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The study of Lie symmetries for Schrödinger equations was started in the 1970s with the linear
case, and it has been continued up to now for more complicated classes of linear Schrödinger
equations, see [1, 2, 6] and references therein. In the paper [1], the notion of uniformly semi-
normalized classes of differential equations was introduced and the algebraic method of group
classification for such classes was suggested. Then this method was used for the complete
group classification of the class ℱ of (1+1)-dimensional linear Schrödinger equations with time-
dependent complex-valued potentials, which are of the general form

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + 𝑉 (𝑡, 𝑥)𝜓 = 0, (1)

where 𝜓 is an unknown complex-valued function of two real independent variables (𝑡, 𝑥) and 𝑉
is an arbitrary smooth complex-valued potential also depending on (𝑡, 𝑥). The equivalence
groupoid 𝒢∼

ℱ and the equivalence group 𝐺∼
ℱ of the class ℱ were computed, and it was thus shown

that this class is uniformly semi-normalized with respect to the linear superposition of solutions.
Hence, the group classification of ℱ reduces to the classification of specific low-dimensional sub-
algebras of the associated equivalence algebra. The subclass ℱR of linear Schrödinger equations
with real-valued potentials was considered in the same framework based on the study of the
entire class ℱ . The results of [1] on semi-normalized classes of systems of differential equations
were developed in [2] and then applied therein to study transformational properties of multidi-
mensional linear Schrödinger equations with time-dependent complex-valued potentials and to
completely solve the group classification problem for such equations in space dimension two.

In the present work, we consider the subclasses ℱ ′ and ℱ ′
R of the class ℱ that consist of the

equations of the form (1) with time-independent complex- and real-valued potentials, respec-
tively. Based on the description of 𝒢∼

ℱ , we construct the equivalence groups 𝐺
∼
ℱ ′ and 𝐺∼

ℱ ′
R
of the

above subclasses and describe their equivalence groupoids via classifying the admissible trans-
formations within these subclasses. We exhaustively solve the group classification problems for
them up to general point equivalence and up to the equivalences generated by the corresponding
equivalence groups. We also describe the point symmetry pseudogroups of the linear Schrödinger
equations from the class ℱ ′ that appear as 𝐺∼

ℱ ′-inequivalent essential Lie-symmetry extensions
in the course of group classification of this class.

Theorem 1. (i) The equivalence group 𝐺∼
ℱ ′ of the class ℱ ′ consists of the point transformations

in the space with the coordinates (𝑡, 𝑥, 𝜓, 𝜓*, 𝑉, 𝑉 *) whose (𝑡, 𝑥, 𝑉 )-components are of the form

𝑡 = 𝜆1𝑡+ 𝜆0, 𝑥̃ = 𝜀|𝜆1|1/2𝑥+ 𝜈, 𝜓 = e𝑖𝜆3𝑡+𝑖𝜆2+𝜆5𝑡+𝜆4𝜓, 𝑉 =
𝑉

|𝜆1|
+
𝜆3 − 𝑖𝜆5
𝜆1

,

where 𝜆0, . . . , 𝜆5 and 𝜈 are real constants with 𝜆1 ̸= 0, and 𝜀 := ±1.
(ii) The equivalence group 𝐺∼

ℱ ′
R
of the class ℱ ′

R is singled out from the group 𝐺∼
ℱ ′ by the

constraint 𝜆5 = 0.
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Here and in what follows, the hat over a complex value in a transformation denotes the same
value or its complex conjugate if the derivative of the 𝑡-component of this transformation or,
equivalently, the constant 𝜀′ is positive or negative, respectively.

Theorem 2. (i) A minimal self-consistent generating (up to the 𝐺∼
ℱ ′-equivalence and the linear

superposition of solutions) set of admissible transformations for the class ℱ ′ is the union of the
following families of admissible transformations (𝑉,Φ, 𝑉 ):

𝒯1𝜇 :=
(︁ 𝜇
𝑥2

− 𝑥2, Φ1,
𝜇

𝑥̃2

)︁
, Φ1 : 𝑡 =

1

2
tan 2𝑡, 𝑥̃ =

𝑥

cos 2𝑡
, 𝜓 = | cos 2𝑡|1/2e𝑖 tan(2𝑡)𝑥2/2𝜓,

𝒯2𝜇 :=
(︁ 𝜇
𝑥2

+ 𝑥2, Φ2,
𝜇

𝑥̃2

)︁
, Φ2 : 𝑡 =

1

4
e4𝑡, 𝑥̃ = e2𝑡𝑥, 𝜓 = e𝑖𝑥

2/2−𝑡𝜓,

𝒯3𝛼 := (𝑖𝛼𝑥+ 𝑥, Φ3𝛼, 𝑖𝛼𝑥̃) , Φ3𝛼 : 𝑡 = 𝑡, 𝑥̃ = 𝑥− 𝑡2, 𝜓 = e−𝑖𝑡𝑥+(𝑖+𝛼)𝑡3/3𝜓,

𝒯4𝛼𝜅 :=
(︀
𝑖𝛼𝑥− 𝑥2, Φ4𝛼𝜅, 𝑖𝛼𝑥̃− 𝑥̃2

)︀
,

Φ4𝛼𝜅 : 𝑡 = 𝑡, 𝑥̃ = 𝑥+ 2𝜅 cos 2𝑡, 𝜓 = e𝜅 sin 2𝑡 (−2𝑖𝑥−2𝑖𝜅 cos 2𝑡−𝛼)𝜓,

𝒯5𝛼𝜅𝜈 :=
(︀
𝑖𝛼𝑥+ 𝑥2, Φ5𝛼𝜅𝜈 , 𝑖𝛼𝑥̃+ 𝑥̃2

)︀
,

Φ5𝛼𝜅𝜈 : 𝑡 = 𝑡, 𝑥̃ = 𝑥+ 2𝜅e2𝑡 + 2𝜈e−2𝑡, 𝜓 = e(𝜅e
2𝑡−𝜈e−2𝑡)(2𝑖𝑥+2𝑖𝜅e2𝑡+2𝑖𝜈e−2𝑡−𝛼)𝜓,

where 𝜇 ∈ C and 𝛼, 𝜅, 𝜈 ∈ R with 𝛼𝜅 ̸= 0 in the fourth family, (𝛼𝜅, 𝛼𝜈) ̸= (0, 0) in the fifth
family, and, modulo the 𝐺∼

ℱ ′-equivalence, Im𝜇 ⩾ 0, 𝛼 ⩾ 0 in the third family, 𝛼 > 0 and 𝜅 > 0
in the fourth family, and 𝛼 > 0 and (𝜅 > 0 or 𝜅 = 0 and 𝜈 > 0 in the fifth family.

(ii) A minimal self-consistent generating (up to the 𝐺∼(ℱ ′
R)-equivalence and the linear su-

perposition of solutions) set of admissible transformations for the class ℱ ′
R is the union of the

following families of admissible transformations {𝒯1𝜇}, {𝒯2𝜇}, {𝒯30}, {𝒯40𝜅} and {𝒯50𝜅𝜈}, where
𝜇, 𝜅, 𝜈 ∈ R, 𝜅 ̸= 0 in the fourth family, (𝜅, 𝜈) ̸= (0, 0) in the fifth family.

Since the classes ℱ ′ and ℱ ′
R are not normalized, to exhaustively solve the group classifica-

tion problems for these classes up to the general point equivalence and up to the equivalences
generated by the corresponding equivalence groups, we use results of [1] and Theorems 1 and 2.

Corollary 3. (i) Complete lists of 𝐺∼
ℱ ′- and 𝒢∼

ℱ ′-inequivalent essential Lie-symmetry extensions
in the class ℱ ′ are exhausted by the cases and Cases 1, 2, 3a, 4a and 5a of Table 1, respectively.

(ii) Complete lists of 𝐺∼
ℱ ′- and 𝒢∼

ℱ ′-inequivalent essential Lie-symmetry extensions in the
class ℱ ′

R are exhausted by Cases 0, 4a, 4b, 4c, and 5a–5d and by Cases 0, 4a and 5a of Table 1,
where 𝑉 (𝑥) is an arbitrary real-valued potential, and 𝜇 ∈ R̸=0.

For each of the essential Lie-symmetry extensions within the class ℱ ′ that are listed in Table 1,
we compute the corresponding point symmetry pseudogroup.

Theorem 4. The point symmetry pseudogroups of the (1+1)-dimensional linear Schrödinger
equations of the form (1) with potentials of Cases 1, 2 and 3a of Table 1 are respectively consti-
tuted by the following point transformations:

𝑉 = 𝑖𝛼𝑥− 𝑥2 : 𝑡 = 𝜀𝑡+ 𝜆, 𝑥̃ = 𝜀𝑥+ 2𝜅 cos(2𝑡+ 𝜈),

𝜓 = 𝜎 exp
(︀
𝜅 sin(2𝑡+ 𝜈)(−2𝑖𝑥− 2𝑖𝜀𝜅 cos(2𝑡+ 𝜈)− 𝜀𝛼)

)︀
(𝜓 + Λ̂),

𝑉 = 𝑖𝛼𝑥+ 𝑥2 : 𝑡 = 𝜀𝑡+ 𝜆, 𝑥̃ = 𝜀𝑥+ 2𝜅e2𝑡 + 2𝜈e−2𝑡,

𝜓 = 𝜎 exp
(︀
(𝜅e2𝑡 − 𝜈e−2𝑡)(2𝑖𝑥+ 2𝑖𝜀𝜅e2𝑡 + 2𝑖𝜀𝜈e−2𝑡 − 𝜀𝛼)

)︀
(𝜓 + Λ̂),

𝑉 = 𝑖𝑥 : 𝑡 = 𝜀𝑡+ 𝜆, 𝑥̃ = 𝜀𝑥+ 2𝜅𝑡+ 𝜈, 𝜓 = 𝜎 exp
(︀
𝑖𝜅𝑥+ 𝜀𝑖𝜅2𝑡− 𝜀𝜅𝑡2 − 𝜀𝜈𝑡

)︀
(𝜓 + Λ̂),

where 𝛼, 𝜆, 𝜅 and 𝜈 are arbitrary real constants with 𝛼 ̸= 0, 𝜎 is an arbitrary nonzero complex
constant, 𝜀 = ±1, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of the corresponding equation.
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Table 1. Group classification of the class ℱ ′. 𝜇 ∈ C ̸=0 with Im𝜇 ⩾ 0, 𝛼 ∈ R>0.

no. 𝑉 Basis of gess𝑉

0 𝑉 (𝑥) 𝑀, 𝐼, 𝐷(1)

1 𝑖𝛼𝑥− 𝑥2 𝑀, 𝐼, 𝐷(1), 𝑃 (cos 2𝑡)− 1
2𝛼 sin 2𝑡 𝐼, 𝑃 (sin 2𝑡) + 1

2𝛼 cos 2𝑡 𝐼

2 𝑖𝛼𝑥+ 𝑥2 𝑀, 𝐼, 𝐷(1), 𝑃 (e2𝑡)− 1
2𝛼e

2𝑡 𝐼, 𝑃 (e−2𝑡) + 1
2𝛼e

−2𝑡 𝐼

3𝑎 𝑖𝑥 𝑀, 𝐼, 𝐷(1), 𝑃 (1)− 𝑡𝐼, 𝑃 (𝑡)− 1
2 𝑡

2𝐼

3𝑏 𝑖𝛼𝑥+ 𝑥 𝑀, 𝐼, 𝐷(1), 𝑃 (1) + 𝑡𝑀 − 𝛼𝑡𝐼, 𝑃 (𝑡) + 1
2 𝑡

2𝑀 − 1
2𝛼𝑡

2𝐼

4𝑎 𝜇𝑥−2 𝑀, 𝐼, 𝐷(1), 𝐷(𝑡), 𝐷(𝑡2)− 1
2 𝑡𝐼

4𝑏 𝜇𝑥−2 − 𝑥2 𝑀, 𝐼, 𝐷(1), 𝐷(cos 4𝑡) + sin 4𝑡 𝐼, 𝐷(sin 4𝑡)− cos 4𝑡 𝐼

4𝑐 𝜇𝑥−2 + 𝑥2 𝑀, 𝐼, 𝐷(1), 𝐷(e−4𝑡) + e−4𝑡𝐼, 𝐷(e4𝑡)− e4𝑡𝐼

5𝑎 0 𝑀, 𝐼, 𝐷(1), 𝐷(𝑡), 𝐷(𝑡2)− 1
2 𝑡𝐼, 𝑃 (1), 𝑃 (𝑡)

5𝑏 −𝑥2 𝑀, 𝐼, 𝐷(1), 𝐷(cos 4𝑡) + sin 4𝑡 𝐼, 𝐷(sin 4𝑡)− cos 4𝑡 𝐼, 𝑃 (cos 2𝑡), 𝑃 (sin 2𝑡)

5𝑐 𝑥2 𝑀, 𝐼, 𝐷(1), 𝐷(e−4𝑡) + e−4𝑡𝐼, 𝐷(e4𝑡)− e4𝑡𝐼, 𝑃 (e−2𝑡), 𝑃 (e2𝑡)

5𝑑 𝑥 𝑀, 𝐼, 𝐷(1), 𝐷(𝑡) + 3
2𝑃 (𝑡

2) + 1
2 𝑡

3𝑀, 𝐷(𝑡2) + 𝑃 (𝑡3) + 1
4 𝑡

4𝑀 − 1
2 𝑡𝐼,

𝑃 (1) + 𝑡𝑀, 𝑃 (𝑡) + 1
2 𝑡

2𝑀

Corollary 5. The point symmetry pseudogroup 𝐺𝑖𝛼𝑥+𝑥 of the (1+1)-dimensional linear Schrö-
dinger equation of the form (1) with the potential 𝑉 (𝑥) = 𝑖𝛼𝑥 + 𝑥, where 𝛼 ∈ R ̸=0, consists of
the point transformations

𝑡 = 𝜀𝑡+ 𝜆, 𝑥̃ = 𝜀𝑥+ (1− 𝜀)𝑡2 + 2(𝜅+ 𝜀𝜆)𝑡+ 𝜆2 + 𝜈,

𝜓 = 𝜎 exp
(︀
𝑖(𝜀𝑡+ 𝜆)(𝜀𝑥− 𝜀𝑡2 + 2𝜅𝑡+ 𝜈) + 𝑖𝜅(𝑥− 𝑡2)− 𝜀𝑡(𝑖𝑥+ 𝜅𝛼𝑡+ 𝛼𝜈 − 𝑖𝜅2)

+ 1
3(2𝑖− 𝛼)(𝜀𝑡+ 𝜆)3 + 1

3(𝑖𝜀+ 𝛼)𝑡3
)︀
(𝜓 + Λ̂),

where 𝜀 = ±1, 𝜅, 𝜆 and 𝜈 are arbitrary real constants, 𝜎 is an arbitrary nonzero complex
constant, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

For each of the above potentials, 𝑉 (𝑥) = 𝑖𝛼𝑥+ 𝛿𝑥2 with 𝛿 ∈ {−1, 0, 1} and 𝑉 (𝑥) = 𝑖𝛼𝑥+ 𝑥,
the pseudogroup 𝐺𝑉 splits over 𝐺lin

𝑉 , 𝐺 = 𝐺ess
𝑉 ⋉ 𝐺lin

𝑉 . Here the subgroup 𝐺ess
𝑉 of 𝐺𝑉 consists

of the transformations of the corresponding form from the theorem with Λ = 0 and with the
natural domains, which coincide with the entire space with the coordinates (𝑡, 𝑥, 𝜓, 𝜓*). Thus,
the subgroup 𝐺ess

𝑉 is a five-dimensional Lie group consisting of two components. We call the sub-
group 𝐺ess

𝑉 the essential point symmetry group of the equation ℱ𝑉 . Its identity component 𝐺ess
𝑉,id

is singled out by the constraint 𝜀 = 1. The only independent (up to composing with elements
of 𝐺ess

𝑉,id) discrete transformation in 𝐺ess
𝑉 is the composition of the the Wigner time reflection and

the space reflection, 𝑡 = −𝑡, 𝑥̃ = −𝑥, 𝜓 = 𝜓* for the potentials 𝑉 = 𝑖𝛼𝑥+𝛿𝑥2 with 𝛿 ∈ {−1, 0, 1}
and a more complicated transformation 𝑡 = −𝑡, 𝑥̃ = −𝑥, 𝜓 = exp

(︀
2𝑖𝑡(𝑥− 𝑡2) + 2

3𝛼𝑡
3
)︀
𝜓* for the

potential 𝑉 (𝑥) = 𝑖𝛼𝑥+ 𝑥

Theorem 6. (i) The point symmetry pseudogroup 𝐺0 of the free (1+1)-dimensional linear
Schrödinger equation consists of the point transformations

𝑡 =
𝜆1𝑡+ 𝜆2
𝜆3𝑡+ 𝜆4

, 𝑥̃ =
𝑥+ 𝜅𝑡+ 𝜈

𝜆3𝑡+ 𝜆4
,

𝜓 = 𝜎
√︀

|𝜆3𝑡+ 𝜆4| exp
(︂
−𝑖𝜀′𝜆3𝑥

2 − (𝜅𝜆4 − 𝜈𝜆3)(2𝑥+ 𝜅𝑡+ 𝜈)

4(𝜆3𝑡+ 𝜆4)

)︂
(𝜓 + Λ̂),

(2)
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where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜅 and 𝜈 are arbitrary real constants with 𝜆1𝜆4 − 𝜆2𝜆3 := 𝜀′ = ±1, 𝜎 is an
arbitrary nonzero complex constant, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

(ii) The point symmetry pseudogroup 𝐺𝑉 of the (1+1)-dimensional linear Schrödinger equa-
tion of the form (1) with the potential 𝑉 (𝑥) = 𝜇/𝑥2 is constituted by the point transformations
of the form (2) with 𝜅 = 𝜈 = 0 if 𝜇 ∈ R ∖ {0} and in addition with 𝜀′ = 1 if 𝜇 ∈ C ∖ R, where
Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

Corollary 7. The point symmetry pseudogroup 𝐺−𝑥2 of the (1+1)-dimensional linear Schrödin-
ger equation of the form (1) with the potential 𝑉 (𝑥) = −𝑥2 consists of the point transformations

𝑡 =
1

2
arctan

2𝜚

𝜍
, 𝑥̃ =

2𝑥+ 𝜗

𝜍(1 + 4𝜚2/𝜍2)1/2
,

𝜓 = 𝜎(𝜍2 + 4𝜚2)1/4 exp

(︂
−𝑖𝜚(2𝑥+ 𝜗)2

𝜍(𝜍2 + 4𝜚2)
− 𝑖

𝜀′

4

𝜍𝑡
𝜍
𝑥2 + 𝑖𝜀′(𝜅𝜆4 − 𝜈𝜆3)

4𝑥+ 𝜗

4𝜍

)︂
(𝜓 + Λ̂),

(3)

where 𝜚 := 𝜆1 sin 2𝑡 + 2𝜆2 cos 2𝑡, 𝜍 := 𝜆3 sin 2𝑡 + 2𝜆4 cos 2𝑡, 𝜗 := 𝜅 sin 2𝑡 + 2𝜈 cos 2𝑡, 𝜆1, 𝜆2, 𝜆3,
𝜆4, 𝜅 and 𝜈 are arbitrary real constants with 𝜆1𝜆4 − 𝜆2𝜆3 := 𝜀′ = ±1, 𝜎 is an arbitrary nonzero
complex constant, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

The point symmetry pseudogroup 𝐺𝑉 of the (1+1)-dimensional linear Schrödinger equation
of the form (1) with the potential 𝑉 (𝑥) = 𝜇/𝑥2 − 𝑥2 is constituted by the point transformations
of the form (3) with 𝜅 = 𝜈 = 0 if 𝜇 ∈ R ∖ {0} and in addition with 𝜀′ = 1 if 𝜇 ∈ C ∖ R, where
Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

Corollary 8. The point symmetry pseudogroup 𝐺𝑥2 of the (1+1)-dimensional linear Schrödin-
ger equation of the form (1) with the potential 𝑉 (𝑥) = 𝑥2 consists of the point transformations

𝑡 =
1

4
ln

⃒⃒⃒⃒
4
𝜚

𝜍

⃒⃒⃒⃒
, 𝑥̃ =

4𝑥+ 𝜗

2𝜍|𝜚/𝜍|1/2
,

𝜓 = 𝜎|𝜚𝜍|1/4 exp
(︂
−𝑖(4𝑥+ 𝜗)2

8|𝜚𝜍|
− 𝑖

𝜀′

4

𝜍𝑡
𝜍
𝑥2 + 𝑖𝜀′(𝜅𝜆4 − 𝜈𝜆3)

8𝑥+ 𝜗

4𝜍

)︂
(𝜓 + Λ̂),

(4)

where 𝜚 := 𝜆1e
2𝑡+4𝜆2e

−2𝑡, 𝜍 := 𝜆3e
2𝑡+4𝜆4e

−2𝑡, 𝜗 := 𝜅e2𝑡+4𝜈e−2𝑡, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜅 and 𝜈 are
arbitrary real constants with 𝜆1𝜆4 − 𝜆2𝜆3 := 𝜀 = ±1, 𝜀′ := 𝜀 sgn(𝜚𝜍), 𝜎 is an arbitrary nonzero
complex constant, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

The point symmetry pseudogroup 𝐺𝑉 of the (1+1)-dimensional linear Schrödinger equation
of the form (1) with the potential 𝑉 (𝑥) = 𝜇/𝑥2 + 𝑥2 is constituted by the point transformations
of the form (4) with 𝜅 = 𝜈 = 0 if 𝜇 ∈ R ∖ {0} and in addition with 𝜀′ = 1 if 𝜇 ∈ C ∖ R, where
Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.

Corollary 9. The point symmetry pseudogroup 𝐺𝑥 of the (1+1)-dimensional linear Schrödinger
equation of the form (1) with the potential 𝑉 (𝑥) = 𝑥 consists of the point transformations

𝑡 =
𝜆1𝑡+ 𝜆2
𝜆3𝑡+ 𝜆4

, 𝑥̃ =
𝑥− 𝑡2 + 𝜅𝑡+ 𝜈

𝜆3𝑡+ 𝜆4
+

(︂
𝜆1𝑡+ 𝜆2
𝜆3𝑡+ 𝜆4

)︂2

,

𝜓 = 𝜎
√︀

|𝜆3𝑡+ 𝜆4| exp

(︃
𝑖
𝜆1𝑡+ 𝜆2

(𝜆3𝑡+ 𝜆4)2
(𝑥− 𝑡2 + 𝜅𝑡+ 𝜈) +

2

3
𝑖

(︂
𝜆1𝑡+ 𝜆2
𝜆3𝑡+ 𝜆4

)︂3
)︃

× exp

(︂
−𝑖𝜀′𝜆3(𝑥− 𝑡2)2 − (𝜅𝜆4 − 𝜈𝜆3)(2𝑥− 2𝑡2 + 𝜅𝑡+ 𝜈)

4(𝜆3𝑡+ 𝜆4)
− 𝑖𝜀′𝑡𝑥+ 𝑖𝜀′

𝑡3

3

)︂
(𝜓 + Λ̂),

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜅 and 𝜈 are arbitrary real constants with 𝜆1𝜆4 − 𝜆2𝜆3 := 𝜀′ = ±1, 𝜎 is an
arbitrary nonzero complex constant, and Λ = Λ(𝑡, 𝑥) is an arbitrary solution of this equation.
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In [4], Niederer claimed that the free (1+1)-dimensional linear Schrödinger equation admits
the single independent “kinematical” discrete point symmetry transformation

K′ : 𝑡 = −1

𝑡
, 𝑥̃ =

𝑥

𝑡
, 𝜓 = |𝑡|

1
2 e−𝑖𝑥

2

4𝑡 𝜓.

Consider the continuous one-parameter subgroup of 𝐺0 that is singled out by the constraints
𝜆1 = 𝜆4 = cos 𝜖, 𝜆2 = −𝜆3 = sin 𝜖, 𝜅 = 𝜈 = 0, 𝜎 = 1 and Λ = 0,

Q+(𝜖) : 𝑡 =
sin 𝜖+ 𝑡 cos 𝜖

cos 𝜖− 𝑡 sin 𝜖
, 𝑥̃ =

𝑥

cos 𝜖− 𝑡 sin 𝜖
, 𝜓 = | cos 𝜖− 𝑡 sin 𝜖|

1
2 exp

(︂
− 𝑖𝑥2 sin 𝜖

4(cos 𝜖− 𝑡 sin 𝜖)

)︂
𝜓,

where 𝜖 is an arbitrary constant parameter, which is defined by the corresponding transforma-
tion up to a summand 2𝜋𝑘, 𝑘 ∈ Z. The Jacobian of Q+(𝜖) is positive and negative for all values
of (𝑡, 𝑥, 𝜓) if 𝜖 = 0 and 𝜖 = 𝜋, respectively. For 𝜖 ∈ (0, 𝜋) ∪ (𝜋, 2𝜋), the transformation Q+(𝜖)
is not defined if 𝑡 = cot 𝜖, and for the other values of (𝑡, 𝑥, 𝜓) the sign of its Jacobian coincides
with sgn(cos 𝜖 − 𝑡 sin 𝜖). The free (1+1)-dimensional linear Schrödinger equation is invariant
with respect to the involution J := Q+(𝜋) only alternating the sign of 𝑥 and the transforma-
tionK′ := Q+(−1

2𝜋). The transformations J andK′ seem to be discrete point symmetry transfor-
mations of the free (1+1)-dimensional linear Schrödinger equation. However, this is not the case
when considering the natural group multiplication in 𝐺0, which is a modified composition [3] of
transformations of the specific form (1). The Jacobian of J is equal to −1 for all values of (𝑡, 𝑥, 𝜓).
Nevertheless, this involutive transformation belongs to the one-parameter subgroup {Q+(𝜖)}
of 𝐺0, and hence it lies in the identity component of the pseudogroup 𝐺0. A similar situation
occurs for the transformation K′, the sign of whose Jacobian is equal to sgn 𝑡. Therefore, the
above Niederer’s claim is incorrect since K′ is not a discrete symmetry: it belongs to the same
connected component of the symmetry pseudogroup 𝐺0 as the identity transformation.

Summing up, each of the (1+1)-dimensional linear Schrödinger equations with the potentials
𝑉 = 𝜇/𝑥2 + 𝛿𝑥2, where 𝜇 ∈ R and 𝛿 ∈ {−1, 0, 1}, including the free case, or 𝑉 (𝑥) = 𝑥
admits a single independent discrete point symmetry, which is the Wigner time reflection
𝑡 = −𝑡, 𝑥̃ = 𝑥, 𝜓 = 𝜓*. The (1+1)-dimensional linear Schrödinger equations with the poten-
tials 𝑉 = 𝜇/𝑥2 + 𝛿𝑥2, where 𝜇 ∈ C ∖R and 𝛿 ∈ {−1, 0, 1}, possess no discrete point symmetries.
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