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The Korteweg�de Vries (KdV) equation
(1895, Korteweg & de Vries)

ut + uux − uxxx = 0

The Benjamin�Bona�Mahony (BBM) equation
(1966, Peregrin; 1972, Benjamin, Bona & Mahony)

ut + ux + uux − uxxt = 0

The Burgers' equation
(1915, Bateman; 1939, 1940, Burgers)

ut + uux − uxx = 0

The modi�ed Camassa�Holm (mCH) equation
(1981, Fokas & Fuchssteiner; 1993, Camassa & Holm)

ut − uxxt + 3u2ux = 2uxuxx + uuxxx
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Singular perturbed equations

The Korteweg�de Vries (KdV) equation

ut + uux − ε2uxxx = 0

The Benjamin�Bona�Mahony (BBM) equation

ut + ux + uux − ε2uxxt = 0

The Burgers' equation
ut + uux − εuxx = 0

The modi�ed Camassa�Holm (mCH) equation

ut − εuxxt + 3u2ux = 2ε2uxuxx + εuuxxx
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Variable coe�cients equations

We study soliton�like solutions to the singular perturbed:

vc Korteweg�de Vries equation;

vc Benjamin�Bona�Mahony equation;

vc modi�ed Camassa�Holm equation

and step-like solutions to vc Burgers' equation.

These equations are direct generalizations of the well�known hydrodynamical
equations possessing physically interesting solutions such as solitons, peakons,
and other type of wave solutions.

We development a general methodology for constructing asymptotic wave�like
solutions.

On particular, we developed a general scheme for �nding approximations of any
order and studied their accuracy.

The results are illustrated by a number of examples.

The proposed technique can be used for studying wave�like solutions to other
equations with variable coe�cients and a small dispersion.
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Variable coe�cients equations

The vc Korteweg�de Vries equation

εnuxxx = a(x , t, ε)ut + b(x , t, ε)uux , n ∈ N

The vc Benjamin�Bona�Mahony equation

ε2uxxt = a(x , t, ε)ut + b(x , t, ε)ux + c(x , t, ε)uux

The vc Burgers' equation

εuxx = a(x , t, ε)ut + b(x , t, ε)uux

The vc modi�ed Camassa�Holm equation

a(x , t, ε)ut − ε2uxxt + b(x , t, ε)u2ux = 2ε2uxuxx + ε2uuxxx

In this extended case, the exact form of solutions is not known, as most
traditional analytical methods lose their e�ectiveness due to the presence of
variable coe�cients.

Due the presence of a small parameter the asymptotic technique can be
e�ectively applied.
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The Korteweg-de Vris equation

The KdV equation
ut − 6uux + uxxx = 0

is well known for its soliton solution

u(x , t) = −a2

2
cosh−2

(a
2
(x − x0 − a2t)

)
, where a, x0 ∈ R;

The KdV-equation has a package of one-soliton solutions � the so�called
m-soliton solutions:

u(x , t) = −2
∂2

∂x2
ln det(E + G),

where E is a unique (m ×m)�matrix, G is a matrix with elements

gij(x , t) = ci (t)cj(t)
exp [−(κi + κj)x ]

κi + κj
,

ci (t) = ci (0) exp (κ3
i t), ci (0),κi ∈ R, i , j = 1,m, 0 < κ1 < κ2 < . . . < κm.
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Main problems for the KdV equation

For the KdV equation there are considered the following main problems:

� existence, uniqueness, smoothness (Su C.S., Sjoberg A., Bona J.L.,
Smith R., Biagioni H.A., Oberguggenberger M.);

� existence solutions with speci�c features:

� solitons (Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., Hirota R.,
Zabusky N.J., Marchenko V.O.),

� periodic and �nite-gap solutions (Novikov S.P., McLaughlin D.W.,
Khruslov Je.Y., Kotlyarov V.P., Egorova I.);

� asymptotic analysis (Kruskal M.D., Miura R.M., Lax P.D, Levermore S.D.,
de Kerf D., Flaschka H., Forest M.G., McLaughlin D.W., Ablowitz M.J., and
others)
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The KdV equation with a singular pertubation

The KdV equation with a singular perturbation was �rst studied by Miura R.M.
and Kruskal M., 1974, and later by Lax P. and Levermore S.D., 1983.

Miura R.M. and Kruskal M. constructed asymptotic expansion for �nite�gap
solutions to equation

δ2uxxx + 6uux + ut = 0 (1)

(Miura R.M., Kruskal M. Application of nonlinear WKB�method to the KdV
equation, SIAM J. Appl. Math., (1974), V. 26 (3), P. 376 � 395)

Lax P., Levermore S.D. studied weak limits of solution to equation

δ2uxxx + 6uux + ut = 0 (2)

as a small parameter δ tends to zero.

(Lax P., Levermore S.D. The small dispersion limit of the Korteweg�de Vries
equation. I � III, Comm. Pure Appl. Math., (1983), V. 36 (3, 5, 6));
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WKB method

We study the problem of �nding special kind of asymptotic solutions of the
Korteweg�de Vries equation with variable coe�cients

εnuxxx = a(x , t, ε)ut + b(x , t, ε)uux , n ∈ N, (3)

that are similar to soliton�like solutions of KdV equation. Therefore they can
be considered as a deformation of the soliton�like waves of this equation.

The constructed asymptotic solutions are called
asymptotic soliton-like solutions.

We apply the nonlinear Wentzel�Kramers�Brillouin (WKB) method .

In mathematical physics, the WKB approximation or WKB method is a method
for �nding approximate solutions to linear DEqs with spatially varying
coe�cients. It is typically used for a semiclassical calculation in quantum
mechanics in which the wave function is recast as an exponential function,
semiclassically expanded, and then either the amplitude or the phase is taken to
be changing slowly.

The name is an initialism for Wentzel�Kramers�Brillouin. It is also known as
the LG or Liouville�Green method. Other often�used letter combinations
include JWKB and WKBJ, where the "J" stands for Je�reys.
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Let consider di�erential equation of the second order

− ℏ2

2m

d2Ψ

dx2
+ V (x)Ψ = EΨ. (4)

Here Ψ = Ψ(x) is a wave (complex valued) function, ℏ is the Planck constant,
m is the mass of the particle, V (x) is the potential energy, and E is the total
energy.

This equation is called the one-dimensional stationary Schr�odinger equation.
It plays an important role in quantum mechanics. Its discovery was a signi�cant
landmark in the development of quantum mechanics.

It is named after Austrian (later Irish) physicist Erwin Rudolf Josef Alexander
Schr�odinger (12.08.1887�04.01.1961, Nobel Prize in Physics in 1933), who
postulated the equation in 1925 and published it in 1926.

E. Schr�odinger is recognized for the Schr�odinger equation, that provides a way
to calculate the wave function of a system and how it changes dynamically in
time.

His research was also related to statistical mechanics and thermodynamics,
physics of dielectrics, colour theory, electrodynamics, general relativity, and
cosmology, and he tried to construct a uni�ed �eld theory.

In popular culture, he is best known for his "Schr�odinger's cat" thought
experiment.
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WKB method

An approximate solution of equation (4) can be found using the WKB method,
according to which the solution is sought in the form Ψ(x) = expΦ(x). As
follows, the function Φ(x) satis�es the nonlinear di�erential equation

Φ′′(x) + (Φ′(x))2 =
2m

ℏ2
(V (x)− E), (5)

which is reduced to di�erential equation of the �rst order for function
V (x) = Φ′(x) = A(x)e iB(x) (the function A(x) is the amplitude of the complex
value Φ′(x), and the function B(x) is its phase).
By introducing new depending functions for the real and the image parts of the
function Φ′(x) according to the formulas A(x) = Re Φ′(x), B(x) = Im Φ′(x)
equation (5) turns into two di�erential equations

A′ + A2 − B2 =
2m

ℏ2
(V (x)− E), B ′ + 2AB = 0, (6)

the solutions of which are the functions A(x), B(x) sought as an expansion
with respect to a parameter ℏ:

A(x) =
1

ℏ

∞∑
k=0

ℏkAk(x), B(x) =
1

ℏ

∞∑
k=0

ℏkBk(x). (7)
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WKB method

Substituting series (7) into equations (6) after standard calculations, we obtain
recurrence relations for their coe�cients.

In particular, the main terms A0(x), B0(x) and the �rst terms A1(x) and B1(x)
in (7) have to satisfy the equations

A2
0(x)− B2

0 (x) = 2m(V (x)− E), A0(x)B0(x) = 0, (8)

A′
0 + 2A0A1 − 2B0B1 = 0, B ′

0 + 2A0B1 + 2A1B0 = 0. (9)

It is obviously that to solve equations (8), (9) both cases A0(x) = 0 and
B0(x) = 0 should be considered.

Taking into account the regularization condition for the wave function
according to which Ψ(x) → 0 as |x | → +∞, we consider only the case of
classical region, when E > V (x).

Last condition leads to equality A0(x) = 0. It means that the amplitude of the
wave function varies more slowly than its phase. From (8), (9) we have

B0(x) = ±
√

2m(E − V (x)), B1(x) = 0, A1(x) = −1

4

d

dx
ln ((E − V (x)).
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WKB method

Thus, the �rst asymptotic approximation for the function Ψ(x) is given as

Ψ(x) =
C+

4
√

2m(E − V (x))
exp

(
i

ℏ

∫ √
2m(E − V (x))

)
+

C−
4
√

2m(E − V (x))
exp

(
− i

ℏ

∫ √
2m(E − V (x))

)
, (10)

where C+, C− are arbitrary constants.

Applying the WKB method to equation (4), it is usually su�cient to construct
only the �rst two terms of the asymptotic solution.

Formula (10) present the basic solution in the WKB approximation for the
stationary Schr�odinger equation (4).

It asymptotically approximates the solution for all real arguments x ∈ R, with
except for the neighborhood of turning points, where V (x)− E = 0.

In the neighborhood of turning points, the asymptotic solution has a di�erent
type of presentation.

It is based on the Taylor series expansion near the turning point.
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Nonlinear WKB method

Miura, R.M. and Kruskal, M.D. (1974), Application of nonlinear WKB-method
to the Korteweg-de Vries equation, SIAM Appl. Math. 26(2), pp. 376 � 395,
suggested constructing a solution of a nonlinear di�erential equation with a
singular perturbation in the form of an asymptotic series in a small parameter
using the representation:

u(x , t, ε) = U(θ, x , t; ε) = U0(θ, x , t) + εU1(θ, x , t) + · · · , (11)

where (x , t) ∈ K × [0;T ], K ⊂ R, T > 0, and

θ = θ(x , t, ε) =
B(x , t, ε)

ε
, B(x , t, ε) = B0(x , t) + εB1(x , t) + · · · . (12)

Series in (11) and (12) are formal expansions in ε.

The authors called this technique the nonlinear WKB method. It is clear that
form of the solution (11) is more general than (7).

This approach turned out to be quite e�ective for constructing asymptotic
soliton-like solutions of partial di�erential equations with variable coe�cients
and a singular perturbation (Korteweg�de Vries Eq., Benjamin�Bona�Mahony
Eq., Burgers Eq., modi�ed Camassa�Holm Eq. and others).
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Problem under consideration

While modelling the wave processes in inhomogeneous medium with
perturbations, there is the Korteweg-de Vries equation with variable coe�cients
(vcKdV equation) and a small parameter

εnuxxx = a(x , t, ε)ut + b(x , t, ε)uux , n ∈ N, (13)

where

a(x , t, ε) =
∞∑
k=0

εkak(x , t), b(x , t, ε) =
∞∑
k=0

εkbk(x , t). (14)

Here the functions ak(x , t), bk(x , t) ∈ C∞(R× [0;T ]), k ≥ 0, T > 0, and

a0(x , t) b0(x , t) ̸= 0 for all (x , t) ∈ R× [0;T ].

We are interesting in asymptotic soliton-like solutions to equation (3) that are
close to soliton solutions.
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The KdV-like equation with a small parameter

The vcKdV-like equation with a small parameter

ut + (ρ1 + 3ρ2u)ux + ε2ρ3uxxx + ρ4u = 0, (15)

where

ρ1 = ρ1(x) =
√

gH(x),

ρ2 = ρ2(x) =
√

gH−1(x)/2,

ρ3 = ρ3(x) =
√

gH5(x)/6,

ρ4 = ρ4(x) = ρ1x/2,

is used for modelling wave processes in shallow water.

Here:
H(x) > 0 is a depth of non-perturbed liquid,
g is acceleration of gravity,
ε is a small parameter (Maslov V.P., Omelyanov G.O., 1981).
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Preliminary de�nitions

De�nition (asymptotic series (expansion) in Poincar�e)

f (x , ε) =
N∑

k=0

εk fk(x) + O(εN+1), x ∈ K , ε→ 0. (1)

Relation (1) is equivalent to

lim
ε→0

f (x , ε)−
N∑

k=0

εk fk(x)

εN
= 0, x ∈ K .

De�nition (the Schwartz space S(R))

Denote by S(R) the space of quickly decreasing functions f (x) that are
in�nitely di�erentiable for all x ∈ R, and for any integers m, n ≥ 0 the following
condition holds

sup
x∈R

∣∣∣∣ xm d n

dx n
f (x)

∣∣∣∣ < +∞.
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Main de�nitions

De�nition (the spaces G and G0)

Let G = G(R× [0;T ]× R) be a space of in�nitely di�erentiable functions
f = f (x , t, τ), (x , t, τ) ∈ R× [0;T ]× R such that there are ful�lled the
following conditions:

10. the relation

lim
τ→+∞

τ n
∂ p

∂xp

∂ q

∂ tq
∂ r

∂τ r
f (x , t, τ) = 0, (x , t) ∈ K ,

takes place;

20. there exists such a di�erentiable function f −(x , t) that on any compact
set K ⊂ R× [0;T ] condition

lim
τ→−∞

τ n
∂ p

∂ xp

∂ q

∂ tq
∂ r

∂ τ r
(
f (x , t, τ)− f −(x , t)

)
= 0, (x , t) ∈ K ,

is true for any non-negative integers n, p, q, r uniformly in (x , t) ∈ K .

Let G0 = G0(R× [0;T ]×R) ⊂ G be a space of functions f (x , t, τ) ∈ G when
f −(x , t) = 0 in condition 20. It means that last assumption implies inclusion
f (x , t, τ) ∈ S(R) with respect to the variable τ .
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An asymptotic one phase soliton-like function

De�nition (an asymptotic one phase soliton-like function)

A function u = u(x , t, ε), where ε is a small parameter, is called
an asymptotic one phase soliton-like function
if for any integer N ≥ 0 it can be represented in the following form

u(x , t, ε) =
N∑
j=0

εj [uj(x , t) + Vj(x , t, τ)] + O(εN+1), τ =
x − φ(t)

ε
, (2)

where
φ(t) ∈ C∞([0;T ]) is a scalar real-valued function;

uj(x , t) ∈ C∞(R× [0;T ]), j = 0,N;

V0(x , t, τ) ∈ G0;

Vj(x , t, τ) ∈ G , j = 1 ,N.

Here x −φ(t) is called a phase of the one-phase soliton-like function u(x , t, ε).

A curve determined by equation x − φ(t) = 0 is called a discontinuity curve
for function (2).
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Main problem

We study the Korteweg�de Vries equation with variable coe�cients (vcKdV
equation) and a small parameter

εnuxxx = a(x , t, ε)ut + b(x , t, ε)uux , n ∈ N, (3)

where

a(x , t, ε) =
∞∑
k=0

εkak(x , t), b(x , t, ε) =
∞∑
k=0

εkbk(x , t). (4)

Here the functions ak(x , t), bk(x , t) ∈ C∞(R× [0;T ]), k ≥ 0, T > 0, and

a0(x , t) b0(x , t) ̸= 0 for all (x , t) ∈ R× [0;T ].

We are looking for asymptotic soliton-like solutions of equation (3), that is,
solutions close to soliton ones.
The main problem is construction of the asymptotic soliton-like solutions to vc
KdV equation with singular perturbation.

It consists of elaboration of algorithm for constructing asymptotic solutions
and justi�cation of the algorithm, that is, establishment of asymptotic
estimates for constructed asymptotic solutions.
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Main steps

The problem is solved in several steps:

I. to specify form of the asymptotic solutions depending on the degree n at the
highest derivative;

II. to deduce di�erential equations for the terms of the asymptotic expansions
and to solve them;

III. to �nd the di�erential equation for phase function φ(t);

IV. to obtain asymptotic estimations for the constructed asymptotic solution:

� in the case of the KdV equation we �nd the accuracy with which the solution
satis�es the equation;

� in the case of the Cauchy problem we estimate di�erence between the exact
and the constructed solutions.
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Structure of the asymptotic solution

Representaion of the asymptotic one-phase soliton-like solution depends on the
degree of a small parameter at the highest derivative, i.e. on the number n.

The solution is written as

u(x , t, ε) =
N∑
j=0

εjuj(x , t) +
N∑
j=0

εjVj(x , t, τ) + O(εN+1), τ =
x − φ(t)

εn/2
, (5)

if n is odd;

and

u(x , t, ε) =
k∑

j=0

εjuj(x , t) +
k∑

j=0

εjVj(x , t, τ) + εk
2N−2k∑
j=1

εj/2uj(x , t)+

+ εk
2N−2k∑
j=1

εj/2Vj(x , t, τ) + O(εN+ 1
2 ), τ =

x − φ(t)√
ε εk

, (6)

if n is even and n = 2k + 1, where k ∈ N ∪ {0}.
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The asymptotic one-phase soliton-like solution

We demonstrate basic ideas of constructing asymptotic soliton-like solution for
the case n = 2.

So, the solution is written as

u(x , t, ε) =
N∑
j=0

εjuj(x , t) +
N∑
j=0

εjVj(x , t, τ) + O(εN+1), τ =
x − φ(t)

ε
. (7)

Here

UN(x , t, ε) =
N∑
j=0

εjuj(x , t) (8)

is a regular part of asymptotic solution (7). It is a background function.

The function

VN(x , t, τ, ε) =
N∑
j=0

εjVj(x , t, τ) (9)

is a singular part of asymptotic solution (7) and re�ects the soliton properties
of the asymptotic solution.
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The asymptotic one-phase soliton-like solution

Preliminary remark.

In the case of the KdV equation with constant coe�cients

ut − 6uux + ε2uxxx = 0 (10)

the asymptotic solution to (10) can be constructed in the form (5), i.e,

u(x , t, ε) =
N∑
j=0

εjuj(x , t) +
N∑
j=0

εjVj(x , t, τ) + O(εN+1), τ =
x − φ(t)

ε
,

where
UN(x , t, ε) ≡ 0,

VN(x , t, τ, ε) ≡ V0(x , t, τ) = −a2

2
cosh−2

(a
2
τ
)
, τ =

x − a2t

ε
.

Equation (10) has exact solution

u(x , t) = −a2

2
cosh−2

(
a

2

x − a2t

ε

)
.

So, asymptotic and exact solutions coincide.
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The asymptotic one-phase soliton-like solution

Preliminary remark (continuation).

Ðèñ.: The soliton solution of the KdV equation (2.10) as ε = 0.25 (at the
left) and ε = 0.75 (at the right).
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Di�erential equations for the regular terms

Terms of the regular part

UN(x , t, ε) =
N∑
j=0

εjuj(x , t)

of the asymptotic solution are de�ned from the following system

a0(x , t)
∂u0
∂t

+ b0(x , t)u0
∂u0
∂x

= 0, (11)

a0(x , t)
∂uj
∂t

+ b0(x , t)u0
∂uj
∂x

+ b0(x , t)uj
∂u0
∂x

= fj(x , t), (12)

where the functions fj(x , t), j = 1,N, are recursively de�ned.

The equations (11) and (12) can be studied through the methods of
characteristics.
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Regular part of the asymptotic

Since equation (11) is quasilinear, and equation (12) is linear, their solutions
can be found, for example, by means of the method of characteristics.

Indeed, for the �rst regular term, according to the method of characteristic we
consider the system of ODEs:

dt

a0(x , t)
=

dx

b0(x , t)u0
=

du0
0
. (13)

The system gives the �rst regular term in implicit form as follows

Φ(u0(x , t), ψ(x , t, u0(x , t))) = 0, (14)

where the function Φ(ξ, η) is arbitrary in the general case, and in the Cauchy
problem it is determined by the initial condition. The functions u0(x , t) and
ψ(x , t, u0(x , t)) are �rst integrals of system (13)

In the similar way we can �nd the higher regular terms in exact form:

dt

a0(x , t)
=

dx

b0(x , t)u0
=

duj
fj − b0(x , t)u0xuj

.

So, we can assume that these solutions are known.
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Di�erential equations for the singular terms

The terms of the singular part

VN(x , t, τ, ε) =
N∑
j=0

εjVj(x , t, τ)

of the asymptotic solution are de�ned as solutions to system of the third order
partial di�erential equations

∂3V0

∂τ 3
+ a0(x , t)

∂V0

∂τ
φ′(t)− b0(x , t)

(
u0
∂V0

∂τ
+ V0

∂V0

∂τ

)
= 0, (15)

∂3Vj

∂τ 3
+ a0(x , t)

∂Vj

∂τ
φ′(t)− b0(x , t)

(
u0
∂Vj

∂τ
+

∂

∂τ
(V0Vj)

)
= Fj(x , t, τ), (16)

where functions

Fj(x , t, τ) = Fj(t,V0(x , t, τ), . . . ,Vj−1(x , t, τ), u0(x , t), . . . , uj(x , t))

are de�ned recurrently after determining the functions u0(x , t), u1(x , t), . . .,
uj(x , t), V0(x , t, τ), V1(x , t, τ), . . ., Vj−1(x , t, τ), j = 1,N.

Equations (15) and (16) are studied in a special way described below in detail.
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Prolongation of the singular terms

It's necessary to take into account the following:
1. the solutions to equations (15), (16) must belong to the spaces G0, G
correspondingly;
2. while searching the terms Vj(x , t, τ), j = 0,N, we have to �nd a function
φ = φ(t) de�ning a discontinuity curve Γ = {(x , t) ∈ R× [0;T ] : x = φ(t)}.

Algorithm of searching the singular terms of the asymptotics:

1. �rstly we �nd V0(x , t, τ) on curve Γ, i.e. v0(t, τ) = V0(x , t, τ)

∣∣∣∣
x=φ(t)

.

Then we prove v0(t, τ) ∈ G0 and put V0(x , t, τ) = v0(t, τ);

2. later we �nd the function vj(t, τ) = Vj(x , t, τ)

∣∣∣∣
x=φ(t)

.

If vj(t, τ) ∈ G0 then we put Vj(x , t, τ) = vj(t, τ).

If vj(t, τ) /∈ G0 then the function is prolonged from the discontinuity curve in a
special way.

While �nding the function v1(t, τ) we get an ordinary di�erential equation for
the phase function φ = φ(t).
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The main term of the singular part

Function v0 = v0(t, τ) = V0(x , t, τ)

∣∣∣∣
x=φ(t)

satis�es nonlinear di�erential

equation

∂3v0
∂τ 3

+ a0(φ, t)
∂v0
∂τ

φ′(t)− b0(φ, t)

(
u0(φ, t)

∂v0
∂τ

+ v0
∂v0
∂τ

)
= 0. (17)

Under assumption

A(φ, t) = −a0(φ, t)φ
′(t) + b0(φ, t)u0(φ, t) > 0 (18)

equation (17) has a solution in the space G0 as

v0(t, τ, φ) = −3
A(φ, t)

b0(φ, t)
cosh−2

(√
A(φ, t)

2
(τ + c0)

)
, (19)

where c0 = const.

Function (19) is similar to soliton solution of the Korteweg�de Vries equation
with constant coe�cients.
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The higher terms of the singular part

Functions vj = vj(t, τ) = Vj(x , t, τ)
∣∣∣
x=φ(t)

, j = 1,N, satisfy linear di�erential

equations

∂3vj
∂τ 3

+ a0(φ, t)
∂vj
∂τ

φ′(t)− b0(φ, t)

(
u0(φ, t)

∂vj
∂τ

+
∂

∂τ
(v0 vj)

)
= Fj(t, τ).

(20)
where the right-side functions Fj(t, τ), j = 1,N, are de�ned recurrently.

After integrating equation (20) we go to linear di�erential equation of the form

Lv = f (21)

with operator

L =
d2

dτ 2
+ q(τ), τ ∈ R.

In this case, the following principal problem arises:

under what conditions on the potential q(τ) of the operator L and the right-side
function f (τ) in (21) does this equation have solutions in the space S(R)?

The answer is given by the following theorem.
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Theorem (Samoilenko Valerii and Samoilenko Yuliia, 2012)

Let the following conditions be ful�lled:

1. q(τ) = q0 + q1(τ) with constant q0 < 0 and the function q1(τ) ∈ S(R);
2. the function f ∈ S(R).

If kernel of the operator L : S(R) → S(R) is trivial,
then equation (21) has a solution in the space S(R)
for any function f ∈ S(R).

Otherwise, if kernel of the operator L : S(R) → S(R) is not trivial,
then equation (21) has a solution in the space S(R) if and only if
the function f ∈ S(R) satis�es the orthogonality condition

+∞∫
−∞

f (τ)v0(τ) dτ = 0 (22)

for any v0 ∈ ker L.

Reference: Samoylenko, V., Samoylenko, Y. Existence of a solution to the
inhomogeneous equation with the one-dimensional Schrodinger operator in the
space of quickly decreasing functions. J Math Sci 187, 70 � 76 (2012).
https://doi.org/10.1007/s10958-012-1050-6
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Lemma 1, existence solution vj(t, τ) ∈ G

From Theorem 1 we derive necessary and su�cient conditions for ful�lment of
inclusion: vj(t, τ) ∈ G .

It means that the solution vj(t, τ) of equation (20) belongs to the space G .

These conditions are given as conditions for the right-side functions of
equations for vj(t, τ) in Lemma 1.

Lemma (1)

Let us suppose Fj(t, τ) ∈ G0, j = 1,N. The solution vj(t, τ), j = 1,N, of
equation (20) exists in the space G i� the orthogonality condition

+∞∫
−∞

Fj(t, τ)v0(t, τ)dτ = 0, j = 1,N, (23)

is true.

Remark. By proving Lemma 1, we obtain an important representation of the
solution vj(t, τ), j = 1,N.
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Representation of vj(t, τ), j = 1,N. Lemma 2

Solutions vj(t, τ) ∈ G , j = 1,N, of equation (20) can be written as

vj(t, τ) = νj(t)ηj(t, τ) + ψj(t, τ),

where ψj(t, τ) ∈ G0; ηj(t, τ) ∈ G is a function such that

lim
τ→−∞

ηj(t, τ) = 1;

νj(t) = [a0(φ, t)φ
′(t)− b0(φ, t)u0(φ, t)]

−1 lim
τ→−∞

Φj(t, τ),

Φj(t, τ) =

τ∫
−∞

Fj(t, ξ)dξ + Ej(t),

and the function Φj(t, τ) satis�es condition lim
τ→+∞

Φj(t, τ) = 0, j = 1,N.

Lemma (2)

If the function Fj(t, τ) ∈ G0, j = 1,N, and the orthogonality condition (23)
takes place, then the function vj(t, τ) ∈ G0, j = 1,N, if and only if

lim
τ→−∞

Φj(t, τ) = 0, j = 1,N. (24)
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Equation for φ = φ(t)

From (23) as j = 1 we obtain a non�linear ordinary di�erential equation of the
second order for the phase function φ = φ(t)

15a0(φ, t) b0(φ, t)
d

dt
A(φ, t)+

[(
10a0x(φ, t) b0(φ, t)−36a0(φ, t) b0x(φ, t)

)
φ′+

(25)

+10b2
0(φ, t)u0x(φ, t) + 3(b2

0(φ, t))xu0(φ, t)− 5a0(φ, t)(b
2
0(φ, t))t

]
A(φ, t) = 0.

Here A(φ, t) = A(φ(t), t) = −a0(φ(t), t)φ
′(t) + b0(φ(t), t)u0(φ(t), t).

Remark 1. In general case equation (25) has a local solution.

Remark 2. In particular case equation (25) is simpli�ed, for example, in the
case a50(x) = c0b

12
0 (x), where c0 ∈ R\{0} is a constant, it is written as

(a0(φ))
2/3 dφ

dt
= c0.

Remark 3. Equation (25) is de�ned through the main terms of the
coe�cients of the vcKdV equation (3) and the main term of the regular part of
the asymptotics.

Valerii & Yuliia Samoilenko Soliton-like solutions // Symmetry, 26/12/2025



Prolongation of the function vj(t, τ)

Recall that:
if vj(t, τ) ∈ G0 then we put Vj(x , t, τ) = vj(t, τ);

if vj(t, τ) /∈ G0 then the function vj(t, τ) is prolonged from the curve Γ
according to the above representation

vj(t, τ) = νj(t)ηj(t, τ) + ψj(t, τ).

Prolongation of the function vj(t, τ), j = 1,N, from the discontinuity curve Γ is
de�ned according to the formula

Vj(x , t, τ) = u−
j (x , t)ηj(t, τ) + ψj(t, τ), (26)

where u−
j (x , t), j = 1,N, is a solution of the Cauchy problem

Λu−
j (x , t) = f −j (x , t), u−

j (x , t)
∣∣
Γ
= νj(t), j = 1,N, (27)

with the operator Λ = a0(x , t)∂t + b0(x , t)u0(x , t)∂x + b0(x , t)u0x(x , t).

The functions f −j (x , t), j = 1,N, are found after substitution solution of form
(26) into vcKdV equation (3) and calculating limit as τ → −∞.
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Justi�cation of the asymptotics. Theorem 2

Theorem (2)

Let the following conditions be supposed:

1. the functions ak(x , t), bk(x , t) ∈ C (∞)(R× [0;T ]), k = 0,N, and
a0(x , t)b0(x , t) ̸= 0;

2. inequality

A(φ, t) = −a0(φ, t)φ
′(t) + b0(φ, t)u0(φ, t) > 0

takes place for the function φ(t), that is a solution to equation (25) for the
phase function;

3. the functions Fj(t, τ) ∈ G0, j = 1,N, and the orthogonality condition (23)
is true;

4. the functions Fj(t, τ), j = 1,N, satisfy conditions (24).
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Justi�cation of the asymptotics. Theorem 2

Theorem (2, continuation )

Then the asymptotic one-phase soliton-like solution to the vcKdV equation (3)
is written as

uN(x , t, ε) = YN(x , t, ε) =
N∑
j=0

εj [uj(x , t) + Vj(t, τ)] , (28)

where

τ =
x − φ(t)

ε
.

In addition, function (28) satis�es (3) on the set R× [0;T ] with accuracy
O(εN).
As τ → ±∞ function (28) satis�es (3) with accuracy O(εN+1).
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Justi�cation of the asymptotics. Theorem 3

Theorem (3)

Let conditions 1 � 3 of Theorem 2 be true and

the Cauchy problem (27) has a solution on the set
{(x , t) ∈ R× [0;T ] : x − φ(t) ≤ 0} (condition 4′).

Then the asymptotic one-phase soliton-like solution can be written as

uN(x , t, ε) = YN(x , t, ε) =
N∑
j=0

εj [uj(x , t) + Vj(x , t, τ)] , (29)

where

τ =
x − φ(t)

ε
.

In addition, function (29) satis�es equation (3) with accuracy O(εN)
on the set R× [0;T ].
As τ → ±∞ solution (29) satis�es (3) with accuracy O(εN+1).
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Example 1: KdV, n = 2

Power of singularity n = 2

Example

ε2uxxx = −
(
x2 + 1

)3/2
ut +

(
x2 + 1

)5/8
uux . (1)

Using the algorithm described above let us construct the �rst order
approximation for the soliton-like solution of the equation. Note this equation is
a special case of the vc-KdV equation when its coe�cients satisfy the relation

a50(x) = −b12
0 (x),

due to which di�erential equation for the phase function φ = φ(t) is
signi�cantly simpli�ed.
We consider zero background case, i.e. UN(x , t, ε) ≡ 0.

The phase function φ(t) satis�es the equation(
φ2 + 1

) dφ

dt
= 1. (2)
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Example 1: KdV, n = 2

Under the initial condition φ(0) = 0 we calculate its solution as

φ(t) =
3

√
3

2
t +

√
1 +

9

4
t2 +

3

√
3

2
t −

√
1 +

9

4
t2. (3)

The function (3) is de�ned for all t.

Condition A(φ(t), t) =
√
φ2(t) + 1 > 0 holds for all t ∈ R.

The main term of the singular part of the asymptotic solution is de�ned as a
solution of di�erential equation of the form

∂3v0
∂τ 3

−
√
φ2(t) + 1

∂v0
∂τ

−
(
φ2(t) + 1

)5/8
v0
∂v0
∂τ

= 0.

Its solution is as follows

v0(t, τ) = −3
(
φ2(t) + 1

)−1/8

cosh−2 (κ(t)τ) , κ(t) = 1

2

(
φ2(t) + 1

)1/4
,

and belongs to the space G0. Hence, we can put
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Example 1: KdV, n = 2

V0(x , t, τ) = v0(t, τ) = −3
(
φ2(t) + 1

)−1/8

cosh−2 (κ(t)τ) . (4)

Ðèñ.: The main term of the asymptotic soliton-like solution of the vcKdV
equation (8) as ε = 0.25 (at the left) and ε = 0.75 (at the right).
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Example 1: KdV, n = 2

To �nd v1(t, τ) we calculate

Φ1(t, τ) =
φ(t)

(φ2(t) + 1)5/8

[
21

2
τ +

45

8
τ cosh−2 (κ(t)τ)−

−15

4
(φ2(t) + 1)−1/4 tanh (κ(t)τ)

]
cosh−2 (κ(t)τ).

The function Φ1(t, τ) ∈ G0.
Accordingly Lemma 2 the �rst singular term on the discontinuity curve Γ
belongs to the space G0. Hence, we can put V1(x , t, τ) = v1(t, τ), where
v1(t, τ) is a solution of equation

∂3v1
∂τ 3

−
√
φ2(t) + 1

∂v1
∂τ

−
(
φ2(t) + 1

)5/8 ∂

∂τ
(v0v1) = F1(t, τ), (5)

where

F1(t, τ) = −
√
φ2(t) + 1

∂v0
∂t

+
3

2

τ√
φ2(t) + 1

∂v0
∂τ

+
5

8

τ

(φ2(t) + 1)3/8
v0
∂v0
∂τ

.
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Example 1: KdV, n = 2
By integrating di�erential equation (5), we obtain the �rst singular term as

V1(x , t, τ) = v1(t, τ) =
15

(φ2(t) + 1)9/8
τ

2
cosh−4 (κ(t)τ)×

×
[
37

4

(
cosh2 (κ(t)τ)− cosh−2 (κ(t)τ)

)
− 1

2

]
+

+
3φ(t)

(φ2(t) + 1)11/8
tanh (κ(t)τ) cosh−2 (κ(t)τ)× (6)

×
[
3

8
+

155

8
cosh−2 (κ(t)τ) + 1

32
cosh−4 (κ(t)τ) + 165

2
ln |cosh (κ(t)τ)|

]
−

− 3φ(t)

(φ2(t) + 1)7/8

[
525

32
τ 2 cosh−4 (κ(t)τ) + 5

8

]
tanh (κ(t)τ) cosh−2 (κ(t)τ).

Thus, the �rst order approximation of the asymptotic soliton-like solution of
the vcKdV equation (8) can be represented as

Y1(x , t, ε) = V0(x , t, τ) + εV1(x , t, τ), (7)

where the functions V0(x , t, τ) and V1(x , t, τ) are given by formulae (4), (6),
and τ = (x − φ(t))/ε.
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Example 1: KdV, n = 2

Ðèñ.: The �rst order approximation for the asymptotic soliton-like
solution of the vcKdV equation (8) as ε = 0.25 (at the left) and ε = 0.75
(at the right).

Function (7) is quickly decreasing function with respect to variable τ . Its
graphs at ε = 0.25 and ε = 0.75 are demonstrated on the Fig. 3.
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Example 2: KdV, n = 1

Power of singularity n = 1

Example

εuxxx = −(x2 + 1)3/2ut + uux . (8)

Consider zero background case, i.e. UN(x , t, ε) ≡ 0.

The phase function φ(t) satis�es the di�erential equation

(φ2 + 1)5/2
dφ

dt
= γ, γ ∈ R. (9)

Lemma

For any positive γ the Cauchy problem for di�erential equation (9) under initial
condition φ(0) = 0 has solution which is implicitly given by formula

φ
√
φ2 + 1

(
8φ4 + 26φ2 + 33

)
+ 15 ln |φ+

√
φ2 + 1| = 48γt. (10)

This solution is de�ned for all t ∈ R.
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Example 2: KdV, n = 1

The main term of the singular part

V0(x , t, τ) = v0(t, τ) = −3 cosh−2 ϑ(t, τ)

φ2 + 1
, (11)

where

ϑ(t, τ) =

√
γ τ

2
√
φ2 + 1

, τ =
x − φ√

ε
, φ = φ(t), (t, τ) ∈ R2.

To �nd the function v1(t, τ) we calculate

Φ1(t, τ) =
12φ

(φ2 + 1)3

[√
φ2 + 1 (tanhϑ(t, τ)− 1)− τ cosh−2 ϑ(t, τ)

]
.

The function Φ1(t, τ) /∈ G 0, but Φ1(t, τ) ∈ G .
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Example 2: KdV, n = 1

The �rst singular term on the discontinuity curve

v1(t, τ) =
3φ

(φ2 + 1)2

[[(
36− 10

√
φ2 + 1

)
τ +

(
(20τ + 12)

√
φ2 + 1−

−10τ)× cosh−2 ϑ(t, τ)−
(
30 + 10

√
φ2 + 1

)
τ cosh−4 ϑ(t, τ)−

−

(
5
√
φ2 + 1 +

1√
φ2 + 1

− 35
√
φ2 + 1 cosh−2 ϑ(t, τ)+

+
105 τ 2

4
√
φ2 + 1

cosh−4 ϑ(t, τ) + 140
√
φ2 + 1 ln coshϑ(t, τ)− 3τ

)
×

× tanhϑ(t, τ)

]
cosh−2 ϑ(t, τ)− 4

√
φ2 + 1 (tanhϑ(t, τ)− 1)

]
. (12)
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Example 2: KdV, n = 1

Thus, the function v1(t, τ) is represented as v1(t, τ) = ν1(t)η1(t, τ) +ψ1(t, τ),
where

ν1(t) = −(φ2 + 1) lim
τ→−∞

Φ1(t, τ) = 24
φ
√
φ2 + 1

(φ2 + 1)2
, (13)

η1(t, τ) = −1

2
tanhϑ(t, τ) +

1

2
, ψ1(t, τ) = v1(t, τ)− ν1(t)η1(t, τ). (14)

To prolong the function v1(t, τ) from the discontinuity curve Γ we solve the
Cauchy problem

− (x2 + 1)−3/2 ∂

∂t
u−
1 (x , t) = 0, u−

1 (x , t)

∣∣∣∣
Γ

= ν1(t) (15)

and obtain its solution as follows

u−
1 (x , t) = 24x(x2 + 1)−3/2. (16)

The �rst term of the singular part is found in explicit form

V1(x , t, τ) = u−
1 (x , t)η1(t, τ) + ψ1(t, τ). (17)
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Example 3: vc Burgers' equation

Let us consider the Burgers equation with speci�ed variable coe�cients:

Example

εuxx =
(
t2 + 1 + ε(x2 + 1)2

)
ut +

(
1 + ε

(x2 + 1)2

t2 + 1

)
uux (18)

and construct the �rst approximation for its asymptotic solution for the case of
zero background.

The �rst coe�cients of asymptotic series in (18) are written as

a0(x , t) = t2 + 1, a1(x , t) = (x2 + 1)2, (19)

b0(x , t) = 1, b1(x , t) =
(x2 + 1)2

t2 + 1
. (20)

Taking into account (19), (20) and zero background conditions

u0(x , t) = u1(x , t) = 0,

from (25) we get equation for the function φ = φ(t) in the form:

(t2 + 1)φ′ = ρ, ρ ̸= 0.

Solution of this equation with initial condition φ(0) = 0 is global (is de�ned for
all t ∈ R) and is written as φ(t) = ρ arctan t .
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Example 3: vc Burgers' equation

Then we �nd A = A(t) = ρ, β = ρ/2.

You can easily make sure that all conditions of Theorem 1 and Theorem 2 are
ful�lled.

The main term of the singular part of the asymptotics for equation (18) is
given with the following formula

V0(x , t, ε) = 1− tanh
(
ρ

x − ρ arctan t

2ε

)
, (21)

and the �rst term of the singular part of the asymptotics is written as

V1(x , t, ε) =

[
c − ρ2

(
1 + ρ2 arctan2 t

)2
t2 + 1

x − ρ arctan t

2ε

]
× cosh−2

(
ρ

x − ρ arctan t

2ε

)
. (22)

It is easy to see that V0(x , t, ε) ∈ G , V1(x , t, ε) ∈ G0.
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Example 3: vc Burgers' equation

The function

Y1(x , t, ε) = 1− tanh
(x − ρ arctan t

2ε

)
+ ε×[

c − ρ2
(
1 + ρ2 arctan2 t

)2
t2 + 1

x − ρ arctan t

2ε

]
× cosh−2

(
ρ
x − ρ arctan t

2ε

)
(23)

is the �rst asymptotic step-like approximation for solution of equation (18).

According to Theorem 2 the constructed asymptotic solution satis�es the
equation with an asymptotical accuracy O(ε).

Moreover, the �rst approximation satis�es the equation with an accuracy O(ε2)
as τ → ±∞.

Graphs of functions (21), (22) and (23) are given for values ρ = 1, c = 0,
ε = 0, 9, ε = 0, 45 and ε = 0, 15.
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Figures as ε = 0.9 and ε = 0.45

Fig. 1: The main term of the asymptotic solution V0(x , t, ε) as ε = 0.9
(at the left), and ε = 0.45 (at the right )
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Figures as ε = 0.9 and ε = 0.15

Fig. 2: The main term of the asymptotic solution V0(x , t, ε) as ε = 0.9
(at the left) and ε = 0.15 (at the right).
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Figures as ε = 0.9 and ε = 0.45

Fig. 3: The �rst term V1(x , t, ε) of asymptotic solution as ε = 0.9
(at the left) and ε = 0.45 (at the right).
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Figures as ε = 0.9 and ε = 0.15

Fig. 4: The �rst term V1(x , t, ε) of asymptotic solution as ε = 0.9
(at the left) and ε = 0.15 (at the right).
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.

Thank you very much

for your attention !

Have a nice day !
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