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Main notions and notations

∙ R𝑛, 𝑛 ⩾ 2, with the Euclidean distance |𝑥− 𝑦|;
∙ 𝐶0(R𝑛) — the set of all 𝜙 ∈ 𝐶(R𝑛) of compact support;

∙ M = M(R𝑛) — the space of all Radon measures 𝜇 on R𝑛 with

the vague topology of pointwise convergence on 𝐶0(R𝑛).

That is, a sequence (𝜇𝑗) ⊂ M is said to converge to 𝜇0 vaguely if

𝜇𝑗(𝜙) → 𝜇0(𝜙) for every 𝜙 ∈ 𝐶0(R𝑛).
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Remainder:

∙ A Radon measure 𝜇 on R𝑛 is thought to be a linear functional

on 𝐶0(R𝑛) that is continuous in the following sense:

for every compact set 𝐾 ⊂ R𝑛, if

Supp𝜙𝑗 , Supp𝜙0 ⊂ 𝐾 and 𝜙𝑗 → 𝜙0 uniformly on 𝐾,

then

𝜇(𝜙𝑗) → 𝜇(𝜙0) as 𝑗 → ∞.
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Main notions and notations

∙ R𝑛, 𝑛 ⩾ 2, with the Euclidean distance |𝑥− 𝑦|;
∙ 𝐶0(R𝑛) — the set of all 𝜙 ∈ 𝐶(R𝑛) of compact support;

∙ M = M(R𝑛) — the space of all Radon measures 𝜇 on R𝑛 with

the vague topology of pointwise convergence on 𝐶0(R𝑛);

∙ M+ = M+(R𝑛) — the convex cone of all positive 𝜇 ∈ M, i.e.

𝜇(𝜙) ⩾ 0 whenever 𝜙 ⩾ 0.

By the Hahn–Jordan decomposition theorem,

M = M+ −M+.
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Main notions and notations

∙ 𝜅𝛼(𝑥, 𝑦) := |𝑥− 𝑦|𝛼−𝑛, 𝛼 ∈ (0, 𝑛), — the Riesz kernel in R𝑛.

∙ For 𝛼 = 2, 𝜅2 is referred to as the Newtonian kernel, and it is

actually the fundamental solution to the Laplace equation in R𝑛:

−∆ * 𝜅2 = 𝐶𝑛,𝛼𝜀, where 𝜀 is the unit Dirac measure.

∙ For 𝛼 ̸= 2, 𝜅𝛼 is associated with the so-called fractional Laplace

equation, a major subject in the probabilistic approach to the

modern potential theory, a point of interest for American,

Chinese, German, Polish, etc. mathematical schools.

See, e.g., the books:

∙ Bliedtner, J., Hansen, W., Potential Theory. An Analytic and

Probabilistic Approach to Balayage. Springer, Berlin, 1986.

∙ Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M.,

Song, R., Vondraček, Z., Potential Analysis of Stable Processes

and its Extensions. Springer, Berlin, 2009.
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Main notions and notations

∙ 𝜅𝛼(𝑥, 𝑦) := |𝑥− 𝑦|𝛼−𝑛, 𝛼 ∈ (0, 𝑛), — the Riesz kernel in R𝑛.

∙ The (Riesz) potential of 𝜇 ∈ M at 𝑥 ∈ R𝑛 is given by means of

𝑈𝜇(𝑥) :=

∫︁
𝜅𝛼(𝑥, 𝑦) 𝑑𝜇(𝑦),

provided the value on the right is well defined in [−∞,+∞].

∙ The mutual energy of 𝜇, 𝜈 ∈ M is defined by

𝐼(𝜇, 𝜈) :=

∫︁
𝑈𝜇 𝑑𝜈 =

∫︁
𝜅𝛼(𝑥, 𝑦) 𝑑(𝜇⊗ 𝜈)(𝑥, 𝑦).

For 𝜇 = 𝜈, 𝐼(𝜇, 𝜇) =: 𝐼(𝜇) is termed the energy of 𝜇 ∈ M.

For integration w. resp. to 𝜇 ∈ M, we refer to Bourbaki’s books.
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Crucial facts

∙ 𝜅𝛼 is strictly positive definite, which means that 𝐼(𝜇) ⩾ 0 for

every (signed) 𝜇 ∈ M, and moreover 𝐼(𝜇) = 0 only for 𝜇 = 0
(M. Riesz, 1938). Denote ℰ := ℰ(R𝑛) :=

{︀
𝜇 ∈ M : 𝐼(𝜇) < ∞

}︀
.

∙ Therefore, ℰ is a pre-Hilbert space with the inner product

⟨𝜇, 𝜈⟩ := 𝐼(𝜇, 𝜈) and the energy norm ‖𝜇‖ :=
√︀
𝐼(𝜇). The

topology on ℰ defined by means of ‖ · ‖ is said to be strong.
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Crucial facts

∙ ℰ :=
{︀
𝜇 ∈ M : 𝐼(𝜇) < ∞

}︀
is a pre-Hilbert space with the inner

product ⟨𝜇, 𝜈⟩ := 𝐼(𝜇, 𝜈) and the energy norm ‖𝜇‖ :=
√︀
𝐼(𝜇).

The topology on ℰ defined by means of ‖ · ‖ is said to be strong.

∙ By J. Deny (1950), ℰ+ := ℰ+(R𝑛) := ℰ ∩M+ is complete in the

induced strong topology, and moreover the strong topology on

ℰ+ is finer than the vague topology. By B. Fuglede (1960), a

kernel possessing these two properies, is said to be perfect.

Conclusion. Thus, if a sequence (a net) (𝜇𝑗) ⊂ ℰ+ is strongly Cauchy,

then (𝜇𝑗) converges both strongly and vaguely to one and the same

limit measure 𝜇0 ∈ ℰ+, the strong topology on ℰ as well as the vague

topology on M being Hausdorff.
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Crucial facts

∙ ℰ :=
{︀
𝜇 ∈ M : 𝐼(𝜇) < ∞

}︀
is a pre-Hilbert space with the inner

product ⟨𝜇, 𝜈⟩ := 𝐼(𝜇, 𝜈) and the energy norm ‖𝜇‖ :=
√︀
𝐼(𝜇).

The topology on ℰ defined by means of ‖ · ‖ is said to be strong.

∙ By J. Deny (1950), ℰ+ := ℰ+(R𝑛) := ℰ ∩M+ is complete in the

induced strong topology, and moreover the strong topology on

ℰ+ is finer than the vague topology. By B. Fuglede (1960), a

kernel possessing these two properies, is said to be perfect.

∙ Note that the whole pre-Hilbert space ℰ is strongly incomplete;

see a counterexample by H. Cartan (1945), pertaining to the

Newtonian kernel. A quite general criterion ensuring the strong

completeness of convex subsets of ℰ , was found by N. Zorii

(Potential Anal., 2013), and this was done even for infinite

dimensional vector Radon measures on a locally compact space.
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Inner and outer capacities of sets 𝐴 ⊂ R𝑛

For any 𝐴, let M+(𝐴) consist of all 𝜇 ∈ M+ concentrated on 𝐴,
which means that 𝐴𝑐 := R𝑛 ∖𝐴 is 𝜇-negligible, i.e. 𝜇*(𝐴𝑐) = 0;
or equivalently that 𝐴 is 𝜇-measurable and 𝜇 = 𝜇|𝐴.

For closed 𝐴 =: 𝐹 , M+(𝐹 ) is the class of 𝜇 ∈ M+ with Supp𝜇 ⊂ 𝐹 ;
whereas this is not the case otherwise.

Example. The unit mass, uniformly distributed over the open unit

ball 𝐵0,1, belongs to M+(𝐵0,1), whereas its support equals 𝐵0,1.

Henceforth, the following notations will often be in use:

M1(𝐴) :=
{︀
𝜇 ∈ M+(𝐴) : 𝜇(𝐴) = 1

}︀
,

ℰ+(𝐴) := ℰ ∩M+(𝐴),

ℰ1(𝐴) := ℰ ∩M1(𝐴).
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For any 𝐴 ⊂ R𝑛, the inner (Riesz) capacity 𝑐*(𝐴) is defined by

1/𝑐*(𝐴) := inf
𝜇∈ℰ1(𝐴)

𝐼(𝜇), (1)

while the outer 𝑐*(𝐴) by

𝑐*(𝐴) := inf
𝐺⊃𝐴

𝑐*(𝐺)
(︀
𝐺 open

)︀
. (2)

If 𝑐*(𝐴) = 𝑐*(𝐴), 𝑐(𝐴) := 𝑐*(𝐴) is simply termed the capacity of 𝐴;
this occurs if 𝐴 is Borel (see B. Fuglede, 1960 or Landkof’s book).

It follows easily from (1) that (compare with (2))

𝑐*(𝐴) = sup
𝐾⊂𝐴

𝑐(𝐾)
(︀
𝐾 compact

)︀
,

or equivalently 𝑐(𝐾) ↑ 𝑐*(𝐴), where 𝐾 ranges over the upward

partially ordered family C𝐴 of all compact subsets of 𝐴.
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Negligible (exceptional) sets

A proposition 𝑃 (𝑥), 𝑥 ∈ R𝑛, is said to hold quasi-everywhere (q.e.)

on 𝐴 ⊂ R𝑛 if 𝑐*(𝐸) = 0, where 𝐸 :=
{︀
𝑥 ∈ 𝐴 : 𝑃 (𝑥) fails

}︀
.

Replacing here 𝑐*(𝐸) = 0 by 𝑐*(𝐸) = 0 we arrive at the concept of

nearly everywhere (n.e.) on 𝐴.

If 𝑃 (𝑥) q.e. on 𝐴, then it also does n.e. on 𝐴, for 𝑐*(𝐸)⩾ 𝑐*(𝐸).
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General requirement on 𝜇 ∈ M+

𝑈𝜇, 𝜇 ∈ M+, is always meant to be not identically infinite on R𝑛

⇕∫︁
|𝑥|⩾1

𝑑𝜇(𝑥)

|𝑥|𝑛−𝛼
< ∞

⇕

𝑈𝜇 < ∞ q.e. on R𝑛

⇕

𝑈𝜈 = 𝑈𝜈+ − 𝑈𝜈− , 𝜈 ∈ M, is well-defined and finite q.e. on R𝑛

⇑

𝜈 is bounded, i.e. |𝜈|(R𝑛) = 𝜈+(R𝑛) + 𝜈−(R𝑛) < ∞; or 𝜈 ∈ ℰ
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Fundamental problems

Inner balayage problem. For any 𝜁 ∈ M+ and any 𝐴 ⊂ R𝑛, does

there exist 𝜁𝐴 ∈ M+(𝐴) such that 𝑈 𝜁𝐴 = 𝑈 𝜁 n.e. on 𝐴 ?

Such 𝜁𝐴 (if it ∃!) is termed the inner balayage of 𝜁 to 𝐴.

Inner equilibrium problem. For any 𝐴 ⊂ R𝑛, does there exist

𝛾𝐴 ∈ M+(𝐴) such that 𝑈𝛾𝐴 = 1 n.e. on 𝐴 ?

Such 𝛾𝐴 (if it ∃!) is termed the inner equilibrium measure for 𝐴.

These two problems will be shown to be deeply related to one

another via the Kelvin transformation. We also intend to apply the

concept of inner balayage to the inner Gauss variational problem, the

problem of minimizing 𝐼(𝜇)− 2
∫︀
𝑈 𝜁 𝑑𝜇 when 𝜇 ranges over ℰ1(𝐴). A

generalization of the results obtained to suitable function kernels on

a locally compact space is also planned to be discussed.
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Remarks

∙ For 𝛼 = 2, these problems were solved by Cartan (1946). However,

his methods are not applicable for 𝛼 ̸= 2, since the specific features
of Newtonian potentials, based on harmonicity, then fail to hold.

∙ The balayage problem is deeply related to the Dirichlet problem. In

fact, let 𝛼 = 2, 𝐷 ⊂ R𝑛 be a bounded (open, connected) domain with

Lipschitz boundary 𝜕𝐷, and 𝜀𝑧 be the unit Dirac measure at 𝑧 ∈ 𝐷.

Then for any 𝑓 ∈ 𝐶(𝜕𝐷),

ℎ𝑓 (𝑧) :=

∫︁
𝑓(𝑥) 𝑑𝜀𝜕𝐷𝑧 (𝑥) =

∫︁
𝑓(𝑥) 𝑑𝜀𝐷

𝑐

𝑧 (𝑥)

is harmonic in 𝐷, and moreover

lim
𝑧→𝑥∈𝜕𝐷

ℎ𝑓 (𝑧) = 𝑓(𝑥).

∙ The latter remark remains valid for 𝛼 ∈ (0, 2) with "a harmonic

function" replaced by the so-called "an 𝛼-harmonic function".
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A permanent requirement

From now on, let 0 < 𝛼 ⩽ 2; for if not, the balayage and equilibrium

problems are both unsolvable — even for 𝐵0,1, which is caused by the

fact that for 𝛼 > 2, 𝑈𝜇, where 𝜇 ∈ M+, is superharmonic on R𝑛.

Then the two maximum principles are fulfilled, often referred to as

the first and the second maximum principles, respectively:

Frostman’s maximum principle. For any 𝜇 ∈ M+ such that 𝑈𝜇 ⩽ 1
on Supp𝜇, the same inequality holds true on all of R𝑛.

The domination principle. For any 𝜈 ∈ ℰ+ and 𝜇 ∈ M+ with

𝑈𝜈 ⩽ 𝑈𝜇 on Supp 𝜈, the same inequality holds true on all of R𝑛.
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Let ℰ ′(𝐴) be the closure of ℰ+(𝐴) in the strong topology on ℰ . Also,

Γ𝐴,𝜁 :=
{︀
𝜇 ∈ M+ : 𝑈𝜇 ⩾ 𝑈 𝜁 n.e. on 𝐴

}︀
. (3)

Theorem 1. For any 𝜁 := 𝜎 ∈ ℰ+, there is precisely one 𝜎𝐴 ∈ ℰ ′(𝐴),
called the inner balayage of 𝜎 to 𝐴, given by any one of (i)–(iii).

(i) There is the unique 𝜎𝐴 ∈ ℰ ′(𝐴) s. th.

‖𝜎 − 𝜎𝐴‖ = min
𝜇∈ℰ ′(𝐴)

‖𝜎 − 𝜇‖.

(ii) There is the unique 𝜎𝐴 ∈ ℰ ′(𝐴) s. th.

𝑈𝜎𝐴
= 𝑈𝜎 n.e. on 𝐴. (4)

(iii) 𝜎𝐴 is the unique solution to the problem of minimizing the

energy over the class Γ𝐴,𝜎, cf. (3). That is, 𝜎
𝐴 ∈ Γ𝐴,𝜎 and

𝐼(𝜎𝐴) = min
𝜇∈Γ𝐴,𝜎

𝐼(𝜇).
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Remarks

∙ Equality (4) can be refined as follows:

𝑈𝜎𝐴
= 𝑈𝜎 on 𝐴 ∖𝐴𝑟, (5)

where 𝐴𝑟 is the set of all inner 𝛼-regular points for 𝐴. That is,

𝑦 ∈ 𝐴𝑟 ⇐⇒
∑︁
𝑗∈N

𝑐*(𝐴𝑗)

𝑞𝑗(𝑛−𝛼)
= ∞,

where 𝑞 ∈ (0, 1) and 𝐴𝑗 := 𝐴 ∩
{︀
𝑥 ∈ R𝑛 : 𝑞𝑗+1 ⩽ |𝑥− 𝑦| < 𝑞𝑗

}︀
. If

𝐴𝑖 := 𝐴 ∖𝐴𝑟 denotes the set of all inner 𝛼-irregular points for 𝐴,
then, by the Kellog–Evans type theorem,

𝑐*(𝐴 ∩𝐴𝑖) = 0,

whence (5) is finer than (4), indeed.
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Remarks

∙ If 𝐴 =: 𝐹 is closed, then M+(𝐹 ) is vaguely closed (Bourbaki),

which implies, by use of the perfectness of the Riesz kernel 𝜅𝛼, the
strong closedness of the class ℰ+(𝐹 ). Thus

ℰ ′(𝐹 ) = ℰ+(𝐹 ),

whence the above (ii) can be specified as follows:

(ii′) For any 𝜎 ∈ ℰ+ and any closed 𝐹 , the inner balayage 𝜎𝐹 is

uniquely determined within ℰ+(𝐹 ) by the equality

𝑈𝜎𝐹
= 𝑈𝜎 n.e. on 𝐹.
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Theorem 2. For any 𝜁 ∈ M+, there is precisely one 𝜁𝐴 ∈ M+, called

the inner balayage of 𝜁 to 𝐴, determined by any one of (i1)–(iii1):

(i1) 𝜁𝐴 is the unique solution to the problem of minimizing 𝑈𝜇 over

the class Γ𝐴,𝜁 , that is, 𝜁
𝐴 ∈ Γ𝐴,𝜁 and

𝑈 𝜁𝐴 = min
𝜇∈Γ𝐴,𝜁

𝑈𝜇 on R𝑛.

(ii1) There is the unique 𝜁𝐴 ∈ M+ meeting the symmetry relation

𝐼(𝜁𝐴, 𝜎) = 𝐼(𝜁, 𝜎𝐴) for all 𝜎 ∈ ℰ+,

where 𝜎𝐴 is uniquely determined by means of Theorem 1.

(iii1) There is the unique 𝜁𝐴 ∈ M+ meeting either of the two relations

𝜎𝐴
𝑗 → 𝜁𝐴 vaguely in M+, 𝑈𝜎𝐴

𝑗 ↑ 𝑈 𝜁𝐴 pointwise on R𝑛,

where (𝜎𝑗) ⊂ ℰ+ is an arbitrary sequence such that

𝑈𝜎𝑗 ↑ 𝑈 𝜁 pointwise on R𝑛. (6)
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Remarks

∙ A sequence (𝜎𝑗) ⊂ ℰ+ meeting (6) does exist. One can take e.g.

𝑈𝜎𝑗 (𝑥) := min
{︀
𝑈 𝜁(𝑥), 𝑗𝑈𝛾(𝑥)

}︀
, 𝑥 ∈ R𝑛,

where 𝛾 ∈ ℰ+ is a fixed bounded measure.

∙ Similarly as it was in the case of 𝜎 ∈ ℰ+, for 𝜁 ∈ M+, we have

𝑈 𝜁𝐴(𝑥) = 𝑈 𝜁(𝑥) for all 𝑥 ∈ 𝐴𝑟 (whence, n.e. on 𝐴). (7)

However, this no longer determines 𝜁𝐴 uniquely — even for closed 𝐴,
which can be seen by taking 𝜁 := 𝜀𝑧 with 𝑧 ∈ 𝐴𝑖. (See below for a

detailed explanation of this phenomenon.)
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Some further properties of the inner balayage 𝜁𝐴

Along with equality (7), we have:

(a) 𝑈 𝜁𝐴 ⩽ 𝑈 𝜁 on all of R𝑛.

(b) 𝜁𝐴(R𝑛) ⩽ 𝜁(R𝑛) (by Deny’s principle of positivity of mass).

(c) 𝜁𝐴 = (𝜁𝑄)𝐴 for any 𝑄 ⊃ 𝐴 (balayage "with a rest").

(d) 𝜁𝐴 =
∫︀
𝜀𝐴𝑧 𝑑𝜁 (the integral representation formula).

𝜀𝐴𝑧 is referred to as the inner 𝛼-harmonic measure of 𝐴 at 𝑧. Actually,

𝜀𝐴𝑧

{︂
= 𝜀𝑧 if 𝑧 ∈ 𝐴𝑟,
is 𝐶-absolutely continuous otherwise,

(8)

the latter means that 𝜀𝐴𝑧 (𝐸) = 0 for any 𝐸 ⊂ R𝑛 with 𝑐*(𝐸) = 0.
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Why 𝑈 𝜁𝐴 = 𝑈 𝜁 n.e. on 𝐴 does not determine 𝜁𝐴 uniquely ?

(Unless, of course, 𝜁 ∈ ℰ+ while 𝐴 is closed.)

Let 𝐴 =: 𝐹 be closed, 𝜁 := 𝜀𝑧, where 𝑧 ∈ 𝐹 𝑖. Then according to (7),

𝑈 𝜀𝐹𝑧 = 𝑈 𝜀𝑧 n.e. on 𝐹 , (9)

while by the latter formula in (8), 𝜀𝐹𝑧 ∈ M+(𝐹 ) is 𝐶-abs. continuous.
Noting that (9) also holds for 𝜀𝑧 ∈ M+(𝐹 ) in place of 𝜀𝐹𝑧 , whereas 𝜀𝑧
is certainly not 𝐶-absolutely continuous, we arrive at the claim.

Conclusion. Thus the definition of 𝜁𝐹 as a measure supported by 𝐹
and s. th. 𝑈 𝜁𝐹 = 𝑈 𝜁 n.e. on 𝐹 is incorrect. Such a wrong definition is

spread broadly in papers where potential theory is used as a tool.
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A description of Supp 𝜁𝐹

For any closed 𝐹 ⊂ R𝑛, let 𝐹 denote the reduced kernel of 𝐹 , that is,
the set of all 𝑥 ∈ 𝐹 such that 𝑐(𝐵𝑥,𝑟 ∩ 𝐹 ) > 0 for all 𝑟 > 0.

Theorem 3. Assume that 𝛼 < 2. Then for any nonzero 𝜁 ∈ M+,

Supp 𝜁𝐹 = 𝐹 .

Proof. This follows from the integral representation for 𝜁𝐹 in view of

the relationship between the swept and equilibrium measures, to be

discussed below.
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Convergence theorems for monotone families of sets

Theorem 4. For any 𝐴 and any 𝜁 ∈ M+,

𝜁𝐾 → 𝜁𝐴 vaguely,

𝑈 𝜁𝐾 ↑ 𝑈 𝜁𝐴 pointwise on R𝑛,

𝐾 ranging over the upward partially ordered family of all compact

subsets of 𝐴. If moreover 𝜁 ∈ ℰ+, then also 𝜁𝐾 → 𝜁𝐴 strongly.

Theorem 5. If (𝐹𝑠) is a lower partially ordered family of closed sets

with the intersection 𝐹 , then for any 𝜁 ∈ M+,

𝜁𝐹𝑠 → 𝜁𝐹 vaguely.

If moreover 𝜁 ∈ ℰ+, then also

𝜁𝐹𝑠 → 𝜁𝐹 strongly,

𝑈 𝜁𝐹𝑠 ↓ 𝑈 𝜁𝐹 pointwise q.e. on R𝑛.
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The theory of inner Riesz balayage as well as its generalization to

any perfect kernel on a locally compact space 𝑋, satisfying the

domination principle, and any 𝜎 ∈ ℰ+(𝑋) and 𝐴 ⊂ 𝑋 is given in:

∙ Zorii, N., A theory of inner Riesz balayage and its applications,

Bull. Pol. Acad. Sci. Math. 68 (2020), 41–67, arXiv:1910.09946.

∙ Zorii, N., Harmonic measure, equilibrium measure, and thinness at

infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),

447–472, arXiv:2006.12364.

∙ Zorii, N., Balayage of measures on a locally compact space, Anal.

Math. 48 (2022), 249–277, arXiv:2010.07199.

∙ Zorii, N., On the theory of capacities on locally compact spaces

and its interaction with the theory of balayage, Potential Anal. 59

(2023), 1345–1379, arXiv:2202.01996.

∙ Zorii, N., On the theory of balayage on locally compact spaces,

Potential Anal. 59 (2023), 1727–1744, arXiv:2108.13224.

26/42



Inner 𝛼-thinness of a set at infinity

𝐴 ⊂ R𝑛 is inner 𝛼-thin at infinity if for some (equiv., every) 𝑦 ∈ R𝑛,∑︁
𝑗∈N

𝑐*(𝐴𝑗)

𝑞𝑗(𝑛−𝛼)
< ∞,

where 𝑞 ∈ (1,∞) and 𝐴𝑗 := 𝐴 ∩
{︀
𝑥 ∈ R𝑛 : 𝑞𝑗 ⩽ |𝑥− 𝑦| < 𝑞𝑗+1

}︀
;

or alternatively, if for some (equivalently, every) 𝑦 ∈ R𝑛,

𝑦 ∈ (𝐴*
𝑦)

𝑖,

𝐴*
𝑦 being the inverse of 𝐴 with respect to 𝑆𝑦,1.

Remark. A set 𝐴 is not inner 𝛼-thin at at infinity ⇒ 𝑐*(𝐴) = ∞.

⇍
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Example 1. Let 𝑛 = 3 and 𝛼 = 2. Define 𝐴 to be a rotation body

𝐴 :=
{︀
𝑥 ∈ R3 : 0 ⩽ 𝑥1 < ∞, 𝑥22 + 𝑥23 ⩽ 𝜚2(𝑥1)

}︀
,

where 𝜚 is given by one of the following three formulae:

𝜚(𝑥1) = 𝑥−𝜏
1 with 𝜏 ∈ [0,∞), (10)

𝜚(𝑥1) = exp(−𝑥𝜏1) with 𝜏 ∈ (0, 1], (11)

𝜚(𝑥1) = exp(−𝑥𝜏1) with 𝜏 ∈ (1,∞). (12)

Then 𝐴 is 2-thin at infinity ⇐⇒ (11) or (12) holds. Moreover,

𝑐(𝐴) < ∞ ⇐⇒ (12) takes place.
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𝐴 :=
{︀
0 ⩽ 𝑥1 < ∞, 𝑥22 + 𝑥23 ⩽ 𝜚2(𝑥1)

}︀
with 𝜚(𝑥1) = 𝑥−1

1
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𝐴 :=
{︀
0 ⩽ 𝑥1 < ∞, 𝑥22 + 𝑥23 ⩽ 𝜚2(𝑥1)

}︀
with 𝜚(𝑥1) = exp(−𝑥1)
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The concept of inner 𝛼-thinness at infinity serves as an efficient tool

in applications of balayage theory. This is caused, in particular, by:

Theorem 6. A set 𝐴 is not inner 𝛼-thin at infinity if and only if

𝜁𝐴(R𝑛)= 𝜁(R𝑛) for every 𝜁 ∈ M+.

Reminder: In general, 𝜁𝐴(R𝑛) ⩽ 𝜁(R𝑛) for any 𝜁 and any 𝐴.

Unless 𝛼 < 2, assume in Theorem 7 that 𝐴
𝑐
is connected.

Theorem 7. If 𝐴 is inner 𝛼-thin at infinity, then

𝜁𝐴(R𝑛)<𝜁(R𝑛) for every 𝜁 ∈ M+(𝐴
𝑐
).

Theorems 6, 7 were proved in:

∙ Zorii, N., Harmonic measure, equilibrium measure, and thinness at

infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),

447–472, arXiv:2006.12364.

31/42



A generalization of Deny’s principle of positivity of mass

Preceding theorem. For any 𝜇, 𝜈 ∈ M+ s. th. 𝑈𝜇 ⩽ 𝑈𝜈 on all of R𝑛,

𝜇(R𝑛) ⩽ 𝜈(R𝑛). (13)

See: ∙ Fuglede, B., Zorii, N., Green kernels associated with Riesz

kernels, Ann. Acad. Sci. Fenn. Math. 43 (2018), 121–145.

Theorem 8. Given 𝜇, 𝜈 ∈ M+, assume there is 𝐴 which is not inner

𝛼-thin at infinity and s. th. 𝑈𝜇 ⩽ 𝑈𝜈 n.e. on 𝐴. Then (13) still holds.

See: ∙ Zorii N., On the role of the point at infinity in Deny’s

principle of positivity of mass for Riesz potentials, Anal. Math. Phys.

13 (2023), article no. 38, 18 pages, arXiv:2202.12418,

and a recent extension of Th. 8 to 𝛼-Green potentials: ∙ Zorii N.,

Balayage, equilibrium measure, and Deny’s principle of positivity of

mass for 𝛼-Green potentials, Anal. Math. Phys. 15:3 (2025), 20 pp.
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An inner Riesz equilibrium measure

𝛾𝐴 ∈ M+ is termed an inner equilibrium measure for a given set 𝐴 if

𝑈𝛾𝐴 = inf
𝜇∈Γ𝐴

𝑈𝜇 on all of R𝑛, (14)

where Γ𝐴 :=
{︀
𝜇 ∈ M+ : 𝑈𝜇 ⩾ 1 n.e. on 𝐴

}︀
.

Theorem 9. 𝛾𝐴 exists ⇐⇒ 𝐴 is 𝛼-thin at infinity. Furthermore, then

𝑈𝛾𝐴 = 1 on 𝐴𝑟 (whence, n.e. on 𝐴),

and so 𝛾𝐴 is the unique solution to the extremal problem (14). Also,

𝛾𝐴 is 𝐶-absolutely continuous, supported by 𝐴, and such that

𝑈𝛾𝐴 ⩽ 1 on all of R𝑛.
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Theorem 9. 𝛾𝐴 exists ⇐⇒ 𝐴 is 𝛼-thin at infinity. Furthermore, then

𝑈𝛾𝐴 = 1 on 𝐴𝑟 (whence, n.e. on 𝐴),

and so 𝛾𝐴 is the unique solution to the extremal problem (14). Also,

𝛾𝐴 is 𝐶-absolutely continuous, supported by 𝐴, and such that

𝑈𝛾𝐴 ⩽ 1 on all of R𝑛.

In addition, when 𝐾 ranges over C𝐴,

𝛾𝐾 → 𝛾𝐴 vaguely, 𝑈𝛾𝐾 ↑ 𝑈𝛾𝐴 pointwise on R𝑛,

where 𝛾𝐾 ∈ ℰ+(𝐾) is the (classical) equilibrium measure on 𝐾,

uniquely determined by 𝑈𝛾𝐾 = 1 n.e. on 𝐾. Thus

𝐼(𝛾𝐴) < ∞ ⇐⇒ 𝑐*(𝐴) < ∞.

If 𝐼(𝛾𝐴) < ∞, then also

𝛾𝐾 → 𝛾𝐴 strongly.
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Example 1′. Let 𝑛 = 3 and 𝛼 = 2. Define 𝐴 to be a rotation body

𝐴 :=
{︀
𝑥 ∈ R3 : 0 ⩽ 𝑥1 < ∞, 𝑥22 + 𝑥23 ⩽ 𝜚2(𝑥1)

}︀
,

where 𝜚 is given by one of the following three formulae:

𝜚(𝑥1) = 𝑥−𝜏
1 with 𝜏 ∈ [0,∞), (15)

𝜚(𝑥1) = exp(−𝑥𝜏1) with 𝜏 ∈ (0, 1], (16)

𝜚(𝑥1) = exp(−𝑥𝜏1) with 𝜏 ∈ (1,∞). (17)

Then:

𝛾𝐴 exists ⇐⇒ 𝐴 is 2-thin at infinity ⇐⇒ (16) or (17) holds.

Moreover,

𝐼(𝛾𝐴) < ∞ ⇐⇒ 𝑐*(𝐴) < ∞ ⇐⇒ (17) takes place.
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Inner 𝛼-thinness and 𝛼-ultrathinness of a set at infinity

Reminder: 𝐴 ⊂ R𝑛 is inner 𝛼-thin at infinity if for some 𝑦 ∈ R𝑛,∑︁
𝑗∈N

𝑐*(𝐴𝑗)

𝑞𝑗(𝑛−𝛼)
< ∞, (18)

where 𝑞 ∈ (1,∞) and 𝐴𝑗 := 𝐴 ∩
{︀
𝑥 ∈ R𝑛 : 𝑞𝑗 ⩽ |𝑥− 𝑦| < 𝑞𝑗+1

}︀
.

Theorem 10. If 𝑞 and 𝐴𝑗 are as above, then (compare with (18))

𝛾𝐴 ∈ ℰ+ exists ⇐⇒ 𝑐*(𝐴) < ∞ ⇐⇒
∑︁
𝑗∈N

𝑐*(𝐴𝑗)

𝑞 2𝑗(𝑛−𝛼)
< ∞.

Such 𝐴 is said to be inner 𝛼-ultrathin at infinity.
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On the total mass of 𝛼-harmonic measure

Theorem 11. For any 𝑦 ∈ R𝑛 and any 𝐴 ⊂ R𝑛,

𝜀𝐴𝑦 (R𝑛) =

{︂
1 if 𝐴 is not 𝛼-thin at infinity,

𝑈𝛾𝐴(𝑦) otherwise.

Corollary. Thus, for any 𝜁 ∈ M+,

𝜁𝐴(R𝑛) =

{︂
𝜁(R𝑛) if 𝐴 is not 𝛼-thin at infinity,∫︀
𝑈𝛾𝐴 𝑑𝜁 otherwise,

which is seen from Th. 11 by the integral representation formula.
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On the relation between inner swept and equilibrium measures

Theorem 12. If 𝐴 ⊂ R𝑛 is inner 𝛼-thin at infinity, then

𝜀𝐴
*

𝑦 = (𝛾𝐴)
* for any 𝑦 ∈ R𝑛,

where 𝐴* := 𝐴*
𝑦,1 is the inverse of 𝐴 with respect to 𝑆𝑦,1,

while (𝛾𝐴)
* is the Kelvin transform of 𝛾𝐴, given by

𝑑𝛾*𝐴(𝑥
*) := |𝑥− 𝑦|𝛼−𝑛𝑑𝛾𝐴(𝑥),

𝑥* being the image of 𝑥 with respect to 𝑆𝑦,1.

For Theorems 9–12, see: ∙ Zorii, N., A theory of inner Riesz balayage

and its applications, Bull. Pol. Acad. Sci. Math. 68 (2020), 41–67;

∙ Zorii, N., Harmonic measure, equilibrium measure, and thinness at

infinity in the theory of Riesz potentials. Potential Anal. 57 (2022),

447–472.
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Applications to the Gauss variational problem

Assume 𝐴 =: 𝐹 is closed, and the charges living on the conductor 𝐹
are also influenced by an external field 𝑓 : R𝑛 → [−∞,∞].

The Gauss variational problem: Does there exist 𝜆 ∈ ℰ1(𝐹 ) s. th.

𝐼𝑓 (𝜆) = inf
𝜇∈ℰ1(𝐹 )

𝐼𝑓 (𝜇) ?

𝐼𝑓 (𝜇) := ‖𝜇‖2 + 2
∫︀
𝑓 𝑑𝜇 is referred to as the Gauss functional.

∙ Gauss, C.F., Allgemeine Lehrsätze in Beziehung auf die im

verkehrten Verhältnisse des Quadrats der Entfernung wirkenden

Anziehungs– und Abstoßungs–Kräfte, Werke 5 (1867), 197–244.

∙ Saff, E.B., Totik, V., Logarithmic Potentials with External Fields,

Grundlehren Math. Wiss., 316. Springer, 2024.
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∙ Zorii N., Minimum Riesz energy problems with external fields, J.

Math. Anal. Appl. 526 (2023), article no. 127235, 32 pages.

∙ Zorii N., Inner Riesz pseudo-balayage and its applications to

minimum energy problems with external fields, Potential Anal. 60

(2024), 1271–1300, arXiv:2301.00385.

∙ Zorii N., Minimum energy problems with external fields on locally

compact spaces, Constr. Approx. 59 (2024), 385–417.

∙ Zorii N., On Fuglede’s problem on pseudo-balayage for signed

Radon measures of infinite energy, Anal. Math. Phys. 15:95 (2025).

∙ Zorii N., Inner Riesz balayage in minimum energy problems with

external fields, Constr. Approx., to appear, arXiv:2306.12788.

∙ Zorii N., Fractional harmonic measure in minimum Riesz energy

problems with external fields, Potential Anal., to appear.

∙ Zorii N., On an extension of Fuglede’s theory of pseudo-balayage

and its applications, Expo. Math., to appear.
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In the papers listed above, we have shown that the theory of

balayage is particularly useful in the Gauss variational problem.

Here, we limit ourselves to the following example of applications.

Given a closed set 𝑄, 𝑦 ∈ 𝑄 is termed 𝛼-ultrairregular if 𝐼(𝜀𝑄𝑦 ) < ∞,

or equivalently if 𝑄*
𝑦,1 is 𝛼-ultrathin at infinity (cf. Theorem 10).

Let 𝑛 = 3, 𝛼 = 2, 𝑧 := (−1, 0, 0), and 𝐹 := ∆ ∪𝐴, where

∆ :=
{︀
𝑥 ∈ R3 : −1 ⩽ 𝑥1 ⩽ 0, 𝑥22 + 𝑥23 ⩽ exp

(︀
−2(𝑥1 + 1)−𝛽

)︀}︀
,

𝐴 :=
{︀
𝑥 ∈ R3 : 0 ⩽ 𝑥1 < ∞, 𝑥22 + 𝑥23 ⩽ 𝑥−2

1

}︀
.

Then 𝐹 is not 2-thin at infinity, for so is its subset 𝐴,

while 𝑧 is 2-irregular for ∆, whence for 𝐹 . This yields respectively

𝜀𝐹𝑧 (R𝑛) = 𝜀𝑧(R𝑛) = 1, 𝐼(𝜀𝐹𝑧 ) < ∞.
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In the above notations, let moreover 𝑓 = −𝑈 𝜀𝑧 . Then

𝐼𝑓 (𝜇) = ‖𝜇‖2−2

∫︁
𝑈 𝜀𝑧 𝑑𝜇 = ‖𝜇‖2−2

∫︁
𝑈 𝜀𝐹𝑧 𝑑𝜇 = ‖𝜇−𝜀𝐹𝑧 ‖2−‖𝜀𝐹𝑧 ‖2,

the second equality holds, for 𝑈 𝜀𝐹𝑧 = 𝑈 𝜀𝑧 n.e. on 𝐹 , whence 𝜈-a.e. for
any 𝜈 ∈ ℰ+(𝐹 ), while the last equality is due to 𝐼(𝜀𝐹𝑧 ) < ∞.

Thus inf𝜇∈ℰ1(𝐹 ) 𝐼𝑓 (𝜇) is an actual minimum if and only if so is

inf
𝜇∈ℰ1(𝐹 )

‖𝜇− 𝜀𝐹𝑧 ‖2.

This is indeed so, for 𝜀𝐹𝑧 ∈ ℰ1(𝐹 ), 𝐹 not being 2-thin at infinity.

Since Supp 𝜀𝐹𝑧 = 𝜕𝐹 , and so, in any small neighborhood of 𝑧 there is

some portion of the solution 𝜀𝐹𝑧 ∈ ℰ1(𝐹 ), no blow-up appears

between the negative charge −𝜀𝑧, creating an external field, and the

solution 𝜀𝐹𝑧 , which seems to contradict our physical intuition.
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