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Main notions and notations

e R™ n > 2, with the Euclidean distance |z — yl;
o Cy(R™) — the set of all ¢ € C(R") of compact support;

o M = M(R™) — the space of all Radon measures p on R™ with
the vague topology of pointwise convergence on Cp(R"™).

That is, a sequence (p;) C 9 is said to converge to o vaguely if

1i(p) = po(p) for every p € Co(R™).




Remainder:

e A Radon measure y on R™ is thought to be a linear functional
on Cp(R™) that is continuous in the following sense:

for every compact set K C R”, if
Supp ¢;, Supppo C K and ¢; — @9 uniformly on K,

then

p(e;) = u(po) as j — oo.




Main notions and notations

R™ n > 2, with the Euclidean distance |z — y|;
Co(R™) — the set of all ¢ € C(R") of compact support;

M = M(R"™) — the space of all Radon measures p on R™ with
the vague topology of pointwise convergence on Cp(R");

Mt = MT(R") — the convex cone of all positive u € M, i.e.

pu(p) =0 whenever ¢ > 0.
By the Hahn—Jordan decomposition theorem,

M =M+ — M+,




Main notions and notations

el T e () = e Rieem el R
For a = 2, ko is referred to as the Newtonian kernel, and it is
actually the fundamental solution to the Laplace equation in R™:

—A x kg = Cp o, where € is the unit Dirac measure.

For a0 # 2, K, is associated with the so-called fractional Laplace
equation, a major subject in the probabilistic approach to the
modern potential theory, a point of interest for American,
Chinese, German, Polish, etc. mathematical schools.

e.g., the books:

Bliedtner, J., Hansen, W., Potential Theory. An Analytic and
Probabilistic Approach to Balayage. Springer, Berlin, 1986.
Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M.,

Song, R., Vondracek, Z., Potential Analysis of Stable Processes
and its Extensions. Springer, Berlin, 2009.




Main notions and notations

i e e e e e e aver Ry e RV
e The (Riesz) potential of 4 € 9 at € R™ is given by means of

U”@Otzy/ﬁ@@my)du()

provided the value on the right is well defined in [—o0, +00].
e The mutual energy of u,v € M is defined by

1) = [0ty = [ rale,) dln @ v)(a,p).

For p=wv, I(u,u) =: I(u) is termed the energy of p € M.

For integration w.resp. to p € 9, we refer to Bourbaki’s books.




Crucial facts

e K, is strictly positive definite, which means that I(u) > 0 for
every (signed) p € 9, and moreover I(u) = 0 only for p =0
(M. Riesz, 1938). Denote & := E(R™) := {p € M : I () < oo},

e Therefore, £ is a pre-Hilbert space with the inner product

(u,v) := I(u,v) and the energy norm ||u|| := 1/I(u). The
topology on & defined by means of || - || is said to be strong.




Crucial facts

o &:={peM:I(u) < oo} is a pre-Hilbert space with the inner
product (u,v) := I(u,v) and the energy norm |u| := +/I(p).
The topology on £ defined by means of || - || is said to be strong.

e By J. Deny (1950), £1 := ET(R") := ENIM™T is complete in the
induced strong topology, and moreover the strong topology on

ET is finer than the vague topology. By B. Fuglede (1960), a
kernel possessing these two properies, is said to be perfect.

Conclusion. Thus, if a sequence (a net) (u;) C £ is strongly Cauchy,
then (1) converges both strongly and vaguely to one and the same
limit measure g € £T, the strong topology on £ as well as the vague
topology on 9 being Hausdorff.




Crucial facts

o £:={peM:I(u) < oo} is a pre-Hilbert space with the inner
product (u,v) := I(u,v) and the energy norm ||u|| := +/I(p).
The topology on £ defined by means of || - || is said to be strong.
By J. Deny (1950), £t := ET(R") := ENMT is complete in the
induced strong topology, and moreover the strong topology on
ET is finer than the vague topology. By B. Fuglede (1960), a

kernel possessing these two properies, is said to be perfect.

Note that the whole pre-Hilbert space £ is strongly incomplete;
see a counterexample by H. Cartan (1945), pertaining to the
Newtonian kernel. A quite general criterion ensuring the strong
completeness of convex subsets of £, was found by N. Zorii
(Potential Anal., 2013), and this was done even for infinite
dimensional vector Radon measures on a locally compact space.




Inner and outer capacities of sets A C R™

For any A, let 9T (A) consist of all u € M concentrated on A,
which means that A¢:=R"\ A is p-negligible, i.e. u*(A€) = 0;
or equivalently that A is y-measurable and p = p|4.

For closed A =: F, MT(F) is the class of u € M+ with Supppu C F;
whereas this is not the case otherwise.

Example. The unit mass, uniformly distributed over the open unit
ball By 1, belongs to M (By 1), whereas its support equals By .

Henceforth, the following notations will often be in use:

M (A) = {p € MH(4): p(4) =1},
S = Al
=




For any A C R", the inner (Riesz) capacity c.(A) is defined by

1/es(A) = #eigqf( . (1),

while the outer ¢*(A) by

ghfiida= (%fA c(G) (G open).

If c(A) = c*(A), c¢(A) := cs(A) is simply termed the capacity of A;
this occurs if A is Borel (see B. Fuglede, 1960 or Landkof’s book).

It follows easily from (1) that (compare with (2))

R Is(lélil ¢(K) (K compact),

or equivalently ¢(K) 1 c.(A), where K ranges over the upward
partially ordered family €4 of all compact subsets of A.




Negligible (exceptional) sets

A proposition P(z), z € R”, is said to hold quasi-everywhere (q.e.)
on A CR"if ¢*(E) =0, where E:= {z € A: P(z) fails}.

Replacing here ¢*(E) = 0 by c.(F) = 0 we arrive at the concept of
nearly everywhere (n.e.) on A.

If P(z) q.e. on A, then it also does n.e. on A, for c*(E) 2 c.(E).




General requirement on p € MM

UH, € MT, is always meant to be not identically infinite on R

)

/ dﬂrgi)x < o0
lzl>1 17l

)

U< q.e.onR”
T
U'=U"" —U", veM, is well-defined and finite q.e. on R"
fr
v is bounded, i.e. [v|(R™) = v (R") + v~ (R") < o0; or v € £




Fundamental problems

Inner balayage problem. For any ¢ € 9™ and any A C R?, does
there exist (4 € 2T (A) such that US" = US n.e. on A?

Such ¢4 (if it 3!) is termed the inner balayage of ¢ to A.

Inner equilibrium problem. For any A C R™, does there exist
v4 € MT(A) such that U =1 n.e. on A?

Such 4 (if it 3!) is termed the inner equilibrium measure for A.

These two problems will be shown to be deeply related to one
another via the Kelvin transformation. We also intend to apply the
concept of inner balayage to the inner Gauss variational problem, the
problem of minimizing I(x) — 2 [ U® du when u ranges over EL(A). A
generalization of the results obtained to suitable function kernels on
a locally compact space is also planned to be discussed.




Remarks

e For a = 2, these problems were solved by Cartan (1946). However,
his methods are not applicable for a # 2, since the specific features
of Newtonian potentials, based on harmonicity, then fail to hold.

e The balayage problem is deeply related to the Dirichlet problem. In
fact, let & = 2, D C R"™ be a bounded (open, connected) domain with
Lipschitz boundary 0D, and e, be the unit Dirac measure at z € D.
Then for any f € C(9D),

hy(z) = / £() de?P () = / f(z) del ()

is harmonic in D, and moreover

lim hy(2) = f(a).

z—x€ID

e The latter remark remains valid for « € (0,2) with "a harmonic
function" replaced by the so-called "an a-harmonic function".
(o o ¥ o o




A permanent requirement

From now on, let 0 < a < 2; for if not, the balayage and equilibrium
problems are both unsolvable — even for By 1, which is caused by the
fact that for o > 2, U#, where u € 9™, is superharmonic on R”™.

Then the two maximum principles are fulfilled, often referred to as
the first and the second maximum principles, respectively:

Frostman’s maximum principle. For any p € 9™ such that U# < 1
on Supp u, the same inequality holds true on all of R™.

The domination principle. For any v € £t and p € 9™ with
U¥ < U* on Supp v, the same inequality holds true on all of R".




Let £'(A) be the closure of £7(A) in the strong topology on €. Also,
oh = e LT =S esion A} (3)

Theorem 1. For any ¢ := ¢ € £7, there is precisely one ¢4 € £'(A),
called the inner balayage of o to A, given by any one of (i)—(iii).
(i) There is the unique 4 € £'(A) s. th.

A z
= min @riTr .
= min ol

(ii) There is the unique ¢4 € £'(A) s.th.

|lo—o

U’ =U° ne on A (4)

(iii) o4 is the unique solution to the problem of minimizing the

energy over the class I'4 5, cf. (3). That is, e I'sae and

I(UA):“]g}ijl JatE




Remarks

e Equality (4) can be refined as follows:

U =U° on A\ A",

where A" is the set of all inner a-regular points for A. That is,

ex(45)

i(n—a)

ye A" <— -
jen ¢

where ¢ € (0,1) and 4;:= AN{z €R™: ¢ |z —y| < g} If
A?:= A\ A" denotes the set of all inner a-irregular points for A,
then, by the Kellog—Evans type theorem,

A )

whence (5) is finer than (4), indeed.




Remarks

o If A=:F is closed, then 9™ (F) is vaguely closed (Bourbaki),
which implies, by use of the perfectness of the Riesz kernel k, the
strong closedness of the class E1(F). Thus

E'(F) = E7(F),

whence the above (ii) can be specified as follows:

(ii") For any o € £1 and any closed F, the inner balayage of is

uniquely determined within £ (F) by the equality

e




Theorem 2. For any ¢ € 9, there is precisely one ¢4 € M™, called
the inner balayage of ¢ to A, determined by any one of (i;)—(iiiy):

(i;) ¢4 is the unique solution to the problem of minimizing U* over
the class I'4 ¢, that is, e I's¢ and

A :
U = min U* on R".
1€l a¢

(ii;) There is the unique ¢4 € 9T meeting the symmetry relation
I(¢?,0) =I(¢,0?) forall oe€&f,

4 is uniquely determined by means of Theorem 1.

where o
(iii;) There is the unique ¢4 € MT meeting either of the two relations
A
034 S ety o e gt L e G pointwise on R",
where (0;) C £ is an arbitrary sequence such that

U% 1 US pointwise on R™.




Remarks

e A sequence (0;) C 1 meeting (6) does exist. One can take e.g.
it e —sriiin {Uc(m), e e sl
where v € €7 is a fixed bounded measure.

e Similarly as it was in the case of ¢ € T, for ¢ € MM, we have

It () =US(z) forall z € A" (whence, n.e. on A). (7)

However, this no longer determines ¢# uniquely — even for closed A,
which can be seen by taking ¢ := e, with z € A*. (See below for a
detailed explanation of this phenomenon.)




Some further properties of the inner balayage ¢4

Along with equality (7), we have:
(a) US" < UC on all of R™.

(b) ¢A(R™) < ¢(R™) (by Deny’s principle of positivity of mass).
(c) ¢4 = ((9)4 for any Q D A (balayage "with a rest").
(d) ¢* = [ d¢ (the integral representation formula).

2 is referred to as the inner a-harmonic measure of A at z. Actually,

(8)

€2

A{ =e, if ze€ A",

is C-absolutely continuous otherwise,

the latter means that e2(E) = 0 for any E C R” with c,(E) = 0.




Why US" = US n.e. on A does not determine ¢4 uniquely ?
(Unless, of course, ¢ € 1 while A is closed.)

Let A =: F be closed, ¢ := ¢,, where z € F*. Then according to (7),

U =U* ne. onF, )

while by the latter formula in (8), £ € MM+ (F) is C-abs. continuous.
Noting that (9) also holds for e, € 9T (F) in place of ef', whereas ¢,
is certainly not C-absolutely continuous, we arrive at the claim.

Conclusion. Thus the definition of (¥ as a measure supported by F
and s.th. US” = US n.e. on F is incorrect. Such a wrong definition is
spread broadly in papers where potential theory is used as a tool.




A description of Supp ¢¥

For any closed F C R", let F' denote the reduced kernel of F, that is,
the set of all x € F such that ¢(B;, N F) > 0 for all r > 0.

Theorem 3. Assume that o < 2. Then for any nonzero ¢ € M,

Supp ¢ = F.

Proof. This follows from the integral representation for ¢f' in view of
the relationship between the swept and equilibrium measures, to be
discussed below.




Convergence theorems for monotone families of sets

Theorem 4. For any A and any ¢ € 9T,

CK — (A vaguely,

s TU G pointwise on R",

K ranging over the upward partially ordered family of all compact
subsets of A. If moreover ¢ € £1, then also (% — ¢4 strongly.

Theorem 5. If (Fy) is a lower partially ordered family of closed sets
with the intersection F', then for any ¢ € 9T,

e e
If moreover ¢ € €T, then also
G CIECGR ]

e i i pointwise g.e. on R".




The theory of inner Riesz balayage as well as its generalization to
any perfect kernel on a locally compact space X, satisfying the
domination principle, and any o € £7(X) and A C X is given in:

e Zorii, N., A theory of inner Riesz balayage and its applications,
Bull. Pol. Acad. Sci. Math. 68 (2020), 41-67, arXiv:1910.09946.

e Zorii, N., Harmonic measure, equilibrium measure, and thinness at
infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),
447-472, arXiv:2006.12364.

e Zorii, N., Balayage of measures on a locally compact space, Anal.
Math. 48 (2022), 249277, arXiv:2010.07199.

e Zorii, N., On the theory of capacities on locally compact spaces
and its interaction with the theory of balayage, Potential Anal. 59
(2023), 1345-1379, arXiv:2202.01996.

e Zorii, N., On the theory of balayage on locally compact spaces,
Potential Anal. 59 (2023), 1727-1744, arXiv:2108.13224.




Inner a-thinness of a set at infinity

A C R" is inner a-thin at infinity if for some (equiv., every) y € R,

Z Cf(Aj) S
q](n*a)

JEN

e o= (O el A = 2N {:v ER: ¢ <lz—y| < qj+1};

or alternatively, if for some (equivalently, every) y € R,
y € (41,
AY being the inverse of A with respect to Sy 1.

Remark. A set A is not inner a-thin at at infinity = c.(4) = cc.




Example 1. Let n = 3 and « = 2. Define A to be a rotation body

e e e e R

where o is given by one of the following three formulae:

Al e e (e
o(z1) = exp(—z]) with 7€ (0,1],
o(z1) = exp(—z]) with 7 € (1, 00).

Then A is 2-thin at infinity <= (11) or (12) holds. Moreover,

c(A) < oo <> (12) takes place.




A=l gy 2 sn, 54 as & Sl b sl gl = e




A:= {0 < a8 < 69, x% + x§ £ 92(1‘1)} with o(z1) = exp(—x1)




The concept of inner a-thinness at infinity serves as an efficient tool
in applications of balayage theory. This is caused, in particular, by:

Theorem 6. A set A is not inner a-thin at infinity if and only if

CA(]R”) =((R™) for every ¢ € MT.

Reminder: In general, ¢4(R") < ¢(R™) for any ¢ and any A.
Unless a < 2, assume in Theorem 7 that A° is connected.
Theorem 7. If A is inner a-thin at infinity, then

CA(R™) < ¢(R™) for every ¢ € MT(A°).
Theorems 6, 7 were proved in:

e Zorii, N., Harmonic measure, equilibrium measure, and thinness at
infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),
447472, arXiv:2006.12564.




A generalization of Deny’s principle of positivity of mass

Preceding theorem. For any u,v € M s.th. U¥ < UY on all of R?,

H(R™) < v(RY). (13)

See: e Fuglede, B., Zorii, N., Green kernels associated with Riesz
kernels, Ann. Acad. Sci. Fenn. Math. 43 (2018), 121-145.

Theorem 8. Given p,v € M, assume there is A which is not inner
a-thin at infinity and s.th. U* < UY n.e. on A. Then (13) still holds.

See: e Zorii N., On the role of the point at infinity in Deny’s
principle of positivity of mass for Riesz potentials, Anal. Math. Phys.
13 (2023), article no. 38, 18 pages, arXiv:2202.12418,

and a recent extension of Th. 8 to a-Green potentials: e Zorii N.,
Balayage, equilibrium measure, and Deny’s principle of positivity of
mass for a-Green potentials, Anal. Math. Phys. 15:3 (2025), 20 pp.




An inner Riesz equilibrium measure

v4 € MT is termed an inner equilibrium measure for a given set A if

W=t o sl et R (14)
pnel 4

where ['y := {,u cME: UL >1 ne. on A}.

Y4 exists <= A is a-thin at infinity. Furthermore, then
U =1 on A" (whence, n.e. on A),

and so v4 is the unique solution to the extremal problem (14). Also,
~v4 is C-absolutely continuous, supported by A, and such that

U <1 on all of R,




vA exists <= A is a-thin at infinity. Furthermore, then
o =0 em A1 Teme e, e, o Al

and so v4 is the unique solution to the extremal problem (14). Also,
~v4 is C-absolutely continuous, supported by A, and such that

U4 <1 on all of R,
In addition, when K ranges over €y,

Yk — Y4 vaguely, U 1 U7 pointwise on R",

where v € ET(K) is the (classical) equilibrium measure on K,
uniquely determined by U?% =1 n.e. on K. Thus

I G e et e b2 | oo
If I(ya) < oo, then also

YK — v4 strongly.




Example 1’. Let n = 3 and a = 2. Define A to be a rotation body

A= {xeR?’: 0< 21 < oo, x%+x§<g2(m1)},

where o is given by one of the following three formulae:

e e A= [
o(z1) = exp(—z]) with 7€ (0,1],
o(z1) = exp(—z]) with 7 € (1, 00).

Then:
4 exists <= A is 2-thin at infinity <= (16) or (17) holds.
Moreover,

I(v4a) < 00 <= c«(A) < 00 <= (17) takes place.




Inner a-thinness and a-ultrathinness of a set at infinity

Reminder: A C R" is inner a-thin at infinity if for some y € R",

N CHE (18)

i(n—a)
e gi(n—a
where g € (1,00) and Aj :=AN{z €eR": ¢ < |z —y| < g}

Theorem 10. If ¢ and A; are as above, then (compare with (18))
c(45)

(n—a)

ya € EY exists <= cv(A) < 00 <= ot

J
jen 4

Such A is said to be inner a-ultrathin at infinity.




On the total mass of a-harmonic measure

Theorem 11. For any y € R™ and any A C R,

cAR?) — 1 if A is not o-thin at infinity,
Y | U4(y) otherwise.

Corollary. Thus, for any ¢ € M,

¢ A (R™) = C(R™) if A is not a-thin at infinity,
JUAd¢  otherwise,

which is seen from Th. 11 by the integral representation formula.




On the relation between inner swept and equilibrium measures

Theorem 12. If A C R™ is inner a-thin at infinity, then

E‘;* = (v4)* for any y € R",

where A* := AJ ; is the inverse of A with respect to Sy 1,

while (v4)* is the Kelvin transform of v4, given by

dya(e®) = |z —y|* "dya(z),

x* being the image of x with respect to Sy 1.

For Theorems 9-12, see: ~ Zorii, N., A theory of inner Riesz balayage
and its applications, Bull. Pol. Acad. Sci. Math. 68 (2020), 41-67;

Zorii, N., Harmonic measure, equilibrium measure, and thinness at
infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),
447-472.




Applications to the Gauss variational problem

Assume A =: F' is closed, and the charges living on the conductor F
are also influenced by an external field f : R” — [—o0, 00].

The Gauss variational problem: Does there exist A € £ (F) s. th.

Tl — Meigr}f(F) Iy(p)?

Ip(p) == ||ul|®> +2 [ fdu is referred to as the Gauss functional.

Gauss, C.F., Allgemeine Lehrsitze in Beziehung auf die im
verkehrten Verhiltnisse des Quadrats der Entfernung wirkenden
Anziehungs— und AbstoBungs-Krafte, Werke 5 (1867), 197-244.

Saff, E.B., Totik, V., Logarithmic Potentials with External Fields,
Grundlehren Math. Wiss., 316. Springer, 2024.




e Zorii N., Minimum Riesz energy problems with external fields, J.
Math. Anal. Appl. 526 (2023), article no. 127235, 32 pages.

e Zorii N., Inner Riesz pseudo-balayage and its applications to
minimum energy problems with external fields, Potential Anal. 60
(2024), 1271-1300, arXiv:2301.00385.

e Zorii N., Minimum energy problems with external fields on locally
compact spaces, Constr. Approx. 59 (2024), 385-417.

e Zorii N., On Fuglede’s problem on pseudo-balayage for signed

Radon measures of infinite energy, Anal. Math. Phys. 15:95 (2025).

e Zorii N., Inner Riesz balayage in minimum energy problems with
external fields, Constr. Approx., to appear, arXiv:2306.12788.

e Zorii N., Fractional harmonic measure in minimum Riesz energy
problems with external fields, Potential Anal., to appear.

e Zorii N., On an extension of Fuglede’s theory of pseudo-balayage
and its applications, Expo. Math., to appear.




In the papers listed above, we have shown that the theory of
balayage is particularly useful in the Gauss variational problem.

Here, we limit ourselves to the following example of applications.

Given a closed set @, y € @ is termed a-ultrairregular if [ (57?) < 00,
or equivalently if @ ; is a-ultrathin at infinity (cf. Theorem 10).

Let n=3,a=2, z:=(-1,0,0), and F := AU A, where

A:={zeR: -1<z1<0, z3+z}<exp(-2(z1+1)7P)},
A::{m€R3: 0 <€ @y <€ 69, m§+$§<x1_2}-

Then F is not 2-thin at infinity, for so is its subset A,

while z is 2-irregular for A, whence for F. This yields respectively

efFR™) =¢e,(R") =1, I(El) < .




In the above notations, let moreover f = —U®#. Then

F
Ir() = |ul?—2 / U dyp = 22 / U dyp = u—eF 1% — X2,

the second equality holds, for U e =US ne.on F , whence v-a.e. for
any v € ET(F), while the last equality is due to I(¢f') < oo.

Thus inf,,ce1(p) If(p) is an actual minimum if and only if so is

inf A
ne e —ef|

This is indeed so, for e’ € £1(F), F not being 2-thin at infinity.

Since Suppel’ = F, and so, in any small neighborhood of z there is
some portion of the solution €' € £Y(F), no blow-up appears
between the negative charge —e,, creating an external field, and the
solution e!’, which seems to contradict our physical intuition.




