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У доповiдi представлено огляд результатiв дослiдження лiївських симетрiй рiвнянь типу
Кавахари та їх рiзноманiтних узагальнень. Рiвняння Кавахари

𝑢𝑡 + 𝛼𝑢𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 + 𝜎𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (1)

де 𝛼, 𝛽 та 𝜎 — ненульовi сталi, є класичною моделлю теорiї солiтонiв [4]. У звичайному
сенсi, солiтоннi хвилi — це нелiнiйнi хвилi постiйної форми, якi швидко (зазвичай експо-
ненцiйно) спадають у своїх хвостових областях. Однак за критичних умов у дисперсiйних
системах вiдбувається несподiване зростання слабо-нелокальних солiтонних хвиль (напри-
клад, хвилi з поверхневим натягом). Така хвиля складається з центральної частини, яка
подiбна до центральної частини класичних солiтонних хвиль, i коливних хвостiв з ненульо-
вою сталою амплiтудою, якi простягаються нескiнченно далеко вiд центральної частини.
Щоб з’ясувати й описати властивостi цих хвиль, Т. Кавахара запропонував узагальненi не-
лiнiйнi дисперсiйнi рiвняння, якi мають вигляд рiвняння Кортевега–де Фрiза з додатковим
членом з п’ятою похiдною, тобто рiвняння (1).

Узагальненi моделi зi сталими коефiцiєнтами, пов’язанi з рiвнянням Кавахари, з’явилися
пiзнiше (див., зокрема, [7,18]). Наприклад, довгi хвилi на мiлкiй водi пiд кригою моделюю-
ться рiвнянням 𝑢𝑡 + 𝑢𝑥 +𝛼𝑢𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 + 𝜎𝑢𝑥𝑥𝑥𝑥𝑥 = 0. Це рiвняння зводиться до класичного
рiвняння Кавахари за допомогою простих замiн змiнних: 𝑥̃ = 𝑥−𝑡 (𝑡 i 𝑢 не перетворюються)
або 𝑢̃ = 1+𝛼𝑢 (𝑡 i 𝑥 не перетворюються). Наскiльки нам вiдомо, лiївськi симетрiї рiвняння
Кавахари (1) вперше було наведено в роботi [2]. Цi результати було отримано й у роботi [6],
де також було знайдено лiївськi симетрiї модифiкованого рiвняння Кавахари

𝑢𝑡 + 𝛼𝑢2𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 + 𝜎𝑢𝑥𝑥𝑥𝑥𝑥 = 0,

де 𝛼, 𝛽 та 𝜎 — ненульовi сталi.
У роботi [15] прокласифiковано узагальненi симетрiї, а також локальнi закони збереже-

ння рiвнянь Кавахари зi сталими коефiцiєнтами 𝛽, 𝜎 та довiльною нелiнiйнiстю 𝑓(𝑢)

𝑢𝑡 + 𝑓(𝑢)𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 + 𝜎𝑢𝑥𝑥𝑥𝑥𝑥 = 0,

де 𝑓𝑢𝛽𝜎 ̸= 0.
Вже бiльше десяти рокiв основну увагу дослiдникiв зосереджено на моделях типу Кава-

хари з коефiцiєнтами, залежними вiд часової змiнної:

𝑢𝑡 + 𝛼(𝑡)𝑓(𝑢)𝑢𝑥 + 𝛽(𝑡)𝑢𝑥𝑥𝑥 + 𝜎(𝑡)𝑢𝑥𝑥𝑥𝑥𝑥 = 0, 𝑓𝑢𝛼𝛽𝜎 ̸= 0, (2)

де 𝑛 — довiльне ненульове цiле число, 𝛼, 𝛽 та 𝜎 — гладкi ненульовi функцiї змiнної 𝑡, та
їхнiм рiзноманiтним пiдкласам.
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У роботi [3] для знаходження точних розв’язкiв класичного i модифiкованого рiвнянь
Кавахари зi змiнними коефiцiєнтами вигляду (2) з 𝑓(𝑢) = 𝑢 та 𝑓(𝑢) = 𝑢2 застосовано
лiївськi симетрiї. У цiй роботi отримано лише частковi результати щодо лiївських симетрiй,
оскiльки перетворення еквiвалентностi не застосовувались.

Завдяки використанню допустимих перетворень та розбиттю класу на нормалiзованi
пiдкласи,1 у роботi [5] було виконано вичерпну групову класифiкацiю пiдкласу класу рiв-
нянь (2) з 𝑓(𝑢) = 𝑢𝑛, де 𝑛 — довiльна ненульова змiнна. Також у [5] було виконано вичерпну
класифiкацiю лiївських редукцiй, побудовано деякi точнi розв’язки та закони збереження
таких рiвнянь.

Пошуку лiївських симетрiй та локальних законiв збереження узагальнених рiвнянь Ка-
вахари вигляду (2) присвячено роботу [1]. Для спрощення задачi у цiй роботi використано
калiбрування довiльного елементу 𝜎 = 1, але воно не є оптимальним. У роботi [12] показано,
що саме властивiсть нормалiзованностi та аналiз типу групи еквiвалентностi (звичайна /
узагальнена / розширена узагальнена) дозволяє алгоритмiчно вибрати оптимальне калi-
брування. У роботах [13,16] було дослiджено групоїд еквiвалентностi та виконано вичерпну
групову класифiкацiю класу узагальнених рiвнянь Кавахари зi змiнними коефiцiєнтами (2),
а у роботах [14,17] проведено класифiкацiю лiївських редукцiй таких рiвнянь та побудовано
деякi їхнi точнi розв’язки.

Наведемо основнi результати щодо допустимих перетворень та лiївських симетрiй рiв-
нянь з класу (2). Це клас не є нормалiзованим, але його можна розбити на нормалiзованi
пiдкласи, виокремленi умовами 𝑓𝑢𝑢 ̸= 0 i 𝑓𝑢𝑢 = 0.

Теорема 1. Пiдклас класу (2), виокремлений умовою 𝑓𝑢𝑢 ̸= 0, нормалiзований у розшире-
ному узагальненому сенсi. Його групу еквiвалентностi 𝐺̂∼ складають перетворення

𝑡 = 𝑇 (𝑡), 𝑥̃ = 𝛿1(𝑥+ 𝛿2𝐴) + 𝛿3, 𝑢̃ = 𝛿4𝑢+ 𝛿5,

𝑓 = 𝛿0 (𝑓 + 𝛿2) , 𝛼̃ =
𝛿1
𝛿0𝑇𝑡

𝛼, 𝐴 =
𝛿1
𝛿0
𝐴+ 𝜀0,

𝛽 =
𝛿1

3

𝑇𝑡
𝛽, 𝜎̃ =

𝛿1
5

𝑇𝑡
𝜎,

де 𝜀0 i 𝛿𝑗 , 𝑗 = 0, 1, . . . , 5, — такi дiйснi сталi, що 𝛿0𝛿1𝛿4 ̸= 0, а 𝑇 (𝑡) — довiльна гладка
нестала функцiя, 𝑇𝑡 ̸= 0. Додатковий довiльний елемент 𝐴 задовольняє рiвняння 𝐴𝑡 = 𝛼.

Теорема 2. Клас рiвнянь Кавахари

𝑢𝑡 + 𝛼(𝑡)(𝑢+ 𝑏)𝑢𝑥 + 𝛽(𝑡)𝑢𝑥𝑥𝑥 + 𝜎(𝑡)𝑢𝑥𝑥𝑥𝑥𝑥 = 0 (3)

нормалiзований у розширеному узагальненому сенсi. Його групу еквiвалентностi 𝐺̂∼
1 скла-

дають перетворення вигляду

𝑡 = 𝑇 (𝑡), 𝑥̃ =
𝜀2𝑥+ 𝜀1𝐴+ 𝜀0

𝛿2𝐴+ 𝛿1
, 𝑢̃ =

𝜀2
Δ

((𝛿2𝐴+ 𝛿1)𝑢− 𝛿2𝑥+ 𝛿2𝑏𝐴+ 𝜀3) ,

𝐴 =
𝛿′2𝐴+ 𝛿′1
𝛿2𝐴+ 𝛿1

, 𝛼̃ =
Δ

𝑇𝑡(𝛿2𝐴+ 𝛿1)2
𝛼, 𝛽 =

𝜀2
3

𝑇𝑡(𝛿2𝐴+ 𝛿1)3
𝛽,

𝜎̃ =
𝜀2

5

𝑇𝑡(𝛿2𝐴+ 𝛿1)5
𝜎, 𝑏̃ =

1

Δ
(𝑏𝛿1𝜀2 + 𝛿1𝜀1 − 𝛿2𝜀0 − 𝜀3𝜀2) ,

де 𝛿𝑗 , 𝛿
′
𝑗 𝑗 = 1, 2, i 𝜀𝑖, 𝑖 = 0, 1, 2, 3, — довiльнi сталi, визначенi з точнiстю до сталого мно-

жника, причому Δ = 𝛿′2𝛿1−𝛿′1𝛿2 ̸= 0, 𝜀2 ̸= 0. Додатковий довiльний елемент 𝐴 задовольняє
умову 𝐴𝑡 = 𝛼.

1Дивись означення допустимих перетворень, групоїду еквiвалентностi, нормалiзованого класу, постанов-
ку задачi групової класифiкацiї, опис методу розбиття ненормалiзованого класу на нормалiзованi пiдкласи
та методу розгалуженого розщеплення у роботах [8–11].



Симетрiйний аналiз рiвнянь типу Кавахари: огляд 3

З допомогою перетворень еквiвалентностi виконано калiбрування 𝛼 = 1. Результати гру-
пової класифiкацiї рiвнянь вигляду (2) з 𝑓𝑢𝑢 ̸= 0 та 𝑓𝑢𝑢 = 0 наведено у теоремах 3 та 4.

Теорема 3. Ядро максимальних алгебр лiївської iнварiантностi рiвнянь з класу (2) з
𝑓𝑢𝑢 ̸= 0 спiвпадає з одновимiрною алгеброю ⟨𝜕𝑥⟩. Всi можливi 𝐺̂∼-нееквiвалентнi випадки
розширення максимальних алгебр лiївської iнварiантностi вичерпуються випадками 1–9
таблицi 1.

Табл. 1. Результат групової класифiкацiї класу (2) з 𝑓𝑢𝑢 ̸= 0.

№ 𝑓(𝑢) 𝛽(𝑡) 𝜎(𝑡) Базис 𝐴max

0 ∀ ∀ ∀ 𝜕𝑥

1 ∀ 𝜆𝑡2 𝛿𝑡4 𝜕𝑥, 𝑡𝜕𝑡 + 𝑥𝜕𝑥

2 ∀ 𝜆 𝛿 𝜕𝑥, 𝜕𝑡

3 ln𝑢 ∀ ∀ 𝜕𝑥, 𝑡𝜕𝑥 + 𝑢𝜕𝑢

4 ln𝑢 𝜆𝑡2 𝛿𝑡4 𝜕𝑥, 𝑡𝜕𝑥 + 𝑢𝜕𝑢, 𝑡𝜕𝑡 + 𝑥𝜕𝑥

5 ln𝑢 𝜆 𝛿 𝜕𝑥, 𝑡𝜕𝑥 + 𝑢𝜕𝑢, 𝜕𝑡

6 𝑢𝑛 𝜆𝑡𝜌 𝛿𝑡
5𝜌+2

3 𝜕𝑥, 3𝑛𝑡𝜕𝑡 + (𝜌+ 1)𝑛𝑥𝜕𝑥 + (𝜌− 2)𝑢𝜕𝑢

7 𝑢𝑛 𝜆𝑒𝑡 𝛿𝑒
5
3
𝑡 𝜕𝑥, 3𝑛𝜕𝑡 + 𝑛𝑥𝜕𝑥 + 𝑢𝜕𝑢

8 𝑒𝑢 𝜆𝑡𝜌 𝛿𝑡
5𝜌+2

3 𝜕𝑥, 3𝑡𝜕𝑡 + (𝜌+ 1)𝑥𝜕𝑥 + (𝜌− 2)𝜕𝑢

9 𝑒𝑢 𝜆𝑒𝑡 𝛿𝑒
5
3
𝑡 𝜕𝑥, 3𝜕𝑡 + 𝑥𝜕𝑥 + 𝜕𝑢

У таблицi 1 𝛼(𝑡) = 1 mod 𝐺̂∼, 𝜌 i 𝑛 — довiльнi сталi, 𝑛 ̸= 0, 1; 𝛿 i 𝜆 — ненульовi сталi,
𝛿 = ±1 mod 𝐺̂∼.

Теорема 4. Ядро максимальних алгебр лiївської iнварiантностi рiвнянь з класу (2) з
𝑓𝑢𝑢 = 0 спiвпадає з двовимiрною алгеброю ⟨𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢⟩. Усi можливi 𝐺̂∼

1 -нееквiвалентнi
випадки розширення максимальних алгебр лiївської iнварiантностi вичерпуються випад-
ками 1–4 з таблицi 2.

Табл. 2. Результат групової класифiкацiї класу (2) з 𝑓𝑢𝑢 = 0.

№ 𝛽(𝑡) 𝜎(𝑡) Базис 𝐴max

0 ∀ ∀ 𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢

1 𝜆𝑡𝜌 𝛿𝑡
5𝜌+2

3 𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢, 3𝑡𝜕𝑡 + (𝜌+ 1)𝑥𝜕𝑥 + (𝜌− 2)𝑢𝜕𝑢

2 𝜆𝑒𝑡 𝛿𝑒
5
3
𝑡 𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢, 3𝜕𝑡 + 𝑥𝜕𝑥 + 𝑢𝜕𝑢

3 𝜆 𝛿 𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢, 𝜕𝑡

4
𝜆(𝑡2 + 1)

1
2

𝑒3𝜈 arctan 𝑡

𝛿(𝑡2 + 1)
3
2

𝑒5𝜈 arctan 𝑡

𝜕𝑥, 𝑡𝜕𝑥 + 𝜕𝑢,
(𝑡2 + 1)𝜕𝑡 + (𝑡− 𝜈)𝑥𝜕𝑥 + (𝑥− (𝑡+ 𝜈)𝑢)𝜕𝑢

У таблицi 2 𝛼 = 1 mod 𝐺̂∼
1 , 𝑏 = 0 mod 𝐺̂∼

1 , 𝜌, 𝜈 — довiльнi сталi, 𝜌 ⩾ 1/2 mod 𝐺̂∼
1 ,

𝜈 ⩽ 0 mod 𝐺̂∼
1 ; 𝛿, 𝜆 — ненульовi сталi, 𝛿 = ±1 mod 𝐺̂∼

1 .

Ця робота була пiдтримана грантами вiд Фонду Саймонса (1290607 та SFI-PD-Ukraine-
00014586, O.O.V. та O.Yu.Zh.).
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