Soliton-like solutions of hydrodynamical type
equations with variable coefficients

Valerii & Yuliia Samoilenko

Institute of Mathematics of NAS of Ukraine

December 26, 2025



The Korteweg—de Vries (KdV) equation
(1895, Korteweg & de Vries)

Ut + Ul — Uk = 0
The Benjamin-Bona-Mahony (BBM) equation
(1966, Peregrin; 1972, Benjamin, Bona & Mahony)
U + Ux + Ulx — Ut =0

The Burgers' equation
(1915, Bateman; 1939, 1940, Burgers)

Ut + uly — U =0
The modified Camassa—Holm (mCH) equation
(1981, Fokas & Fuchssteiner; 1993, Camassa & Holm)

2
Ut — Usxt + 33U Ux = 2UxUsx + Ul
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Singular perturbed equations

The Korteweg—de Vries (KdV) equation

2
Ur + Uty — € Upx =0

The Benjamin—-Bona—Mahony (BBM) equation

2
Ur + Ux + Uy — € e =0

The Burgers’ equation
U + uly —eu =0

The modified Camassa—Holm (mCH) equation

2 2
Ur — EUxxt + 3u Ux = 2¢ Ux Uxx + EUlUxxx
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Variable coefficients equations

We study soliton—like solutions to the singular perturbed:
vc Korteweg—de Vries equation;

vc Benjamin—Bona—Mahony equation;

vc modified Camassa—Holm equation

and step-like solutions to vc Burgers’ equation.

These equations are direct generalizations of the well-known hydrodynamical
equations possessing physically interesting solutions such as solitons, peakons,
and other type of wave solutions.

We development a general methodology for constructing asymptotic wave-like
solutions.

On particular, we developed a general scheme for finding approximations of any
order and studied their accuracy.

The results are illustrated by a number of examples.

The proposed technique can be used for studying wave-like solutions to other
equations with variable coefficients and a small dispersion.
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Variable coefficients equations

The vc Korteweg—de Vries equation
e"Uox = a(x, t,€)ue + b(x, t,e)uux, neEN
The vc Benjamin—Bona—Mahony equation
o = a(x, t,€)ur + b(x, t, €)u + c(x, t,e)uuy
The vc Burgers' equation
Elx = a(x, t,e)us + b(x, t,e)uuy
The vc modified Camassa—Holm equation
a(x, t,€)ue — €t + b(x, t, ) U7 U = 26° Uxlix + €7 Ul

In this extended case, the exact form of solutions is not known, as most
traditional analytical methods lose their effectiveness due to the presence of
variable coefficients.

Due the presence of a small parameter the asymptotic technique can be
effectively applied.
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The Korteweg-de Vris equation

The KdV equation
ur — 6UUX + Upx = 0
is well known for its soliton solution
2

u(x,t) = f% cosh™ (g (x —x0 — a2t)) , where a,x € R;

The KdV-equation has a package of one-soliton solutions — the so—called
m-soliton solutions:
2

u(x, t) = —2% In det(E + G),

where E is a unique (m x m)-matrix, G is a matrix with elements

()P [~ (54 + )x]

gi(x,t) = ci(t)g p—

k]

ci(t) = ci(0)exp (>7t), i(0), 56 €ER, i,j =1,m, 0 < 510 < 202 < ... < 3.
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Main problems for the KdV equation

For the KdV equation there are considered the following main problems:

— existence, uniqueness, smoothness (Su C.S., Sjoberg A., Bona J.L.,
Smith R., Biagioni H.A., Oberguggenberger M.);

— existence solutions with specific features:

— solitons (Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., Hirota R.,
Zabusky N.J., Marchenko V.0.),

— periodic and finite-gap solutions (Novikov S.P., McLaughlin D.W_,
Khruslov Je.Y., Kotlyarov V.P., Egorova I.);

— asymptotic analysis (Kruskal M.D., Miura R.M., Lax P.D, Levermore S.D.,
de Kerf D., Flaschka H., Forest M.G., McLaughlin D.W., Ablowitz M.J., and
others)
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The KdV equation with a singular pertubation

The KdV equation with a singular perturbation was first studied by Miura R.M.
and Kruskal M., 1974, and later by Lax P. and Levermore S.D., 1983.

Miura R.M. and Kruskal M. constructed asymptotic expansion for finite-gap
solutions to equation
6 U 46Ul + U = 0 (1)

(Miura R.M., Kruskal M. Application of nonlinear WKB-method to the KdV
equation, SIAM J. Appl. Math., (1974), V. 26 (3), P. 376 — 395)
Lax P., Levermore S.D. studied weak limits of solution to equation

82 U + Buty +ur =0 (2)

as a small parameter ¢ tends to zero.

(Lax P., Levermore S.D. The small dispersion limit of the Korteweg—de Vries
equation. | — |1, Comm. Pure Appl. Math., (1983), V. 36 (3, 5, 6));
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WKB method

We study the problem of finding special kind of asymptotic solutions of the
Korteweg—de Vries equation with variable coefficients

"o = a(x, t,€)ue + b(x, t,e)uux, neEN, (3)

that are similar to soliton—like solutions of KdV equation. Therefore they can
be considered as a deformation of the soliton—like waves of this equation.

The constructed asymptotic solutions are called
asymptotic soliton-like solutions.

We apply the nonlinear Wentzel-Kramers—Brillouin (WKB) method .

In mathematical physics, the WKB approximation or WKB method is a method
for finding approximate solutions to linear DEgs with spatially varying
coefficients. It is typically used for a semiclassical calculation in quantum
mechanics in which the wave function is recast as an exponential function,
semiclassically expanded, and then either the amplitude or the phase is taken to
be changing slowly.

The name is an initialism for Wentzel-Kramers—Brillouin. It is also known as
the LG or Liouville—Green method. Other often—used letter combinations
include JWKB and WKBJ, where the "J" stands for Jeffreys.
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Let consider differential equation of the second order
——— + V(x)V = EV. (4)

Here W = W(x) is a wave (complex valued) function, & is the Planck constant,
m is the mass of the particle, V(x) is the potential energy, and E is the total
energy.

This equation is called the one-dimensional stationary Schrédinger equation.

It plays an important role in quantum mechanics. Its discovery was a significant
landmark in the development of quantum mechanics.

It is named after Austrian (later Irish) physicist Erwin Rudolf Josef Alexander
Schradinger (12.08.1887-04.01.1961, Nobel Prize in Physics in 1933), who
postulated the equation in 1925 and published it in 1926.

E. Schrddinger is recognized for the Schrédinger equation, that provides a way
to calculate the wave function of a system and how it changes dynamically in
time.

His research was also related to statistical mechanics and thermodynamics,
physics of dielectrics, colour theory, electrodynamics, general relativity, and
cosmology, and he tried to construct a unified field theory.

In popular culture, he is best known for his "Schrodinger’s cat" thought
experiment.
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WKB method

An approximate solution of equation (4) can be found using the WKB method,
according to which the solution is sought in the form W(x) = exp ®(x). As
follows, the function ®(x) satisfies the nonlinear differential equation

&"(x) + (&' ()) = 23 (V(x) - E), (5)

which is reduced to differential equation of the first order for function

V(x) = ®'(x) = A(x)e®™ (the function A(x) is the amplitude of the complex
value ®'(x), and the function B(x) is its phase).

By introducing new depending functions for the real and the image parts of the
function ®’(x) according to the formulas A(x) = Re ®'(x), B(x) = Im ¢’'(x)
equation (5) turns into two differential equations

2m

A+ A - B =T (V(x) — E), B +2AB=0, (6)

the solutions of which are the functions A(x), B(x) sought as an expansion
with respect to a parameter h:

oo

%Zh A(x), B(x)= Z (7
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WKB method

Substituting series (7) into equations (6) after standard calculations, we obtain
recurrence relations for their coefficients.

In particular, the main terms Ao(x), Bo(x) and the first terms Ai(x) and Bi(x)
in (7) have to satisfy the equations

AS(x) — Bi(x) =2m(V(x) — E), Ao(x)Bo(x) =0, (8)
Ay + 2A0A1 — 2BoB1 =0,  Bf + 2A0B1 + 2A1By = 0. (9)

It is obviously that to solve equations (8), (9) both cases A¢(x) =0 and
Bo(x) = 0 should be considered.

Taking into account the regularization condition for the wave function
according to which W(x) — 0 as |x| — +oo, we consider only the case of
classical region, when E > V(x).

Last condition leads to equality Ag(x) = 0. It means that the amplitude of the
wave function varies more slowly than its phase. From (8), (9) we have

Bo(x) = £1/2m(E — V(x)), Bi(x)=0, Ai(x)= _%C{ix In ((E — V(x)).
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WKB method

Thus, the first asymptotic approximation for the function W(x) is given as
C.

ante vy (i [ V2rE= V)

(o e G R G C)) L

where C;, C_ are arbitrary constants.

V(x) =

Applying the WKB method to equation (4), it is usually sufficient to construct
only the first two terms of the asymptotic solution.

Formula (10) present the basic solution in the WKB approximation for the
stationary Schrédinger equation (4).

It asymptotically approximates the solution for all real arguments x € R, with
except for the neighborhood of turning points, where V(x) — E = 0.

In the neighborhood of turning points, the asymptotic solution has a different
type of presentation.

It is based on the Taylor series expansion near the turning point.
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Nonlinear WKB method

Miura, R.M. and Kruskal, M.D. (1974), Application of nonlinear WKB-method
to the Korteweg-de Vries equation, SIAM Appl. Math. 26(2), pp. 376 — 395,
suggested constructing a solution of a nonlinear differential equation with a
singular perturbation in the form of an asymptotic series in a small parameter
using the representation:

u(x,t,e) = U0, x,t;e) = Uo(0, x, t) + eUr (0, x,t) + -+, (11)
where (x,t) €e K x [0; T], KCR, T >0, and

0 =0(x,t,e)= w, B(x,t,e) = Bo(x,t) +eBi(x,t) +--- . (12)

Series in (11) and (12) are formal expansions in ¢.

The authors called this technique the nonlinear WKB method. It is clear that
form of the solution (11) is more general than (7).

This approach turned out to be quite effective for constructing asymptotic
soliton-like solutions of partial differential equations with variable coefficients
and a singular perturbation (Korteweg—de Vries Eq., Benjamin—Bona—Mahony
Eq., Burgers Eq., modified Camassa—Holm Eq. and others).
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Problem under consideration

While modelling the wave processes in inhomogeneous medium with
perturbations, there is the Korteweg-de Vries equation with variable coefficients
(veKdV equation) and a small parameter

e"Ux = a(x, t,e)ur + b(x, t,€)uux, neN, (13)

where

a(x, t,e) Zsak(xt b(x,t,€) Zsbkxt (14)

Here the functions ax(x, t), bu(x,t) € C*=(R x [0; T]), k>0, T > 0, and

ao(x, t) bo(x,t) #0 for all (x,t) € Rx[0; T].

We are interesting in asymptotic soliton-like solutions to equation (3) that are
close to soliton solutions.

Valerii & Yuliia Samoilenko Soliton-like solutions // Symmetry, 26/12/2025



The KdV-like equation with a small parameter

The vcKdV-like equation with a small parameter

Ut + (p1 + 3p2u)ux + €2 p3tix + pau = 0, (15)
where
p=pi(x) = VeH(x),
p2 = p2(x) = VgH 1 (x)/2,
p3 = p3(x) = V/ gH*(x)/6.

pa = pa(x) = p1x/2,
is used for modelling wave processes in shallow water.

Here:

H(x) > 0 is a depth of non-perturbed liquid,

g is acceleration of gravity,

€ is a small parameter (Maslov V.P., Omelyanov G.O., 1981).
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Preliminary definitions

Definition (asymptotic series (expansion) in Poincaré)

N
f(><7a):z:skﬂ((x)—i—O(&NH)7 xeK, £—0. (1)
k=0

Relation (1) is equivalent to

f(x,e) — XN: skfk(x)

. k=0
lim =0, xeK.
e—0 EN

Definition (the Schwartz space S(R))

Denote by S(R) the space of quickly decreasing functions f(x) that are
infinitely differentiable for all x € R, and for any integers m, n > 0 the following
condition holds

n

o < +00.

m
X

f(x)

sup
xER

Valerii & Yuliia Samoilenko Soliton-like solutions // Symmetry, 26/12/2025



Main definitions

Definition (the spaces G and Go)

Let G = G(R x [0; T] x R) be a space of infinitely differentiable functions
f=f(x,t,7), (x,t,7) € R x [0; T] X R such that there are fulfilled the
following conditions:

1°. the relation
lim o 0F &7 67

=
To+oo  OxP Ot9 OT"

f(x,t,7) =0, (x,t)€K,

takes place;

2°. there exists such a differentiable function f~(x, t) that on any compact

set K C R x [0; T] condition
. »0F 07 0F
lim

7o OxP D9 D77

(fO,t,7) = F (1)) =0, (x,t) € K,
is true for any non-negative integers n, p, g, r uniformly in (x, t) € K.

Let Go = Go(R x [0; T] x R) C G be a space of functions f(x,t,7) € G when
f=(x,t) = 0 in condition 2°. It means that last assumption implies inclusion
f(x,t,7) € S(R) with respect to the variable 7.
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An asymptotic one phase soliton-like function

Definition (an asymptotic one phase soliton-like function)

A function u = u(x, t,g), where ¢ is a small parameter, is called
an asymptotic one phase soliton-like function
if for any integer N > 0 it can be represented in the following form

N
u(x, t,e) = > & [ui(x,t) + Vi(x, t,7)] + O™, 7= x—e(t) ()

=0 c
where
o(t) € C*=([0; T]) is a scalar real-valued function;
uj(x,t) € C*(R x [0; T]), j =0, N;
Vo(x, t, 7) € Go;
Vi(x,t,7) € G, j=1,N.

Here x —p(t) is called a phase of the one-phase soliton-like function u(x, t, €).

A curve determined by equation x — ¢(t) = 0 is called a discontinuity curve
for function (2).
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Main problem

We study the Korteweg—de Vries equation with variable coefficients (veKdV
equation) and a small parameter

"o = a(x, t,e)ur + b(x, t,e)uux, neEN, (3)

where
a(x, t,e) Zsak(xt b(x,t,€) Zsbkxt (4)
Here the functions ax(x, t), bi(x,t) € C=(R x [0; T]) k>0, T >0, and
ao(x,t) bo(x,t) #0 for all (x,t) € R x [0; T].

We are looking for asymptotic soliton-like solutions of equation (3), that is,
solutions close to soliton ones.

The main problem is construction of the asymptotic soliton-like solutions to vc
KdV equation with singular perturbation.

It consists of elaboration of algorithm for constructing asymptotic solutions
and justification of the algorithm, that is, establishment of asymptotic
estimates for constructed asymptotic solutions.
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Main steps

The problem is solved in several steps:
I. to specify form of the asymptotic solutions depending on the degree n at the

highest derivative;

Il. to deduce differential equations for the terms of the asymptotic expansions
and to solve them;

[ll. to find the differential equation for phase function ¢(t);

IV. to obtain asymptotic estimations for the constructed asymptotic solution:

— in the case of the KdV equation we find the accuracy with which the solution
satisfies the equation;

— in the case of the Cauchy problem we estimate difference between the exact
and the constructed solutions.
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Structure of the asymptotic solution

Representaion of the asymptotic one-phase soliton-like solution depends on the
degree of a small parameter at the highest derivative, i.e. on the number n.

The solution is written as

u(x, t,e) = Zajuj(x, t)+ Ed\/l(x, t,7)+ 0", 7= x—icp(t)j (5)

en/2
j=0 j=0
if nis odd;
and
2=
u(x, t,e) Zs"uj(x t) Z (x,t,7) Z 2u(x, t)+
2N—2k X — o(t)
+ & 23’/2 (x,t,7) + O(eV*2), TZT@E,(» (6)

if nis even and n = 2k + 1, where k € NU {0}.
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The asymptotic one-phase soliton-like solution

We demonstrate basic ideas of constructing asymptotic soliton-like solution for
the case n = 2.

So, the solution is written as

u(x, t,e) = XN:aJu,-(x, t) + XN}J\/,-(X, 1)+ o), 7= X290 (g

j=0 j=0
Here
(x,t,¢€) Zduj X, t) (8)
is a regular part of asymptotic solution (7) It is a background function.
The function

Wn(x, t,7,8) = Y & Vi(x, t,7) (9)

is a singular part of asymptotic solution (7) and reflects the soliton properties
of the asymptotic solution.
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The asymptotic one-phase soliton-like solution

Preliminary remark.

In the case of the KdV equation with constant coefficients
us — buux + 52uxxx =0 (10)

the asymptotic solution to (10) can be constructed in the form (5), i.e,

N N
w2 = D il )+ it ) O, = XA,
j=0 j=0

where
Un(x,t,e) =0,

2

Wn(x,t,1,e) = Vo(x,t,7) = —% cosh™2 (g T

) x — a’t
, T
Equation (10) has exact solution

2 2
u(x, t) = —% cosh™ (g al Ea t) .

So, asymptotic and exact solutions coincide.
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The asymptotic one-phase soliton-like solution

Preliminary remark (continuation).

Puc.: The soliton solution of the KdV equation (2.10) as ¢ = 0.25 (at the
left) and e = 0.75 (at the right).
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Differential equations for the regular terms

Terms of the regular part

v(x, t,€) Za"ujxt

of the asymptotic solution are defined from the following system

Ou 0
a0(x, £) G+ bolx, Jup 2 =0, (11)
Ou; ou
ao(x, t) .- + bo(x, t)uo 8J + bolx, )y 20 8 = fi(x, 1), (12)

where the functions f;(x, t), j = 1, N, are recursively defined.

The equations (11) and (12) can be studied through the methods of
characteristics.
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Regular part of the asymptotic

Since equation (11) is quasilinear, and equation (12) is linear, their solutions
can be found, for example, by means of the method of characteristics.

Indeed, for the first regular term, according to the method of characteristic we
consider the system of ODEs:

dt dx dug

= = —. 1
2000 1)  bo(x, Do 0 (13)
The system gives the first regular term in implicit form as follows
® (wo(x, t), ¥(x, t, uo(x, t))) = 0, (14)

where the function ®(&,n) is arbitrary in the general case, and in the Cauchy
problem it is determined by the initial condition. The functions wo(x, t) and
Y(x, t, uo(x, t)) are first integrals of system (13)

In the similar way we can find the higher regular terms in exact form:

dt dx duj

ao(x,t)  bo(x, t)uo - i — bo(x, t)uoxu;”

So, we can assume that these solutions are known.
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Differential equations for the singular terms

The terms of the singular part
(x,t,T,¢€) ZE"V X, t,T)

of the asymptotic solution are defined as solutions to system of the third order
partial differential equations

Vo A Vo oVo\
87’3 + ao(x, t)ﬁ %2 (t) — bo(X7 t) (UO? + V() 87’ = 07 (15)

*V; %
93 +ao( t) !

where functions

22 0= i) (w5 + - (W) = K. 7). (10

,:j(X7 t, T) = Ff(t7 VO(X7 t, T)v cee Vj*l(X, t, T)v UO(Xv t)7 B UJ(Xa t))

are defined recurrently after determining the functions wo(x, t), u1(x,t), ...,
ui(x, t), Vo(x, t,7), Va(x, t,7), ..., Vici(x, t,7), j=1,N.

Equations (15) and (16) are studied in a special way described below in detail.
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Prolongation of the singular terms

It's necessary to take into account the following:

1. the solutions to equations (15), (16) must belong to the spaces Gy, G
correspondingly;

2. while searching the terms V;(x, t,7), j = 0, N, we have to find a function
© = ¢(t) defining a discontinuity curve I' = {(x,t) € R x [0; T] : x = ¢(t)}.

Algorithm of searching the singular terms of the asymptotics:

1. firstly we find Vo(x, t,7) on curve T, i.e. wo(t,7) = Vo(x,t,7)

x=¢p(t)
Then we prove w(t,7) € Go and put Vo(x,t,7) = w(t, T);

2. later we find the function v;(t,7) = Vj(x, t,T)

x=¢(t)
If vj(t,7) € Gy then we put Vj(x, t,7) = vj(¢t, 7).

If vj(t,7) ¢ Go then the function is prolonged from the discontinuity curve in a
special way.

While finding the function vi(t,7) we get an ordinary differential equation for
the phase function ¢ = p(t).
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The main term of the singular part

Function vo = w(t,7) = Vo(x, t, ) satisfies nonlinear differential

; x=¢(t)
equation
Pw ovo v v\ _
93 + ao(ep, t)W‘P (t) — bo(w, t) | o(p, t)g +VOE =0. (17)

Under assumption
Alp, t) = —ao(p, 1) (t) + bo(0, t)uo(p, t) > 0 (18)

equation (17) has a solution in the space Gy as

vo(t, 7,0) = —3 % cosh™ <A(250:t)(7_ + Co)) , (19)

where ¢y = const.

Function (19) is similar to soliton solution of the Korteweg—de Vries equation
with constant coefficients.
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The higher terms of the singular part

Functions v; = vj(t,7) = Vj(x, t,7) , j =1, N, satisfy linear differential

) x=¢p(t)
equations
Py av; av; . 0 _
T 1 a0, )29 &/(6) — buli. 1) (UO(% 02+ 2 ( w)) — F(t.7).

(20)
where the right-side functions Fj(t,7), j = 1, N, are defined recurrently.

After integrating equation (20) we go to linear differential equation of the form
Lv=f (21)

with operator

In this case, the following principal problem arises:

under what conditions on the potential q(7) of the operator L and the right-side
function f(7) in (21) does this equation have solutions in the space S(R)?

The answer is given by the following theorem.
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Theorem (Samoilenko Valerii and Samoilenko Yuliia, 2012)
Let the following conditions be fulfilled:

1. q(7) = qo + qi(7) with constant qo < 0 and the function g:(7) € S(R);
2. the function f € S(R).
If kernel of the operator L : S(R) — S(R) is trivial,

then equation (21) has a solution in the space S(R)
for any function f € S(R).

Otherwise, if kernel of the operator L : S(R) — S(R) is not trivial,
then equation (21) has a solution in the space S(R) if and only if
the function f € S(R) satisfies the orthogonality condition

/ f(r)w(r)dr =0 (22)

for any v € ker L.

Reference: Samoylenko, V., Samoylenko, Y. Existence of a solution to the
inhomogeneous equation with the one-dimensional Schrodinger operator in the
space of quickly decreasing functions. J Math Sci 187, 70 — 76 (2012).
https://doi.org/10.1007/s10958-012-1050-6
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Lemma 1, existence solution vj(t,7) € G

From Theorem 1 we derive necessary and sufficient conditions for fulfilment of
inclusion: v;(t,7) € G.

It means that the solution v;(t, 7) of equation (20) belongs to the space G.

These conditions are given as conditions for the right-side functions of
equations for vj(t,7) in Lemma 1.

Let us suppose Fj(t,7) € Go, j = 1, N. The solution vj(t,7), j =1, N, of
equation (20) exists in the space G iff the orthogonality condition

+o0o
/ Fi(t,)w(t,)dr =0, j=T,W, (23)

is true.

Remark. By proving Lemma 1, we obtain an important representation of the
solution v;(t,7), j =1, N.
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Representation of v(t,7), j =1, N. Lemma 2

Solutions vj(t,7) € G, j = 1, N, of equation (20) can be written as
vi(t,7) = vi()ni(t, 7) + ¢i(t, 7),
where 9;(t,7) € Go; n;(t,7) € G is a function such that

AT ) =1

(1) = ao(p, )9 (£) — bolo, un(p, )] lim (2, 7),

o(tr) = [ F(t.Ode +E(0),

and the function ®;(t, 7) satisfies condition IiT oi(t,7)=0, j=1,N.
T—+00

If the function Fj(t,7) € Go, j = 1, N, and the orthogonality condition (23)

takes place, then the function vj(t,7) € Go, j = 1, N, if and only if

lim &;(t,7)=0, j=1,N. (24)
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Equation for ¢ = ¢(t)

From (23) as j = 1 we obtain a non-linear ordinary differential equation of the
second order for the phase function ¢ = ¢(t)

<10a0><(907 t) bo((p, t)_3630(907 t) box(QO, t)) 4,0/+
(25)

d
1530(907 t) bo(QD, t)aA(()@ t)+

+10b§(507 t)UOX(Lpa t) + 3(b§(50, t))XUO((pv t) - 530(@7 f)(bg(% t))f:| A((p, t) =0

Here  A(p,t) = A(e(t), 1) = —ao(p(t), t)'(t) + bo(p(t), t)uo(p(t), t).
Remark 1. In general case equation (25) has a local solution.

Remark 2. In particular case equation (25) is simplified, for example, in the
case ag(x) = cobg?(x), where cg € R\{0} is a constant, it is written as

d
(a(9))* = = .

Remark 3. Equation (25) is defined through the main terms of the
coefficients of the vcKdV equation (3) and the main term of the regular part of
the asymptotics.
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Prolongation of the function vj(t, 7)

Recall that:
if vj(t,7) € Go then we put Vj(x, t,7) = vj(t, 7);

if vi(t,7) ¢ Go then the function v;(t,7) is prolonged from the curve I
according to the above representation

Vj(tv T) = Vj(t)nj(tv T) + w](tv T)‘

Prolongation of the function v;(t,7), j = 1, N, from the discontinuity curve I is
defined according to the formula

Vi(x, t,7) = uj (x, t)ni(t, 7) + (L, 7), (26)
where u;” (x,t), j=1,N, is a solution of the Cauchy problem

/\uf(x, t) = 6-7(X7 t), u; (x, t)}r =y(t), j=1,N, (27)

with the operator A = ao(x, t)0: + bo(x, t)uo(x, t)0x + bo(x, t)uox(x, t).

The functions £, (x, t), j = 1, N, are found after substitution solution of form
(26) into vcKdV equation (3) and calculating limit as 7 — —oo0.
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Justification of the asymptotics. Theorem 2

Let the following conditions be supposed:

1. the functions ax(x,t), b(x,t) € C)(R x [0; T]), k =0, N, and
ao(x, t)bo(x, t) # 0;

2. inequality
A(p, t) = —ao(ip, t)¢'(t) + bo(p, t)uo(ip, t) > 0

takes place for the function ¢(t), that is a solution to equation (25) for the
phase function;

3. the functions Fj(t,T) € Go, j = 1, N, and the orthogonality condition (23)
is true;

4. the functions F;(t,T), j = 1, N, satisfy conditions (24).
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Justification of the asymptotics. Theorem 2

Theorem (2, continuation )

Then the asymptotic one-phase soliton-like solution to the vcKdV equation (3)
is written as

un(x, t,e) = Yn(x, t,€) ZEJ [uj(x, t) + Vi(t,7)], (28)
where =0
Lo x=e(t)
&

In addition, function (28) satisfies (3) on the set R x [0; T] with accuracy
o(eM).
As T — oo function (28) satisfies (3) with accuracy O(e"™?).
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Justification of the asymptotics. Theorem 3

Let conditions 1 — 3 of Theorem 2 be true and

the Cauchy problem (27) has a solution on the set
{(x,t) R x [0; T] : x — ¢(t) < 0} (condition 4').

Then the asymptotic one-phase soliton-like solution can be written as
un(x, t,e) = Yn(x, t, ) Za [uj(x, t) + Vi(x, t,7)], (29)

where
_ x=o(t)
= E—
In addition, function (29) satisfies equation (3) with accuracy O(e")
on the set R x [0; T].
As T — =00 solution (29) satisfies (3) with accuracy O(eM'?).
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Example 1: KdV, n=2

Power of singularity n =2

3/2 5/8
Ezuxxx = = (X2 aF 1) us + (X2 + 1) Uldy. (1)

Using the algorithm described above let us construct the first order
approximation for the soliton-like solution of the equation. Note this equation is
a special case of the vc-KdV equation when its coefficients satisfy the relation

a5(x) = —bo”(x),

due to which differential equation for the phase function ¢ = p(t) is
significantly simplified.
We consider zero background case, i.e. Un(x,t, &) =0.

The phase function ¢(t) satisfies the equation

(@2 n 1) ‘Z/—‘f ~-1. (2)
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Example 1: KdV, n=2

Under the initial condition ¢(0) = 0 we calculate its solution as

3 /3 9 3 /3 9
= = Zt2 ~t— Z¢2
\/2t+\/1+4t+\/2t 1/1+4t. (3)
The function (3) is defined for all ¢.

Condition A(p =\/p 1 > 0 holds for all t € R.

The main term of the smgular part of the asymptotic solution is defined as a
solution of differential equation of the form

83Vo ovo 2 5/8  Jyy _
R ACRE ——(p(t)-l—l) Wt =0.

Its solution is as follows

w(t,7) = -3 (1) + 1)_1/8 cosh™2 ((£)7),  s(t) = % (P +1)",

and belongs to the space Gy. Hence, we can put

Valerii & Yuliia Samoilenko Soliton-like solutions // Symmetry, 26/12/2025



Example 1: KdV, n=2

Vo(x,t,7) = w(t,7) = -3 (ch(t) + 1) e cosh™2 (5e(t)7) . (4)

Puc.: The main term of the asymptotic soliton-like solution of the vcKdV
equation (8) as € = 0.25 (at the left) and € = 0.75 (at the right).
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Example 1: KdV, n=2

To find vi(t,7) we calculate

_ (1) 217_ 57_ 2 )
SO = ey 17 [2 g T cosh T (AE)T)
7%(302@) +1)"Y* tanh (%(r)T)} cosh™2 ((£)7).

The function ®1(t,7) € Go.

Accordingly Lemma 2 the first singular term on the discontinuity curve I’
belongs to the space Gy. Hence, we can put Vi(x,t,7) = vi(t,T), where
vi(t,7) is a solution of equation

*n . v 2 5/8 3
5 = VEO 15 - (PO 1) - (ww) = A, (5)
where

8vo 3 T
__ /2 2 2
]‘—1(1.“,7')— (p(t)-f— +2 %a

avo 5 T 3vo
T 8 ©2(t) + 1)3/8
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Example 1: KdV, n=2

By integrating differential equation (5), we obtain the first singular term as

(4,02(1.“)1%)9/8% cosh™ ((£)7) x
1

x {% (C05h2 (5¢(t)7) — cosh™? (%(t)r)) _ E} n

Vilx,t,7) = wv(t,7) =

%tanh(%(f)ﬂcosh*2 (e(t)7) % o

1
X E + 1%: cosh™2 (5e(t)T) + 3% cosh™ (s(t)7) + % In [cosh (>(£)7)[| —

3p(t) 525 , 4 5 o V) cosh? (o e)n
,W {57 cosh (%(t)7)+8}t h (5¢(t)7) cosh ™2 (5¢(t)7).

Thus, the first order approximation of the asymptotic soliton-like solution of
the veKdV equation (8) can be represented as

Yi(x, t,e) = Vo(x, t,7) +eVi(x, t,7), (7)

where the functions Vo(x, t,7) and Vi(x, t,T) are given by formulae (4), (6),
and 7 = (x — ¢(t))/e.
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Example 1: KdV, n=2
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Puc.: The first order approximation for the asymptotic soliton-like
solution of the vcKdV equation (8) as € = 0.25 (at the left) and € = 0.75
(at the right).

Function (7) is quickly decreasing function with respect to variable 7. Its
graphs at € = 0.25 and € = 0.75 are demonstrated on the Fig. 3.
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Example 2: KdV, n=1

Power of singularity n =1

Ethox = —(x* + 1)*"?us + . (8)

Consider zero background case, i.e. Un(x,t,e) = 0.

The phase function o(t) satisfies the differential equation

d
(¢ +1°2 22 =7, qeR. (9)

For any positive y the Cauchy problem for differential equation (9) under initial
condition ¢(0) = 0 has solution which is implicitly given by formula

o \/o? + 1 (8<p4 42602 + 33) £ 151In|p + /2 + 1| = 48t. (10)

This solution is defined for all t € R.
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Example 2: KdV, n=1

The main term of the singular part

3 cosh™29(t, )

VO(X7 t, T) = Vo(t,T) = L,DZ 11

; (11)

where

ﬂ(t,T)zi\ﬁT r=X"7

) - ) = t), t, T ER2
Weas N e(t), (t,7)

To find the function vi(t,7) we calculate

& (t,7) = «0212%1)3 (V@@ + 1 (tanh 9(t,7) — 1) — 7 cosh 2 (2, 7)]

The function ®1(t,7) ¢ Go, but ®1(t,7) € G.
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Example 2: KdV, n=1

The first singular term on the discontinuity curve

u(t,r) = 2 [[(36 - 10@) T+ ((2oT +12)V/? + 1

N
—107) x cosh 2 (¢, 7) — (30 1102 + 1) 7 cosh™ 9(t, 7)—

— 5V 14 ——— —35\/ + Lcosh 2 0(t,7)+
Ve 1
+ 20T oot a(t,7) + 1407/ T 1 Incoshi(t, 7) — 37 | x
INEES | |

X tanh ¥(t, T):l cosh ™2 9(t,7) — 4v/? + 1 (tanh 9(t, 7) — 1)} . (12)
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Example 2: KdV, n=1

Thus, the function vi(t,7) is represented as wvi(t,7) = vi(t)m(t, 7) + 1 (t, 7),
where

241
n(t) = (P +1) lim &y(t,7) =24 LVE T
T——00

[CES A

it 7) = —% tanh (¢, 7) + % Gi(t,7) = it 7) — i (E)m(t, 7). (14)

To prolong the function vi(t,7) from the discontinuity curve I' we solve the
Cauchy problem

— (P + 1) % ur (x,£) =0, uy (x,t) = n(t) (15)

and obtain its solution as follows
uy (x, t) = 24x(x* + 1) 72, (16)

The first term of the singular part is found in explicit form

Vi(x, t,7) = uy (x, t)m(t, 7) + ¥1(t, 7). (17)
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Example 3: vc Burgers’ equation

Let us consider the Burgers equation with specified variable coefficients:

2 2
T (t2 +1+ 5(x2 + 1)2) ur + (1 + e %) Uy (18)

and construct the first approximation for its asymptotic solution for the case of
zero background.

The first coefficients of asymptotic series in (18) are written as

alx,t) =t +1, a(x,t)=(x*+1)° (19)
bo(x,£) =1, bu(x,t) = % (20)

Taking into account (19), (20) and zero background conditions
uo(x,t) = wi(x,t) =0,

from (25) we get equation for the function ¢ = ¢(t) in the form:
(B+1) =p, p#0.

Solution of this equation with initial condition ¢(0) = 0 is global (is defined for
all t € R) and is written as  (t) = parctant.
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Example 3: vc Burgers’ equation

Then we find A= A(t) = p, 8= p/2.

You can easily make sure that all conditions of Theorem 1 and Theorem 2 are
fulfilled.

The main term of the singular part of the asymptotics for equation (18) is
given with the following formula

Vo(x, t,e) =1 — tanh (p X~ parctant ), (21)
2e
and the first term of the singular part of the asymptotics is written as
2
1+ p? arctan? t) X — parctant
Vi(x, t,e) = |c — p° (
1(X7 75) |:C t2 + 1 2¢
_ — tant
x cosh™2 (p %). (22)
€

It is easy to see that Vo(x,t,e) € G, Vi(x,t,e) € Gg.
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Example 3: vc Burgers’ equation

The function

— tant
Yi(x,t,e) =1 — tanh (%) +e X
2 2 .\2
5 (1—|—p arctan t) x — parctant 2 ( X — parctan t)
_ h - 23
cTr 211 2 reosh P e (23)

is the first asymptotic step-like approximation for solution of equation (18).

According to Theorem 2 the constructed asymptotic solution satisfies the
equation with an asymptotical accuracy O(e).

Moreover, the first approximation satisfies the equation with an accuracy O(g?)
as 7 — %oo.

Graphs of functions (21), (22) and (23) are given for values p =1, ¢ =0,
€=0,9,=0,45and £ =0, 15.
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Figures as ¢ = 0.9 and ¢ = 0.45

Fig. 1: The main term of the asymptotic solution Vo(x, t,e) as e = 0.9
(at the left), and e = 0.45 (at the right )
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Figures as ¢ = 0.9 and ¢ = 0.15
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Fig. 2: The main term of the asymptotic solution Vy(x, t,e) as ¢ = 0.9
(at the left) and e = 0.15 (at the right).
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Figures as ¢ = 0.9 and ¢ = 0.45

Fig. 3: The first term Vi(x, t,e) of asymptotic solution as e = 0.9
(at the left) and € = 0.45 (at the right).
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Figures as ¢ = 0.9 and ¢ = 0.15

=0.9

Fig. 4: The first term Vi(x, t,e) of asymptotic solution as €

(at the left) and e = 0.15 (at the right).
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Thank you very much
for your attention !
Have a nice day |
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