpHcTaeMmo Kiacnauuii Meron JIi-OBcsiHHi-
KOBa [4]. ¥V pesynbrari orpuMaeMo:
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Teopema 1. Maxcumanvhna aszebpa JIi insapianmmuocmi pienanmns (4)
2eHEPYEMDBCA MAKUMY JUPEPEHUIANBHUMY ONEPATNOPAMU:

<X1 :atv Xo :aya X3 :Uau, X4 =$31+yaya

X5 =2yd, + %yQGy + %zu@u, Xoo = B(t,2,4)0u), (5)

de gynxuia B(t,x,y) € dogiabrum po3e’azkom pienanns (4).

Hamni He BpaxoByBaTmMeMo omeparop cumMerpil Xoo = S(t, z,9)0y,
AKAN TPUTAMAHHUN JIHITHUM DIBHAHHIM i 00YMOBJIIOE TIPUHITUIT CyTIEP-
mo3utiil. 3a/1a9a OMUCy TaKUX ONepaTopiB eKBIBATEHTHA TOMNIYKY 3araib-
HOrO PO3’BA3KY TAKUX PIBHAHB. 3a3HAYUMO, IO JAudepeHIiaibhi omepa-
ropu cumerpii (5) X;, 4 =1,...,5 yrsopioiors 6a3uc 5-sumipHOI asurebpu
JIi L, sika € npsimoro cymoro anre6p JIi (X1), (X3) i (Xs, X4, X5), T06TO

Ls = X1 ® X3 ® (X2, X4, X5).
Anrebpa Lj i3omopdua anrebpi
As = (e1,€2,e3,e4,65) = (e1,e2,e3) ® (eq,e5) = sl(2,R) & 24,,

KA € OPIMOI0 CyMOIO mimanrebp (eq, ea, e3) = sl(2,R) Ta (eq, e5) = 24;.
Izomopdism mixk anrebpamu Ly i As BCTAHOBJIIOETHCS JIHIAHIMY I1€-
PETBOPEHHSMU:

e1 = 2X4 = 220, + 2y0,,
es = —2X5 = —2xy0, — y28y — zuly,
63:X2=8y, 64:X1:8t, 65:X3:u8u.

3. Cumerpiitna peanykmig. OaHuM i3 3aCTOCYyBaHb CHUMETPifiHUX
BJIACTUBOCTEH audpepeHItiaJbHIX PiBHSIHD 3 YACTUHHUMHI TMOXITHUME €
cuMeTpiiiHa pepayKIlis PiBHSAHb 3 HETPUBIAIBHOIO CUMETPIEI0 /IO PIBHAHD
3 MEHIIIOI0 KiJbKICTIO He3ameKHuX 3MiHHUX. Merom peaykmii 3a onTu-
MaJIbHOI0 CHCTEMOIO Tiaasredp MakcuMasbHOI anrebpu JIi iHBapianTHO-
cri mobpe BizoMuii i mocTaTHRO asropuTMivHMil (IUB., HAND., 3, 4, 5]).

st Toro, 1mob BUKOpHUCTATH MOXKJIMBI peayKuil pisusuus (4), Heo6-
XiziHO 3HATH HeekBiBasjeHTHI mizanrebpu anrebpu As. 30Kpema, OIHO-
BuMipHuM nizanarebpam 6yze Bianosinaru peaykiis pisusanus (4) no pis-
HsHHS 3 YACTUHHUMHU HOXIJIHUMU BiJ ABOX He3asexxHuX 3minaux. Cumer-
pifina penyxkiia pisaguua (4) 10 3Buvaitnux nudepeHiajbHuX PiBHIHD
nepedadaE HasiBHICTh CIHUCKY JBOBUMIpPHUX mimaaredp ajareOpu As.
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VY pobori [5] naBeneno meron kiacudikauil nigaarebp aificHux as-
re6p JIi 3 TodHicTIO A0 IEPETBOPEHb, sIKi BU3HAYAIOTH I'PYIIX BHYTPIIIHIX
asToMmopdizmis mux aarebp JIi. 3riaHo 3 UM METOIOM OIHOBUMIpHI TTiI-
anrebpu anrebpu As BUYEPITYIOThCS ajredpamMu

(eqa + aes), (es), (e1+ aeq+ Bes),
(e2 + ey + Pes), (ea —e3 + aeq + Pes), (6)

a IBOBUMIpHI mimajaredpu — TakumMu ajaredpamu:

<€4,€5>, <€1+O[65,€4+5€5>, <€2+a€5,€4+ﬂ€5>,
(e1 + aeq + Pes,ea), (€2 —e3+ aeq,e5), (€2 + aeq,e5),
(ea —e3 + aes,eq + Pes), (e1+ aeq,es), a,p €R. (7)

Buxkopucraemo oneparopu (6) i (7) miis no6yjoBu TOYHUX PO3B’A3KiB
piBusinnsg (4). OpnoBumipnum nizasarebpam (6) Oyuxe Biguosizaru pe-
NyKIis piBHgHHs (4) 10 PIBHAHHS 3 YACTHHHUMY TIOXiTHUMH Bil JIBOX
He3aJIeKHUX 3MiHHUX. BUKOpUCTOBYIOUM TIepesTik OTHOBUMIPHUX TIiTaJl-
rebp (6), macammepes Binbupaemo Ti miganarebpu, fKi 3a70BOJIbHSIIOTH
HeoOxinHy ymoBy icHyBanus peaykuil [3]. Orke, rakuMu niganrebpamu
Oynyrsb

(ea + es), (e1+ aeq + fes),
(ea + aeq + PBes), (ea — es + aeq + Pes). (8)

Jlist KoxKHOI 3 ofHOBUMIpHUX mijaareOp (8) momano, BiAOBIAHO, aH-
3aI] Ta peyKOBaHE PIBHAHHS:

1) (eg +aes): u=e"f(w,wa), wi=2, wy=y,

w%fw1w1 +w1fw2 - Oéf = 0;

t
2) (e1 + aeq + Bes): gk «a # 0, 10 u = exp <ﬁ> flwr,ws),
«@
T (—2t>
Wy =—, We=Yyexp| — |,
Yy a

2
w%fw1w1 + w2 (a +W1) fwz - w%fwl -

akmo a =0, 10 u =y 2 f(wi,ws), w1 =1, wy=
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B
w%fwzwz - w%fwz - fo.n + §w2f = O;
3) (ea + aeyq + Bes):

b+x « T
uexp(y flwr,we), w1 =t——, WQ:E,

Yy
W3 s + (0w2 — 1) fu, — Bwaf = 0;
4) (e2 — e3 + aeq + fBes):

x
U = exp (Barctgy + an 1) flwr,ws),
T
w1 =t+aarctgy, wo = ﬁ’

w%fw2w2 + (aw? - 1)fw1 + (w2 - 6)w2f =0.

BukopucroBytoun iHBapianTi ONepaTopis cuMeTpiii piBaganusa (4), axi
BiIMOBIIAIOTH 3HANIEHNM JBOBUMIpHHAM IIigajredpaM, MOXKHA TTPOBECTH
PEAYKIIIO TIHOTO PiBHSHHS 10 3BUYAMHUX AM(pEPEHIIATbHUX PiBHAHD.

Jis KoxkHOT 13 ABoBUMipHUX migaaredp (7), saKi 3a/10BOJILHAIOTH HE-
OOXimHil yMOBI iCHYBaHHS PEeIyKIIil, MOJAHO, BiAMOBIIHO, aH3AIl Ta pe-
JIyKOBaHE PIBHAHHSI:

X
1) (e1 + aes,eq + Bes): u=y*?P f(w), w= y’

W f—w?f+ (Fw=B)f=0;

o+ x

)

vz
y

2) (e2 + aes, eq + fes): u = exp (ﬂt-i- )f(w), w=

Wif —wf —4(aw? + B)f = 0;
3) {e1 4+ aeq + Bes, ea):

akmo o« # 0, TO u = exp <ﬁt + a:) f(w),
& Y

X

2 . .
w=2exp(t), 0w’ f — 20f — Bf = 0
Yy @
Y ? T
Ao o = 0, Tou:<> exp <> flw), w=t,
Y

Jz
) 2
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4) <€2 — €3+ aes,eq + 665>1

Ty x
u—exp(/)’ aarc gy+y2 1) flw), w=— T

w2f'+(w2—aw—6)f20,

Jie Kpallka BU3HAYa€ TudepeHIioBanna QyHKIHl [ 3a 3MiHHOIO w.

4, TouHi po3B’A3KH JIHIMHOrO PiBHAHHS [IHOY TBOPEHHH a31ii-
cbKuXx omiioHiB. [To6ynyemo inBapianTui po3s’s3ku piBusunsg (4). Pos-
MJISTHEMO OIHOBMMIpHY Tiganre6py (es + ey + Bes), skiit Bigmosizae pe-
JYKOBaHEe PDIBHAHHSA

w%fw2w2 + (aw2 - 1)fw1 - 6602]0 =0.

Axmo o = B = 0, piBHAHHS MA€ BUTJIS,

2
w2fw2w2 - fwl = 07
YACTHHHUMU PO3B’s3KaMu sKOro O0yayTb MyHKIGT [6]

w1

f(le,(JJQ) = (Cl Inwsy + CQ)\/(JTQexp (7I) ,

w
f(oJ1,oJ2) = (2w1 +1n? WQ)\/UTQeXp (_Zl> ,

fwr,we) = wh exp (0 — p)wr),

ge Cq,Co, pu € R.
[lincrasastoun mi GYHKINT y BiAIOBIIHMIA aH3aIL AT 3a7I€KHOT 3MiH-
HOI U, OTPUMAEMO DPO3B’si3KU piBHsiHHA (4):

u = (C’llnxQ—i—Cg)ﬁexp(x—t),
Yy Yy y 4
x\ VT x ot
u = 2t+ln2)ex (), 9
( )y TPy 1 ©)

(5 (i)

Buxkopucrosytouu 3aminy 3minaux (2), (3) mia dyukuiit (9) orpuma-
€Mo TO4Hi po3B’su3Ku piBusuHg (1):

48 28— *\/S
ot A2 + Cz) 02A

V(r, S, A) = <01 In
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28 oX(T —7) 9 o (r=1T)
xexp(ng— 3 —l—(ro +r)2>,

V(r, S, A) = <02(T —7) 4 In? 45 > 2577 VS

ot A2 o2A
25 o2 (T — 1) 9 _9 (r=T)
xexp(aQA— 3 —|—(ra —|—r) 9 )

ooz [ A4S O\ 25 9 o
V(r,5,A) =8 <J4A2) eXp(02A+(M —u)#

(202 4 7) (T;T>).

Haui, posrisineMo nBoBuMipHY mimanrebpy (eq + aey + fes, ea).
. 2

VY Bunagky « = 0 penykoBaHe piBHSIHHS Ma€ BUrIsT f — (%)f =

0. TlizcTaBrsaroun po3B’I30K MHOTO PIBHAHHS Y aH3AIT 1715 37I€KHOT 3MiH-

HOI, OTPUMAEMO PO3B’s130K piBHsHHA (4):

B 2
u=C (55) exp (; + b ;26t> , (10)

ne C — nosinbHa crana. IMicas migcranosku (10) B (2) orpumaemo TouHi
po3B’s3ku piBuguHg (1):

2 (g2A A
V(r,5,A)=CS8""° —
(7 ) (2\@)

2 2 2
X exp ((7254 + <<ﬁ —Zﬁ)a — % —r) (T—T)).

drmo « # 0, Toai nBoBuUMIpHIi# migaareOpi BiANIOBimTaE peaIyKOBaHE
PiBHAHHS

wi-2j B (11)

Pisusinusa (11) € piBugnnsam Eiinepa i Bono mae taki po3s’s3ku [2]:

(102) =%
a)sgkmo ( 14+ — | >——, 1o
« «

flw) = wlat?)/2a (Clw“ + CZW_'M);
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A
b) akio (1+) :——6, TO
« o

f(w) = w2290y 4+ CyInw);
2\* 4
C) AKIIO <1—|—> < —g, TO

flw) = w@F2/2(Cy sin(puInw) + Co cos(pInw)),

se = |+ 2)+ 2,

Hagenemo yacruni Touni poss’s3ki, ski BialoBigaors BunaikaM a),
b), c).
Armo o = f = —2 (BUNaIOK a)), MaEMO PO3B’SI30K

flw) = Clw+ Cow™?

— JIOBifIbHI cTaJt.

[Migcrapnsitoun 1m0 HYHKINO y BiAMOBIIHUI aH3al] A8 3aI€KHOI 3MiH-
HOI, OTPUMAEMO PO3B’g130K piBHsaAHHS (4):

2.t
(C’l 2ot —|—C2e> exp (; +t> . (12)

IMicasa nigcranosku (12) B (2) orpumaemo TOYHUIT PO3B’A30K PiBHAH-
ua (1):

28 o} (T—71)
V(r,S,A) = exp (02A + 5
2 2(r —

x <4Cls‘”’ o4 A2 exp ("(TT)>

207 _
+%S ro —10_4A2€Xp<0 (j; T))>7

ne Cq i Cy — noBiJIBHI cTATI.
Akuio « = 2, f = —2 (Bunauok b)), MaeMo po3s’A30K

fw) =w(Cy + Colnw).

[Migcrasnastoun mo QYHKINO y BiAMOBIIHII aH3al] A8 3a/€KHOI 3MiH-
HOI, OTPUMAEMO PO3B’s130K piBHsAHHS (4):

u= <01+Og <ln;2+t>> %exp (i) (13)
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IMicas migcranoBku (13) B (2) orpuMaeMo TOYHHI PO3B’SI30K DIBHSH-

ua (1):

-2 25 T—T
—4 42 gl—ro 2 _—2
‘/V(T7 S, A) = 40' A S exp (UQA + (T ag + T) 2 )

X (Cl +Cs1n (450‘4A‘2 exp (02(1;_7))» ,

ne Cq 1 Cy — noslibHI cradnl.
Ao o = =2, =2 (BUNAJOK €)), MAEMO PO3B 30K

f(w) = C1sin(lnw) 4+ Cs cos(Inw).

Ilincrasastodn 1m0 QyHKIHO y BiAOOBIAHAN aH3all i 3a/1€2KHOI 3MiH-
HOI, OTPUMAEMO PO3B’s130K piBHAHHS (4):

u= (C’l sin <lnx2 —t) + Cy cos <1n562 —t)) exp (ac —t) . (14)
) ) )

MMicaa nigcranosku (14) B (2) orpuMaemo TOYHUIT pO3B’A30K DIBHAH-
ua (1):
V(r,S,A) = S " (Cysin (In (450 *A72) + o%(r — T)/2)
+ Cycos (In (4507 *A7?) +0*(1 — T)/2))

28 o*(T-1) 9 _9 7T
xexp(U2A 5 +(rfoc™ " +r) 5 ,

ne Cq i Cy — noBinbHI cTami.

BucHosBku. Y pobori jinifine piBHSHHS [IHOYTBOPEHHS a3ifiChKUX
OIIITIOHIB 3a JOTOMOTOI0 3aMiHK 3MIHHIX OYJT0 3BeIeHO 0 PiBHIHHS, STKE €
npocTimuM y BuKopuctanui. JJocaimkeno cumerpiiiii Ba1acTuBocTi orpu-
Manoro piBasgHHsa. CUMeTpiiiHi BIACTHBOCTI BUKOPUCTAHI 151 MOOYI0BU
iHBapiaHTHUX aH3AIlB, IKi PEIYyKYIOTh PiBHSAHHS 10 JAuEepeHIiaaIbHIX
PIBHSIHb BIJHOCHO MEHINOl KiJIbKOCT1 HE3aJIe’KHUX 3MIHHUX. ¥ De3yiib-
TaTi PO3B’SA3yBaHHSA MEIKUX PEAyKOBAHWX PIBHIHDL MOOYIOBAHO TOYHI
PO3B’sI3KH PiBHsAHHA. BUKOHYIOYM 3BOPOTHY 3aMiHy 3MIiHHHX, OTPHMAaHi
TOYHI PO3B’SA3KHU JIHIHHOrO PIBHAHHSA IIHOYTBOPEHHS a3iMCHKUX OIIiO-
HiB. Y MaiOyTHHOMY TIAHYETHCSA OLIBIT METAIBHO MOCIITNTHA BJIACTH-
BOCTI OTPUMAHMUX PO3B’SA3KIB MO0 IX MOXKJIUBOTO 3aCTOCYBAHHS.
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Lie—Backlund symmetry reduction of
nonlinear and non-evolution equations
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Hocaimxkeno 3acrocyBanus oneparopis cumerpii Jli-Beknynma, aki momy-
CKAIOThCS 3BUYAWHUM JIu(EPeHIlaJbHUM DIBHAHHIM, IS PEeIyKINl Tu-
depenniagbHUX PIBHAHD 3 YACTUHHUMU TOXiAHUMA. AH3aIU I 3a/1e%kK-
HOI 3MiHHOI TOOY/TOBAHO IHTErpyBAaHHAM 3BUYANHIX qudepenmiaIbHuX PiB-
Haub. [lokazaHo, Mo MeTO MOYKHA 3aCTOCOBYBATH 1T PIBHIAHD €BOJIIOIIH-
HOTO 1 HEEBOJIIOIIHOTO THUITY. Y paMKaX IThOT0 Mi X0y 3HANIEHO POB’ 30K,
10 3aJIeKUTh BiT JOBLIBbHOI (DyHKIIT OHOTO apryMeHTy.

The application of Lie-Béicklund symmetry operators admitted by ordi-
nary differential equations for reducing partial differential equations are
studied. The ansatze for dependent variable are constructed by integrating
ordinary differential equations. We show that the method is applicable for
nonlinear evolution and non-evolution types equations. In the framework
of the approach we construct the solution depending on arbitrary smooth
function on one variable.

1. Introduction. It is a known fact that the symmetry groups
of nonlinear PDEs are being used for finding special solutions invariant
with respect to a certain subgroup of the complete symmetry group of
the equation. Invariant solutions are constructed by solving a reduced
equation with smaller number of independent variables than the initial
equation, an ODE in particular. Conditional symmetry is a generaliza-
tion of a classical Lie symmetry of differential equations and substan-
tially extends the possibilities of construction of solutions of nonlinear
PDEs. It must be noted, that the conditional symmetry method can be
effectively used both for integrable (in some sense) and non-integrable
equations. In [1, 5] concept of conditional Lie-Bicklund symmetry of
evolution equation, which is a generalization of point conditional sym-
metry, is proposed. In the framework of this approach we obtain reduced
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system of ODEs. The relationship of generalized conditional symmetry
of evolution equations to compatibility of systems of differential equa-
tions is studied in [2]. In [3] Svirshchevskii used Lie-Bécklund symme-
try of linear homogeneous ODEs for reducing evolution equations to a
system of ODEs. To apply this method we have to solve the inverse
symmetry problem, namely to find linear homogeneous ODEs which ad-
mit given Lie-Bécklund symmetry operator. We study the reduction of
nonlinear generalization of the heat equation and modified Korteweg—de
Vries equation by using Lie-Bécklund symmetry property of linear and
nonlinear ODEs [4]. It allows us to construct solutions for equations of
evolution and non-evolution types.

2. Application of the symmetry reduction method. In this
section we discuss the relationship between the Lie-Backlund symmetry
of ordinary differential and reduction of generalized version of Korte-
weg—de Vries equation and nonlinear heat equation.

Example 1. We show how to apply the Lie-Backlund symmetry reduc-
tion using mKdV equation as an example. First step is finding an ODE
or ODEs invariant under the operator Ku] = K (z,u, %, cey g:’;), in
which case K[u] is the right-hand side of the mKdV equation. Let p be
a positive integer. Consider the ODE to be of the form ., +g(u, u;) = 0,
where g is a differentiable function of v and u,. Invariance condition for

such ODE reads as

X (e + g(u, ug))| =0, (1)

g (11,4) =0

where X is a prolongation of the vector field X = (uzpq + uPuy) a% on
the jet space. After necessary substitutions equation (1) becomes
pupilum (Gu, e — 39) — uiguuu
+ 3uz (UsGuGuu, + UegGuuu, + 9Guu)
- Sg(uzguzguum + Uz GuGuzu, T Yz 9Guuyu, T+ gguuw)
+ 9% (39, Gusre + 99usuau,) +p(p — DuP "2ud = 0. (2)
The subscripts u and u, denote differentiation with respect to u and u,.

k .
We assume that g(u, ug) = Y Ai(u)ul, for some integers j and k. In that
=]

case the left-hand side of the equation (2) becomes a power series of .
For every k > 3 and j < —1 the coefficients for the highest and lowest
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powers of u, are 2k(k—1)(2k—1)\} and 25(j —1)(2j — 1))\;¥ respectively,
which implies \; = 0 for i ¢ {0, 1,2}, meaning g = Ao (u)u2 + A1 (u)uy +
Ao(u). The six remaining coefficients in the now power series (2) become
the determining equations. They are

1205 — 30A503 4+ 65 +9M\J Ay — A =0, (3)
30A A5 — 48N\, A A — 15N A3
FONN] +9NTAL +6A A — A =0, (4)

24MAS + 230IN2 — 42X\, N0 — 18A5AF — 21N\ Ay
— BAYAS + BALNG + BNE — ONI Ao + 6AY Ny + 3A) Ao

— Ay —puP g +p(p — DuP ™2 =0, (5)
36X0A1 A3 + 6A3 N0 — 30M5 0\ — 18X Mg Ao — 6A]A?

— B6AGAL A2 + AN + 6A A + 3Ag A — 2puP A =0, (6)
120202 4+ 12000202 — 120502 — 9A 1\ Ao — 6A) Ao \2

+3\g Ao — 3puP ™ty = 0, (7)
6A2N1 A2 — 3A2\] = 0. (8)

Based on equations (3)—(8) we will consider four cases:

Case (i): Ao =0, 2 =%, we {—1, —%,O}. Because we restricted p
to be a nonzero natural number, any assumptions other than A\y = Ay =
0, p =1 lead to contradictions, therefore a solution exists only for p =1
and it is A; = 0, which means that the invariant equations is

Uy = 0. (9)

Case (ii): A2 = 0, A\; = kK = const. Here k = 0, \g = p—ilu”“‘l +
a1 + as, a; € R, therefore the invariant equation is

um—klﬁuzﬂrl—kalu—&—ag =0. (10)

Case (iii): A2 = —%, A1 = %, k = const. Here k = 0, \g =

ﬁup“ + fru+ %, B; € R, therefore the invariant equation is

2
ey — 55 + P 4+ Bru+ 2 = 0. (11)
Case (iv): Ao = —%, A1 = 25, k = const. Here k = 0, \g =
muﬁl +71 + 22, v; € R, therefore the invariant equation is

'IL2
Usw — 2+ W A+ 2 =0 (12)
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Second step is the variation of the parameters for the solution of the
ODE for time dependence. Outcome of this step is an ansatz for the
PDE, and in this case, the mKdV equation. Equation (9) is the only
linear one and its solution is a trivial ansatz u(x,t) = ci(t)z + ca(t).
Equations (10)-(12) however, are nonlinear and generate implicit an-
satzes (e = £1)

u(z,t) da
/ =z + coft),
\/c1 — @16% = 2050 = GG
av t
/ =z + co(t),
Ve — 26102 +26; — Gofa
u(z,t) da
/ =z + coft),
\/ a(t)a? + 2ma+72 - GroGTna

respectively. For certain parameters the ansatzes can be written in an
explicit form. For example when a; = 0 and p = 1 the equation

Uge + %uz +as=0 (13)
produces an explicit ansatz
u(x,t) = —12p(w + (1), —%ag, cz(t)),

where p denotes the Weierstrass function p(z, g2, g3).

Third step of the method would be substitution of the ansatz to the
equation we wish to reduce. Let us consider equation (13) with ay = 0,
meaning

Upyr + %uz =0. (14)

It is not linearizable and it admits trivial symmetries u;0y, (Uzzs +
uty)0y. On the grounds of the aforementioned findings, the solution
to (14) provides an ansatz and a reduction for the KdV equation u, =
Uzzr + Ul,. Before we proceed with the reduction, we can indulge in a
side challenge of finding some other PDEs sharing the same ansatz. For
this purpose we introduce independent variable z. It can identified with
the time variable ¢ or viewed as a second space variable. One can show
the equation (14) is invariant under LBS operators

(u2uxuz + 2uwzui)8u, (uQui + QUxZquz)au.
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Since a linear combination of symmetry operators is itself a symmetry
operator, we can use the solution of equation (14) to reduce (1+42)-
dimensional equations

2 2
Ut = Uggy + Uly + U UL U, + 2Ug UL,

2,2
Up = Ugge + Uy + U UL + 2Ugz Uz Us,
or a non-evolution equation in one of the forms

ey 4 wrugty + 2t + Uppy + utty = 0, (15)

eup 4+ uud + 2 Uity + Upge + utly = 0, (16)

where ¢ is an arbitrary constant.

The solution of the ODE (14) is the Weierstrass elliptic function
u(z) = —12p(z 4 ¢1,0, c2), meaning the ansatz we substitute into the
presented PDEs for reduction is

u(z,t) = —12p(z + ¢1(1), 0, c2(1)).

After such substitution, equation (15) for example, reduces to a system
ecy =0, ecj —144c, = 0.

This means that for € = 0 equation (15) has a class of solutions
u(z,t) = —=12p(x + ¢1(t),0,¢2), c2 = const

and for € # 0 there is only a stationary solution
u(z,t) = =12p(x + ¢1,0,¢2), c¢1,c2 = const.

For equation (16) the reduced equations are
1 (144cy —e) =0, y(144cy, —e) = 0.

The solutions to this system are
c1 = const, ¢ = const

or

ci(t) is arbitrary function, co = 357t +co, co = const.
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This means that the equation (16) has a class of solutions
u(z,t) = —12p(z + ¢1(t),0, 55t 4+ co), co = const
as well as a stationary solution
u(z,t) = —12p(x + ¢1,0,¢2), ¢1,ca = const.

Example 2. Equations

2

Uy = 175‘ (17)
and

Upe +u —u® =0 (18)
share the same kink solution

u = tanh (%)7 ¢ = const. (19)

It can be easily shown that both (um +u— u3)6u and u;0, are Lie—
Bécklund symmetry operators of equation (17). It follows that the sub-
stitution

u = tanh (mtgt)) (20)

reduces equation
Up = Ugq + u(l — u2) (21)

to a first-order differential equation ¢'(t) = 0, which means that equa-
tion (21) admits a stationary solution
u(z,t) = u(x) = tanh (L\E)

The second-order ODE (18) is a differential consequence of equation (17),
therefore the right-hand side of the reduced equation vanishes on the
ansatz solution. To obtain non-stationary solutions using this particular
ansatz and this particular first-order ODE, we can add to the evolutio-
nary equation first-order terms corresponding to the contact symmetries
of (17). Contact symmetry of (17) in general form can be written as

Ftey, 2eeV20)y, 9,

1—u2’ 1+u
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where f is an arbitrary smooth function of two arguments. Substitution
of (20) into

ut:um—i—u(l—uz) +f(1f$,;—z ﬁz)ux (22)

reduces this equation to a simple first-order ODE

(1) = (om0,

Equation (22) will have a kink solution if 8?—({&) =0and f#0.

3. Conclusion. We show the application of the Lie—Béacklund sym-
metry method for reducing the generalized version of Korteweg—de Vries
equation of and nonlinear heat equation. We construct the class of or-
dinary differential equations which admit given Lie-Backlund symmetry
operator and the corresponding ansatze reducing the equation under
study to the system of two ordinary differential equations. The method
enables us to find solutions which contain arbitrary functions on one
variable for the equations (15), (16) and the solution generalizing the
kink solution for nonlinear heat equation.
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HasiBHicTh orreparopHoi piBHOCTI /i PIBHSIHbB, OB’ A3aHUX HEJIOKAJIbHUMA
MePETBOPEHHSIMH, TO3BOJIMIA 3aIPOITOHYBATH METOJ[ 3HAXOXKEHHS iHIITO-
0 PO3B’S3KYy BUXITHOTO PIBHSHHS, SKUN MPUETHAHUN 0 BiTOMOro HOTO
po3B’a3ky. Lleit miaxim 3acTOCOBAHO st MOOYAOBU TOYHUX PO3B’sA3KiB JIi-
Heapu30BaHOTO piBHaAHHA KpmdueBepa-HoBikoBa Ta BiOmOBiZHOTO JIiHINHO-
ro piBusHHsA. Buseneno dbopmymny HesiHiiiHOI HeJIOKAJIBHOI Cyepro3mIpi
PO3B’#A3KiB, sIKy BUKOPUCTAHO JJIsi PO3MHOXKEHHS TOYHUX PO3B’A3KiB I[HOTO
HeJTIHIfTHOT0 piBHAHHS.

Existence of an operator equality for equations connected by nonlocal
transformations allowed us to propose a method of finding of a new solu-
tion of the initial equation adjoint to its known solution. This approach
is used for construction of exact solutions for the linearizable Krichever—
Novikov equation and for the corresponding linear equation. The formula
of nonlinear nonlocal superposition of solutions for this nonlinear equation
is derived and applied to generation of its solutions.

1. Introduction. A wide range of efficient methods for study of
nonlinear partial differential equations are being developed at the mo-
ment. A considerable part of them are based on a fundamental idea
of symmetry and, in particular, on the group-theoretical method sug-
gested by Lie [6, 14, 16]. The most important generalizations of the ba-
sic symmetry group approach are realized in the concepts of conditional
(nonclassical) symmetries, weak symmetries [5, 9, 15] and nonlocal sym-
metries of differential equations [1, 2, 3, 4, 7, 10, 12, 13, 17, 18, 21, 23, 24].
Therefore, development of other approaches to seek for new symmetries
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and methods for investigation of these equations is of importance and
stays relevant.

Finite nonlocal transformations are efficiently used to study and solve
nonlinear partial differential equations for a long time [8, 10, 21, 23, 24].
In particular, a number of interesting results for nonlinear equations
connected among themselves by means of the nonlocal transformations
of variables were obtained and formulae generating solutions or nonlocal
nonlinear superposition were derived [11, 19, 22, 23].

Let us remind here the main concepts and terminology of the nonlocal
transformations method. Assume that a given nonlocal transformation

T: wi = hi(y7v(k))7 uK = HK(y7U(k))7
i=1,...,n, K=1,....m, (1)

maps an initial (source) equation
Fo(w,u@m)) =0 (2)

into an equation ®(y,v(q)) = 0 of order ¢ = n + k that admits factoriza-
tion to another equation which we call a target equation

Fl(yvv(s)) =0, (3)

ie.,

Q(y,v(q)) = AMF1(y, v(s))- (4)

Here )\ is a differential operator of order n + k — s. This results in
algorithms for finding solutions of (2) via known solutions of (3). Exis-
tence of factorization equation (4) gives rise to a technique of finding of
a special solution to the initial equation (2) from a known solution of
the equation ®(y,v(,)) = 0. The symbol u,) denotes the tuple of partial
derivatives of the function u from order zero up to order r. In the case of
two independent variables, we use the special notation of the variables:
x1 = x, 3 = t and thus u; = Ou/dt = Oy, u, = Ou/dx = Jyu.

The paper is organized as follows. In the next section we begin with
some preliminary remarks on the concept of adjoint solution of the initial
equation. Then we apply it to the linearisable Krichever—Novikov equa-
tion derived from the linear one via the known nonlocal transformation.
In Section 3 this concept is applied to the case of the nonlocal invariance
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of the linearizable Krichever—Novikov equation. Examples of adjoint so-
lutions are constructed.

2. Adjoint solution of the initial equation. This section is
devoted to construction of solutions of the initial equation generated
from known solutions of the appropriate inhomogeneous target equation.
Existence of a factorization equation (4) gives rise to a technique [20] of
construction of the special solution to the initial equation (2). Further
we call it an adjoint solution.

We assume that a given function v = f(y) is not a solution of equa-
tion (3), that is, substituting this function into (3), we get another equa-
tion with discrepancy w(y)

Fi(y,vs) = w(y). (5)
Suppose, nevertheless, that equation (4) holds and the equation
)‘(yv v(s))Fl (ya U(s)) = )‘(ya U(s))w(y) =0 (6)

appears to be true. Here w(y) runs through the set of solutions of a linear
equation A(y,v(s))w(y) = 0 with variable coefficients of spatial form.
Solving (6) with respect to the unknown function w(y,v(x)(y)), one can
find its solution as a function depending on y, v(x)(y)

w=W(y,vm). (7)

After substitution of (7) into the equation (5) we obtain an inhomo-
geneous equation for the dependent variable v:

Fi(y,v(s)) = Wy v))- (8)
Hence the result of transformation (1) takes a form
Dy, v(q)) = ALY, v(s)) = MF1(Y, ves)) — WY, o)) (9)

The function v(y) determined by (9) satisfies the equation T Fo(z, u())
= ®(y,v(q)). Therefore, substituting v(y) obtained in this way into the
formulae of nonlocal transformation 7, one can find an appropriate so-
lution of the given equation (2). Moreover, having the information on
symmetries of the inhomogeneous equation (8), one can construct a r-
parametrical family of solutions for it and, consequently, find the corre-
sponding parametrical sets of solutions to the initial equation (2). If we
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let in (8) W(y,v)) = 0 the equality (9) returns us to the connection
of solutions of the initial equation and (3). That is why further we call
such a special solution an adjoint. In what follows, we illustrate this
approach by some examples.

3. Adjoint solutions constructed via the linearization. In this
section we use the nonlocal transformation that connects the linear equa-
tion and the Krichever—Novikov equation of a special form and illustrate
the proposed approach by some examples.

It is well-known [8] that the Krichever—Novikov equation

up + 3uy udy, — Upgr = 0 (10)

can be obtained by applying the nonlocal transformation

w= /i (11)
to the homogeneous linear third-order partial differential equation

Wg — Wazpe = 0. (12)
The operator equation (4) connecting these two equations has the form

—4u20, (ut + %u;luiw — uwm) =0. (13)

Suppose a function S(z,t) (discrepancy) is defined such that the inhomo-
geneous equation

3,-1,2 _
U+ UL Uy — Ugez = S(,1)

is satisfied. Then the condition 9,5(x,t) = 0 follows from (13). In
particular, if we let S(xz,t) be a linear function of time, i.e., S(x,t) = ht,
the corresponding equation takes the form

wp + 3ug 2, — Ugee = ht. (14)
This equation admits the Lie algebra spanned by the following operators

Xl :817 X2:8t+h/taua X3:8ua
Xy = (u—ht)dy, Xs5=1x0,+1td + ht*d,. (15)

1) We obtain a simple group-invariant solution of equation (14) sol-
ving the characteristic equation generated by the sum of the first two
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operators of the algebra (15), u, + u; — ht = 0. The corresponding Lie
ansatz is

u(z,t) = —3ha® + hat + f(t — z).

Substituting this expression into (14), we find the reduced ordinary dif-
ferential equation

4f" (hw — f') + 3f"* — 6hf" — 4f"* + 8hwf' — 4h*w? + 3h* = 0,

where w = t —x. The general solution of this equation allows us to write
down the required solution of (14)
u(z,t) = ht® + cosin2(t — z 4 ¢;)
+ 3eosin(t —x +c1) + 3ea(t — x4 1) + c3,
where c¢1, ¢, c3 are arbitrary constants.

Applying the nonlocal transformation (11) to the obtained solution,
we get the corresponding solution of the linear equation:

w(zx,t) = %\/7202 cos2(t —x +c¢1) — 8cacos(t —x + ¢1) — 6ea.

One can compare the above solution with another solution of (12) being
obtained in the form w(z,t) = f(ct — ) determining a wave of unchan-
ging profile moving at the constant velocity c:

w(x,t) = ¢1 + o sin(ct — x) + €3 cos(ct — x).

2) Another group-invariant solution of the equation (14) correspon-
ding to the operator X5 of the Lie algebra (15) has an implicit form

t/a3
u(z,t) = $ht* + / exp Q(k) dk + 3,

Qk) = %\/50131 — 1??\/532 + %Bs + %\/§B4

— 1*36\/§61B5 -+ %ClBﬁ + Co, (16)
where
1v3
By = /k Y36 3) db
B2 aY_y (55) + ()
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s
Y R
B2 (e Yoy (38) + 71 (34))
k 4@@(%%) —Jié(%%)
Bs = % P ab,
baY_y(53%) + -1 (5%))
V3
By = /k J% (%72) ab
PRV G 6
3
Bs = /k Y%(éTZ?:) db,
B (Y (533) + 3 (53)
ARG -V GY)
Bg = 5 5 db,
by (53%) +7-1(5%))

where c1, co, c3 are arbitrary constants, J,(x) and Y, (z) are Bessel
functions of the first and the second kinds respectivelly. Applying the
formula (11) to this solution, we get such nonstationary solution of the
linear equation (12):

1 - o an - - .
w(x,t) _ iiz\/ieé\/gcﬂi’l*%\/§Bz+§33+é\/534*%6135+%0136+72'
x

B;,i=1,...,6, are the same as introduced above with k = %
4. Adjoint solutions found via the nonlocal invariance. Beside
a nonlocal linearization, the Krichever-Novikov equation (10) admits the
auto-Béacklund transformation [8]:
Uy = v, w2, (17)
1,2

_ 2 2 -3.4
Uy = 2% VpaVszar — 2Vy  VppVzzx + 4% Vo — Vg Uspas

where v(z,t) is another solution of the same equation

3,,—1,2 _
Ut + JU; Uiy — Ugge = 0.

In other words, the equation (10) stays invariant under the nonlocal
transformation (17). This connection is realized by means of the operator
equality

(40320205 4 803050) - (vi + 30, W2y — Vga) = 0. (18)
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We assume existence of the function v(z,t) that is a solution of the
inhomogeneous equation

v+ 30,02, — Vpaw = W2, t). (19)
Solving the partial differential equation generated by (18)
— 40,0 W (2, 1) 4+ SV W (2, 1) = 0

with respect to W(z,t,v, vy, vzs), we obtain the general solution

W)= 1(0) + folt) [ Vi d. (20)

To exclude an integral term in (20), we differentiate (19) with respect
to x and set for simplicity fi(¢t) = 0, f2(¢t) = K in (20), where K is
a constant. So, instead of (19) we consider the equation

O (ve + 3002, — vyge) — K /0, = 0. (21)

This inhomogeneous equation admits an infinite-dimensional Lie algebra
spanned by the following operators

X1 :8t+F1(t)8U, X2:8$+F2(t)60,
X3 = 20, + 10, + (Sv+ F5(t))0,. (22)

Here F;(t), i = 1,2,3, are arbitrary functions of the time variable. This
algebra allows us to get a wide range of group-invariant solutions of the
equation (21). We choose v(x,t) in the traveling wave solution form
v(z,t) = G(w), w = x — ht, where h is a fixed constant. Substituting
this expression into (21), we get the reduced equation

4G’(w)2G””(w) - 6G" (w)G" (w)G" (W)
+3G" () + 4hG (w)2G" (w) + AK G (w)™? = 0, (23)
which admits a solution

v(z,t) = G(w) = /Y(w) dw + ¢4,

where YV (w) = Z(w) + w + ¢35 and Z(w) is the function determined by
the equation

Z(w)
/ H'df =o. (24)
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H(Z(w), f) is an implicit solution of any of two equations

Hh+ K\Jf

¥(2\/} —C2F Ph)h3/2 + K harctan <\/h7”P> =0, (25)

b \/_hH2+2\/7KH—c1f
_ : _

To use the formula (17) and to verify a new solution, we need an expres-
sion for u, to be a function of w = x — ht. First we find a solution of
the equation (10) differentiated with respect to z. We set u(z,t) = L(w)
and substitute that into the equation

Oy (ut + %u;luim — umm) =0. (26)

Implementation of the reduction procedure leads to the ordinary dif-
ferential equation

4L/(w)2L//lI(w) _ 6LI(UJ)LH(UJ)L/N(W)
+ 3L" (w)® 4+ 4hL (w)*L" (w) = 0. (27)
An implicit solution of this equation is determined by the integral equa-
tion
L(w) )
/ Q(a)” da—w—2¢4 =0,
where function Q(a) is defined by the equations
Q(a) hf
Vhf(er —4fh2 + 4/ Fh2e, — h2E3)

where ¢1, €3, €3 are arbitrary constants.
Now we apply the formula (17) to the obtained solution of the equa-
tion (23) and find the corresponding expression for u,(x,t):

¥ df +a+e =0,

ug(z,t) = L'(w) = G (w)1G" (w)>2.

After simplification we get



Adjoint solutions for linearizable Krichever—Novikov equation 189

Here B(w,Y) are the implicit functions determined by the equations

Bh+K\/}7> 0

WY — ¢2)h5/% + Th3/? + Kharctan | 20t V2
i 2) VIYT

T_\/ hB2+2VYKB — Y
=/ v ,

The function Z(w) was implicitly determined above by equations (24),
(25). Substitution of this solution into the equation (27) takes it to zero.

Knowing the Lie algebra (22) of the inhomogeneous equation (21) we
can construct a wide family of group-invariant solutions, and, therefore,
obtain various solutions of the equation (10). The new solution of the
equation (26) constructed above obviously can be generated via the in-
variance algebra admitted by this equation or by means of its any other
symmetry. The symmetry solutions of the special inhomogeneous target
equation allow us to generate different solutions for the initial equation.
What type of the symmetry of initial equations do we have in this case?
As a target equation is broken by a discrepancy appearance, it seems
naturally to call it a forced symmetry.

5. The superposition formula and generation of solutions.
We return to the homogeneous linear third-order differential equation
(12) and the nonlocal transformation (11), connecting this equation
with (10). We choose a linear superposition principle for (12) setting

w(z,t) = w(x,t) = w'(z,t) + w(z,t).
Here w'(x,t), w'(z,t) are some known solutions of the linear equation.
As equations are connected by the nonlocal transformation (11), the

corresponding principle of nonlinear nonlocal superposition of solutions
for equation (10) can be constructed.

Theorem 1. The nonlinear nonlocal superposition formula of solutions
for equation (10) has the form

u(z,t) = u'(z,t) + u' (2, 1)
+ 2/ Ve, 0)y/ull (2, 1) da + s(0), (28)

where the arbitrary function s(t) is defined by the equation

ug =2 (\/ul(m) + uH(x,t)> o2 (\/ul(m) + \/un(x,t)>
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- (ax <\/u1(:1:,t) + uH(:c,t)>>2. (29)

Given solutions u! and u!!, the new solution of (10) is found integra-
ting the third term of (28). We get the specialization of the function s(t)
substituting the expression (28) into (29) and solving the equations ob-
tained with respect to s.

We illustrate utilization of the proposed superposition formula for
generation of solutions of the equation (10).

1) Tt can be easily verified that

u' = g (2% + Bear® + 1032”4+ 10c32% + 5z + ¢3) + cs,

ull = kya®

are time-independent solutions of the equation (10). Applying the formu-
la (28) adduced in Theorem 1 we find a time-dependent solution

= W (a1x5 + aszt + asz® + 30\/ach2
+ 15\/eicaz + 960c1 3 /5kt + k),

a1 = 3v/c1 4 96+/5k1c1 + 3840k; ¢1%/?,

as = 15¢9+/c1 + 240\/%0162,

as = 160\/5k1c1¢3 + 30\/c163,

K= 3\/071025 + 380cf/2(03 + cq).

2) Choosing ¢; = 0 in (16), we obtain a simpler solution

w5 _ . .
UI:/ exp (713*6\/§B1+%BQ+%\/§B3+02) dk‘+03,

)
(58 . (30)
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Let the second solution be
ull = k2P,

Then
quH = 3tz texp (—%\/gél + %BQ + %\/gég + 02) + 5kyz?
+ 2\/5\/@\/—31%—4 exp (—%\/gél + %Bg + %\/333 + 02),

where Bu i =1,2,3, are the same as those introduced in (30) but k = I%
One can easily verify that obtained expression satisfies (26). More solu-
tions may be constructed by utilization of the previous theorem and
application of the Lie symmetry transformations or any other formula
generating solutions.

6. Conclusion. The concept of an adjoint solution of the initial
equation was developed in this paper, and used for construction of new
solutions of linearizable Krichever—Novikov equation and for the connec-
ted linear one. Some of them were obtained in an explicit form, while
others have a parametrical representations with functional parameters
given in implicit form. The Lie symmetry solutions of the special inho-
mogeneous target equation allowed us to generate appropriate solutions
for the given initial equation. The superposition formula was derived in
the present paper and applied for the generation of solutions to the equa-
tion (10). All the found solutions can be naturally extended by means of
the Lie symmetry transformations or any other formula generating new
solutions. The results obtained for the equation (10) can be extended to
similar classes of equations.
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BuBgaerpca 3B’430K MiXK CTPYKTYPHUMH BJIACTHBOCTSMU TPUBUMIDHHX
miganre6p anrebpu [lyamkape p(1,4) i cuMeTpIHOIO PEAYKINEIO PiBHIH-
g Eitepa—Jlarpamxka—Bopra—Iudensma. OcroBHy yBary 30cepeizKeHo Ha
PeAyKIOHAX 33 TPUBAMIDHUMHA HifasredpaMu, mio 3BOAATH PiBHAHHA Eitre-
pa—Jlarpamxa—bBopua—Iudenpaa mo miHiliHUX ArdepeHItiaJbHIX PIBHIHD.

Connections between structure properties of three-dimensional subalge-
bras of the Poincaré algebra p(1,4) and Lie reductions of the Euler—
Lagrange-Born-Infeld equation are studied. We concentrate our attenti-
on on Lie reductions with respect to three-dimensional subalgebras that
reduce the Euler-Lagrange-Born-Infeld equation to linear ordinary di-
fferential equations.

1. Introduction. Symmetry reduction is the most universal tool
for finding exact solutions of partial differential equations (PDEs). We
focus our attention on some applications of the classical Lie method
to investigation of PDEs with non-trivial symmetry groups. In 1895,
Lie [19] considered solutions of PDEs that are invariant with respect to
symmetry groups admitted by these PDEs. It turned out that the prob-
lem of symmetry reduction and construction of independent invariant
solutions for a PDE with a non-trivial symmetry group is reduced to the
algebraic problem of classification of inequivalent subalgebras of the Lie
invariance algebra of this equation [23, 24].
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In 1975, Patera, Winternitz, and Zassenhaus [25] proposed a gene-
ral method for describing inequivalent subalgebras of Lie algebras with
nontrivial ideals. It turned out that reduced equations obtained from
inequivalent subalgebras of the same dimension were of different types.
Grundland, Harnad and Winternitz [17] were the first who pointed out
and studied this phenomenon. Further details can be found in [6, 8, 11,
15, 16, 21, 22]. The results obtained cannot be explained using only the
dimension of subalgebras of Lie invariance algebras.

To explain a difference in properties of reduced equations for PDEs
with nontrivial symmetry groups, we investigate the relation between
structure properties of inequivalent subalgebras of the same dimension of
the Lie invariance algebras of those PDEs and properties of the respective
reduced equations. By now, we have studied this relation for the case
of low-dimensional (dim L < 3) inequivalent subalgebras of the same
dimension of the algebra p(1,4), which is the Lie algebra of the Poincaré
group P(1,4), and the eikonal equation [8].

This paper is devoted to the study of the relation between structural
properties of low-dimensional (dim L < 3) inequivalent subalgebras of
the same rank of the algebra p(1,4) and properties of reduced equa-
tions for the Euler-Lagrange-Born—Infeld (ELBI) equation. By now,
this relation has been investigated for three-dimensional subalgebras.
We obtained the following types of reduced equations: identities, linear
ordinary differential equations, nonlinear ordinary differential equations,
partial differential equations. For some subalgebras, it is impossible to
construct ansatzes that reduce the ELBI equation.

We focus our attention on reduction of the ELBI equation to linear
ODEs. More precisely, we only present the results of symmetry reduction
for those types of subalgebras that provide us reductions to linear ODEs.

2. Lie algebra of the Poincaré group P(1,4) and its nonequi-
valent subalgebras. The group P(1,4) is the group of rotations and
translations of the five-dimensional Minkowski space M(1,4). It is the
minimal group that contains, as subgroups, the extended Galilei group
G(1,3) [12] and the Poincaré group P(1,3), which are underlying groups
of classical and relativistic physics, respectively.

The Lie algebra p(1,4) of the group P(1,4) is spanned by 15 basis
elements M, = —M,,, p,v =0,1,2,3,4, and P, up = 0,1, 2, 3,4, which
satisfy the commutation relations

[P/uPV] :0; [Muuapa] :guapu_guopua



On reductions of the Euler-Lagrange—Born-Infeld equation 195

[M,um Mpo] = g;le/p + gupM,ua - g,upMua - gyoMup,

where gog = —g11 = —g22 = —g33 = —gaa = 1, g = 0, if p # v.
We consider the canonical realization [13, 14] of p(1,4),

P 0 _ 0 _ 0 _ 0

0_6.%07 te 31‘1’ 2T 8x2’ 57 31‘3,
0

P4:—%, M, =z,P, —x,P,, 2x4=u.

Hereafter we use the following basis elements

G = Moy, Ly= M3, Lo=—My3, L3z= My,
Pa = Ma4 - M0a7 Ca = Ma4 + M0a7
Xo=35(Po—P1), Xp=h,, Xya=3FP+P), ak=123.

Subalgebras of the Lie algebra p(1,4) were studied up to P(1,4)-con-
jugation in [4, 5, 10], in particular, the classification of subalgebras of
p(1,4) of dimensions up to three was given in [7]. Note that the Lie
algebra of the extended Galilei group é(l, 3) is spanned by Ly, Lo, L,
Pl, PQ, Pg, Xo, Xl, XQ, X3 and X4.

3. Classification of symmetry reductions for the Euler—
Lagrange—Born—Infeld equation. Born-Infeld-like equations arise
in fluid dynamics, theory of continuous medium, general relativity, field
theory, theory of minimal surfaces, nonlinear electrodynamics, ete. [1, 2,
3, 18, 26].

We consider the Euler-Lagrange-Born—Infeld (ELBI) equation

Ou (1 — uyu”) + vu’uy, =0, (1)
2
where u = u(x), = (xo, 21,22, z3) € M(1,3), u, = %, Upy = 39375‘%,
ut = g"u,, w,v =0,1,2,3, and O is the d’Alembert operator.

In 1984, Fushchych and Serov [13] studied symmetry properties of
the multidimensional nonlinear Euler-Lagrange equation. These results
imply that the Lie invariance algebra of the equation (1) contains, as a
subalgebra, the Poincaré algebra p(1,4).

We carry out Lie symmetry reductions of the ELBI equation to linear
ODEs using subalgebras of p(1,4) of the following types: 3A4;, Ay &
Ai, A3, Aso, Az s, Asg. The notation of three-dimensional algebras
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is according to Mubarakzyanov’s classification of low-dimensional Lie
algebras [20].

Among inequivalent subalgebras of the Poincaré algebra p(1,4) listed
in [7], we select only such subalgebras that do reduce the ELBI equation
to linear ODEs with nonlinear solutions since linear solutions are con-
sidered to be trivial. For each of the selected subalgebras, we construct
an ansatz for u, the corresponding reduced equation, its general solution
and the associated family of invariant solutions of the ELBI equation.

Proposition 1. The Lie algebra p(1,4) contains 31 three-dimensional
inequivalent subalgebras of the type 3A;.

1. (P1) @ (Ps) @ (X3):
the ansatz is 23 — 27 — 23 — u? = p(w), w = ¢ + y;
the reduced equation is w?y” — 6wy’ + 6 = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;
the solution of the ELBI equation is

x2 — 2 — 22 —u? = c1(wo +u)® + oo + u).

2. (P3) & (X1) ® (Xa):
the ansatz is 23 — 23 — u? = p(w), w = 79 + Y;
the reduced equation is w?y” — 4wy’ + 4¢ = 0;
the solution of the reduced equation is ¢(w) = cow* + ciw;

the solution of the ELBI equation is

z2 — 22 —u? = ca(xo +u)? + c1(zg + ).

the ansatz is 23 — 27 — 23 — 2% — u? = p(w), w = 2o + y;
the reduced equation is w?y” — 8wy’ + 8¢ = 0;

the solution of the reduced equation is p(w) = c;w® + caw;
the solution of the ELBI equation is

2 — a2 — a2 — 22 —u? = cy(wo +u)® + cazo + u).

4. (P) @ (P = X5) @ (X):

2
:L’Ofxlfu _ Ty

the ansatz is =0 st = eWw), w=1z0 +u;
the reduced equation is (w+1)%w® (w(w + 1)¢”—2(2w + 1)¢’) = 0;
the solution of the reduced equation is
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o(w) = cow?® (6w2 + 15w + 10) + c1;
the solution of the ELBI equation is
23— 2% —u B x3 B
To+u xo+u+1
+ 15(zo + u) + 10) + ¢1.

2

ca(zo +u)? (6(zo + u)?

5. <P1> D <P2 —aXs, a ? O> D <P3 — X3,y # 0>Z
the ansatz is 2u + ;= + wofira S
the reduced equation is
(W)W (w+a)? [w(w? + (a+y)w+ay) " —2(3w® +2(a+7)w+
ay)(¢’ = 1] = 0;
the solution of the reduced equation is
pw) = e [zw! + 3(a+ 7w’ + 5(a® + day + 7?)w? + 3av(a +
Yw + a2y |wd + w + co;
the solution of the ELBI equation is

T3

sty = o), w =m0+ u;

2 2 2
x] x5 x5

To+u To+u—+ To+U+y
=1 [$(@o +u)* + F(a +7)(zo + u)® + E(a® + day +77)
X (20 +u)? + gay(a+7) (o + u) + 7]

x (g + u)® 4+ 2o + u + co.

2u +

6. <P1> D <P2 —aXy,a > O> (&) <P3>:
. a:2+w2 z2
the ansatz is 2u + L8 + ——2— = p(w), w = To + u;
the reduced equation is
(@ + )P (w(w + )¢ — 2(3w + 2a) (¢’ — 1)) = 0
the solution of the reduced equation is
2 E
p(w) = cl(%wQ + qw+ %)w“’ + w + c3;
the solution of the ELBI equation is

i + 23 3

o+ u To+ U+ «

=q (%(m0+u)2+%(xo+u)+%2) (zo +u)®
+ g+ u+ Co.

2u +

7. <P3 - 2X0> (5] <X1> D <X2>Z
the ansatz is
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(wo +u)® + w3(zo +u) + 10 —u = p(w), w = (w0 + u)? + das;
the reduced equation is 2wy” — ¢’ = 0;

the solution of the reduced equation is

o(w) = caw®? + ¢y

the solution of the ELBI equation is

Hwo + u)® + z3(z0 +u) + 20 — U

3/

= co((wo + u)® + 4a3) *ta.

. (P3—2X0) ® (X1) @ (Xy):

the ansatz is (zo + u)? + 423 = p(w), w = To;

the reduced equation is ¢” = 0;

the solution of the reduced equation is p(w) = ciw + ¢q;
the solution of the ELBI equation is

u=¢e(cixg —das + 02)1/2 —x9, €==£l.

Proposition 2. The Lie algebra p(1,4) contains 10 three-dimensional
inequivalent subalgebras of the type As @ Aj.

. <—(G + OéXQ),X4,(,Y > O> &) <X1>Z

the ansatz is zo — aln(zg + u) = p(w), w = x3;

the reduced equation is ¢ = 0;

the solution of the reduced equation is p(w) = crw + ¢a;
the solution of the ELBI equation is

29 — aln(zg + u) = crzs + co.

Proposition 3. The Lie algebra p(1,4) contains 17 three-dimensional
inequivalent subalgebras of the type Az ;.

<2MX4, P; —2Xo, X1+ /J,Xg,u > 0>

the ansatz is (zg + u)? + 423 — dpz; = p(w), W = x9;
the reduced equation is ¢ = 0;

the solution of the reduced equation is p(w) = 1w + ¢o;
the solution of the ELBI equation is

u=c¢ (4dux + crxs — dxs + 02)1/2 —xg, €==l.

Proposition 4. The Lie algebra p(1,4) contains 3 three-dimensional
noncongjugate subalgebras of the type As o.
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1. (26X4, P3,G+ aX; + X3, > 0,8 > 0):
the ansatz is z1 — aln(zg + u) = p(w), w = x9;
the reduced equation is ¢” = 0;
the solution of the reduced equation is p(w) = ciw + ¢q;
the solution of the ELBI equation is

z1 —aln(zg + u) = crze + ca.

Proposition 5. The Lie algebra p(1,4) contains five three-dimensional
inequivalent subalgebras of the type As 3.

1. (P35, X4,G+aXy,a>0):
the ansatz is z1 — aln(zg + u) = p(w), w = x9;
the reduced equation is ¢ = 0;
the solution of the reduced equation is p(w) = 1w + ¢o;
the solution of the ELBI equation is

Tl — C1T2 — C2
U=exp| ——— | — xop.
«

Proposition 6. The Lie algebra p(1,4) contains 18 three-dimensional
inequivalent subalgebras of the type Az .

L (Pi = X1, P2 = Xo, s + La):

the ansatz is — 1::121 + +2u = p(w), w = z0 + U
the reduced equatlon is

w?(w +1)°w(w + 1)p” — 23w + 1) (¢’ —1)] = 0;

the solution of the reduced equation is

o(w) = 2w + 2e108 4+ Serw® + awt + G +w + e
the solution of the ELBI equation is

:vo+u

xo+u+1 x9+u
+gcl(x0+u)5+cl(xo+u)4+%(x0+u)3+x0+u+02.

+2u=L(zg+u) + 21 (wo +u)®

2. <P1, —PQ, — (L3 + OéX3) , o > 0>
the ansatz ibxo—x%—xg—u = p(w), w =z + u;
the reduced equation is w?¢” — 6wy’ + 6¢ = 0;
the solution of the reduced equation is p(w) = c;w® + cow;
the solution of the ELBI equation is

3 — 23 — 23 —u? = c1(zo + u)® + oo + u).
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3. <AXv17 7X2,P3 - L3>I
the ansatz is 23 — 23 — u? = p(w), w = ¢ + u;
the reduced equation is w?¢” — 4wy’ + 4 = 0;
the solution of the reduced equation is p(w) = c;w? + caw;
the solution of the ELBI equation is

z2 — 22 —u? = ey (2o +u)? + co(wo + u).

4. <P1, P27 L3 - P3>:
the ansatz is 23 — 27 — 23 — 2% — u? = p(w), w = 2o + y;
the reduced equation is w?y” — 8wy’ + 8¢ = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;
the solution of the ELBI equation is

i — a3 — a3 — x5 —u® = cy(wo +u)® + ca(zo + u).

5. <AX'17 —XQ,P3 — L3 — QOéXQ,Oé > 0>
the ansatz is (g + u)® + 6axz(zg + u) + 6a%(zg — u) = p(w),
w = (zo +u)? + daxs;
the reduced equation is 2wy’ — ¢’ = 0;
the solution of the reduced equation is p(w) = caw®/? + ¢1;
the solution of the ELBI equation is

(zo +u)? + 6axs(zo + u) + 602 (zo — u)
= co((wo +u)? + 4az3)3/2 +c1.

4. Conclusions. In this paper we focused our attention on Lie
reductions of the ELBI equation to linear ODEs. More precisely, we
presented results for such three-dimensional subalgebras of p(1,4) that
give reductions of the ELBI equation to linear ODEs with nonlinear
solutions.

It is known [7] that the Lie algebra p(1,4) contains three-dimensional
inequivalent subalgebras of the following types: 3A4:, A & Ay, As 1,
A372, A3,3, A374, A3,67 Ag)% A3,8, A379. Results of the paper 1mply that
all the above Lie reductions of the ELBI equation to linear ODEs can be
obtained using subalgebras of the types 341, As @ A1, As 1, A32, Ass
and As . Moreover, all the subalgebras considered in the paper are also
subalgebras of the Lie algebra of the extended Galilei group é(l, 3).



On reductions of the Euler-Lagrange—Born-Infeld equation 201

(1]
2]
(3]
(4]

[5]

[9]

(10]

(11]

(12]

[13]
[14]
[15]
[16]
[17]

(18]

Born M., On the quantum theory of electromagnetic field, Proc. Royal Soc. A
143 (1934), 410-437.

Born M., Infeld L., Foundations of the new field theory, Proc. Royal Soc. A 144
(1934), 425-451.

Chernikov N.A., Born—Infeld equations in Einstein’s unified field theory, Prob-
lemy Teor. Gravitatsii i Element. Chastits (1978), no. 9, 130-139.

Fedorchuk V.M. Splitting subalgebras of the Lie algebra of the generalized Poin-
caré group P(1,4), Ukrainian Math. J. 31 (1979), 554-558.

Fedorchuk V.M., Nonsplitting subalgebras of the Lie algebra of the generalized
Poincaré group P(1,4), Ukrainian Math. J. 33 (1981), 535-538.

Fedorchuk V.M., Fedorchuk I.M., Leibov O.S., Reduction of the Born—Infeld,
the Monge—Ampére and the eikonal equation to linear equations, Dokl. Akad.
Nauk Ukrainy (1991), no. 11, 24-27.

Fedorchuk V.M., Fedorchuk V.I., On classification of the low-dimensional non-
conjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), Proc. of
the Inst. of Math. of NAS of Ukraine 3 (2006), no. 2, 302—-308.

Fedorchuk V., Fedorchuk V., On classification of symmetry reductions for the
eikonal equation, Symmetry 8 (2016), 51, 32 pp.

Fushchich V.I., Barannik L.F., Barannik A.F., Subgroup analysis of Galilei and
Poincaré groups and the reduction of nonlinear equations, Naukova Dumka,
Kiev, 1991.

Fushchich W.I., Barannik A.F., Barannik L.F., Fedorchuk V.M., Continuous
subgroups of the Poincaré group P(1,4), J. Phys. A: Math. and Gen. 18 (1985),
2893-2899.

Fushchich V.I., Fedorchuk V.M., Fedorchuk I.M., Subgroup structure of the
generalized Poincaré group and exact solutions of certain nonlinear wave equa-
tions, Preprint no. 27, Institute Mathematics, Kyiv, 1986, 36 pp.

Fushchich W.I., Nikitin A.G., Reduction of the representations of the genera-
lized Poincaré algebra by the Galilei algebra, J. Phys. A: Math. and Gen 13
(1980), 2319-2330.

Fushchich V.I., Serov N.I., Some exact solutions of the multidimensional non-
linear Euler-Lagrange equation, Dokl. Akad. Nauk SSSR 278 (1984), 847-851.

Fushchich W.I., Shtelen W.M., The symmetry and some exact solutions of the
relativistic eikonal equation, Lett. Nuovo Cimento 34 (1982), 498-502.

Grundland A.M., Hariton A.J. Supersymmetric formulation of polytropic gas
dynamics and its invariant solutions, J. Math. Phys. 52 (2011), 043501, 21 pp.

Grundland A.M., Hariton A., Algebraic aspects of the supersymmetric minimal
surface equation, Symmetry 9 (2017), 318, 19 pp.

Grundland A.M., Harnad J., Winternitz P. Symmetry reduction for nonlinear
relativistically invariant equations, J. Math. Phys. 25 (1984), 791-806.

Ko&iv M., Rosenhaus V., Family of two-dimensional Born—Infeld equations and
a system of conservation laws, Izv. Akad. Nauk Est. SSR Fiz. Mat. 28 (1979),
187-193.



202

V.M. Fedorchuk, V.I. Fedorchuk

(19]
20]

(21]

(22]
23]
[24]

(25]

[26]

Lie S., Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger
Ordnung, Leipz. Berichte, 1895.

Mubarakzyanov G.M., On solvable Lie algebras, Izv. Vys. Ucheb. Zaved. Mate-
matika (1963), no. 1(32), 114-123

Nikitin A.G., Kuriksha O., Group analysis of equations of axion electrodyna-
mics, in Group Analysis of Differential Equations and Integrable Systems, Uni-
versity of Cyprus, Nicosia, 2011, 152—-163.

Nikitin A.G., Kuriksha O., Invariant solutions for equations of axion electro-
dynamics, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4585-4601.

Olver P.J., Applications of Lie groups to differential equations, Springer-Verlag,
New York, 1986.

Ovsiannikov L.V., Group analysis of differential equations, Academic Press,
New York, 1982.

Patera J., Winternitz P., Zassenhaus H. Continuous subgroups of the funda-
mental groups of physics. I. General method and the Poincaré group, J. Math.
Phys. 16 (1975), 1597-1614.

Shavokhina N.S.; Minimal surfaces and nonlinear electrodynamics, in Selected
Topics in Statistical Mechanics (Dubna, 1989), World Sci. Publ., Teaneck, NJ,
1990, 504-511.



TIEPemMOBA . . ..o 5

Bapannux A.®@., Bapannux T.A., Opux I.1. Touni po3s’sa3Kku HETIHIAHOTO

piBustaHs TermonposinaocTi U = (F(u)ug)s + H(w) oo, 6
Botixo B.M., Jlokaswx O.B. (1+1)-BumipHi HesiHIAHI eBOJIOIiiHI

PIBHSIHHSL APYTOro MOPSAAKY 3 MaKCHMAJIbHUMU JHIBCHKUMUI

07 0 {3 03 5.1 2 PP 16
Buring R., Kiselev A.V. Formality morphism as the mechanism

of x-product associativity: how it works ........ ... ... .. ... .. ... 22

Baneesa O.0. Touni po3s’a3ku piBusub Pimepa 3 koedimienramu,

10 3aJIE2KATh Bl 9ACOBOT 3MIHHOL . . .\ttt vtiee ettt iiiiiiee e eeeeennnns 44
Dos Santos Cardoso-Bihlo E., Bihlo A., Popovych R.Q. Differential

invariants for a class of diffusion equations ............................ 50
Czopuenko I.A. Po3s’sa3ku cucremu 10B’d3aHUX PIBHAHD €fKOHAJLY . .. ... .. 66

Kaniti O.IO., Bypde I'.I. Touno-po3s’si3ui Mozesi rigpoguaamMivaHol
(17 5 40l s N 78

Ivanova N.M., Pallikaros C.A. Describing certain Lie algebra orbits

via polynomial equations............ ... ... . i 84
Myronova M., Nesterenko M. Generic realizations of conformal

and de Sitter algebras........... ... 100
Nikitin A.G. Exact solvability of PDM systems with extended

Lie symmetries. ... 113

Opanasenko S. Equivalence groupoid of a class of general Burgers—

Korteweg—de Vries equations with space-dependent coefficients ... .... 131
Crypamiscvrut C.I., Crxypamiecvra I.A., Byxyp I.B., Macaosa O.M.

IToniHoMia/IbHI PO3B 3K MOIE/ HEJTIHIHHOTO CepeIOBHINa

3 KOJIMBHUMUP BKITIOTEHHAMI . « « . o e e vv et euee et e e eee e eina e e 155
Cnivax C.B., Cmoenit B.1., Konacv I.M. Cumerpiiiui BaactusocTi

Ta To4Hl po3B’a3ku (2+1)-BumipHOrO JiHIAHOrO piBHAHHI

IIHOYTBOPEHHS a31MCHKIX OMITIOHIB. . .ttt iitt ettt eiiiee e iie e, 164
Tsyfra I.M., Rzeszut W. Lie-Backlund symmetry reduction of nonlinear

and non-evolution equations ............. ... .. i 174
Tychynin V.A. Adjoint solutions and superposition principle

for linearizable Krichever—Novikov equation.......................... 181
Fedorchuk V.M., Fedorchuk V.I. On symmetry reduction of the Euler—

Lagrange-Born-Infeld equation to linear ODEs ...................... 193



Hayxose sudarns

36ipHuUK mpaib

Iucturyty maremaruku HAH VYkpaiun

Tom 16 Ne 1

CumMerpis Ta IHTEIPOBHICTH
PIBHAHDb MaTeMaTWYHOl (PI3NKNI

Kowmm’'orepuuit opurinan-maker  B.M. Botixo, O.B. Jlokasox,
O.A. Ilovexema

Iigmucano no apyky 03.09.2019. ®opmar 60x84/16. [Tanip ode. Ode. npyk.
®@i3. npyk. apk. 12,8. Ymos. apyk. apk. 11,9. Sam. Ne 41. Tupax 70 up.

Tacruryt marematukn HAH Vkpainu
01024 Kuis 4, Byn. Tepemenkiscoka, 3



