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It is well known that functional bases of invariants of non-conjugate subgroups of
the Lie groups of point transformations play an important role in solving the task of
symmetry reduction for PDEs invariant with respect to these groups (see, for exam-
ple, [1, 2, 3]).

The group P (1, 4) is a group of rotations and translations of the five-dimensional
Minkowski space M(1, 4). Some applications of this group in the theoretical and math-
ematical physics can be found in [4, 5, 6]. Continuous subgroups of the group P (1, 4)
have been described in [7, 8, 9, 10, 11]. One of the nontrivial consequences of the de-
scription of non-conjugate subalgebras of the Lie algebra of the group P (1, 4) is that
the Lie algebra of group P (1, 4) contains as subalgebras Lie algebra of the Poincaré

group P (1, 3) and Lie algebra of the extended Galilei group G̃(1, 3) [12], i.e. it natu-
rally unites the Lie algebras of the symmetry groups of relativistic and non-relativistic
physics.

The present report is devoted to the construction of non-equivalent functional bases
of invariants for non-conjugate subgroups of the group G̃(1, 3) ⊂ P (1, 4). Until now,
using the criterion of equivalency [13], we have constructed the non-equivalent func-

tional bases of invariants for all non-conjugate subgroups of the group G̃(1, 3) in the
space M(1, 3)×R(u). Here, M(1, 3) is the four–dimensional Minkowski space; R(u) is
the number axis of the variable u.
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P (1, 4), Ukr. Mat. Zh., 1979, V. 31, N 6, 717–722.

[9] Fedorchuk V.M., Fushchych W.I., On subgroups of the generalized Poincaré group, in
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group P (1, 4), Ukr. Mat. Zh., 1981, V. 33, N 5, 696–700.

[11] Fushchich W.I., Barannik A.F., Barannik L.F., Fedorchuk V.M., Continuous subgroups
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