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The study of Lie symmetries for Schrodinger equations was started in the 1970s with the linear
case, and it has been continued up to now for more complicated classes of linear Schrodinger
equations, see [1,2,6] and references therein. In the paper [1], the notion of uniformly semi-
normalized classes of differential equations was introduced and the algebraic method of group
classification for such classes was suggested. Then this method was used for the complete
group classification of the class F of (1+1)-dimensional linear Schrédinger equations with time-
dependent complex-valued potentials, which are of the general form

where v is an unknown complex-valued function of two real independent variables (¢, ) and V/
is an arbitrary smooth complex-valued potential also depending on (t,z). The equivalence
groupoid G7 and the equivalence group G'7 of the class F were computed, and it was thus shown
that this class is uniformly semi-normalized with respect to the linear superposition of solutions.
Hence, the group classification of F reduces to the classification of specific low-dimensional sub-
algebras of the associated equivalence algebra. The subclass Fg of linear Schrédinger equations
with real-valued potentials was considered in the same framework based on the study of the
entire class F. The results of [1] on semi-normalized classes of systems of differential equations
were developed in [2] and then applied therein to study transformational properties of multidi-
mensional linear Schrodinger equations with time-dependent complex-valued potentials and to
completely solve the group classification problem for such equations in space dimension two.

In the present work, we consider the subclasses F' and F, of the class F that consist of the
equations of the form (1) with time-independent complex- and real-valued potentials, respec-
tively. Based on the description of G%, we construct the equivalence groups G%, and G% 7 of the
above subclasses and describe their equivalence groupoids via classifying the admissible trans-
formations within these subclasses. We exhaustively solve the group classification problems for
them up to general point equivalence and up to the equivalences generated by the corresponding
equivalence groups. We also describe the point symmetry pseudogroups of the linear Schrédinger
equations from the class F’ that appear as G5 -inequivalent essential Lie-symmetry extensions
in the course of group classification of this class.

Theorem 1. (i) The equivalence group G%, of the class F' consists of the point transformations

in the space with the coordinates (t,x,v,y*,V,V*) whose (t,z,V)-components are of the form
~ - . . A - \% Az — @A
i— )\1t + )\07 5= 6‘)\1|1/2I‘+ v, 1/} _ ez/\3t+z>\2+>\5t+)\4w, V = m + 3/\715’
1 1
where Ao, ..., A5 and v are real constants with A1 # 0, and ¢ := +1.
(ii) The equwalence group G5 7 of the class Fy is singled out from the group G%, by the

constraint A5 = 0.
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Here and in what follows, the hat over a complex value in a transformation denotes the same
value or its complex conjugate if the derivative of the t-component of this transformation or,
equivalently, the constant &’ is positive or negative, respectively.

Theorem 2. (i) A minimal self-consistent generating (up to the G% -equivalence and the linear
superposition of solutions) set of admissible transformations for the class F' is the union of the
following families of admissible transformations (V,®,V):

(M 2 K oy 1 . Z T 1/2 itan(2t)z2/2
Tm-—(ﬁ—ﬁ’@l,ﬁ), (I>1.t—ﬁtan%,x—m,w—|0032t|/eza( T2,

- 1 ~ .
Towi= (Lg+a% @2, 1), @p5 I= e, G =e¥a, =2y,
T T

W

Tsa = (iqx 4 , B34, iaF), P3q: t=t T=0—1t2 = efitx+(i+a)t3/3w’

. 2 .~ ~2
Ticw = (zaa: —x°, Oyop, 10T — T ) ,

B g : = t, &=z + 2K cos 2, QZ} — rsin2t (—2ir—2mcoth—a)w’

. 2 . 9
Tsany = (Zax + 2%, Psakw, QT + T ) )
~ . _ ~ 20 ,0—2tY (95 o2t os —2t
Poppr: t=t, T=a+ 2 ket + e 2t, )= e(ne ve™ ) (2ix+2ike " +2ive a)w’

where p € C and o, k,v € R with ax # 0 in the fourth family, (ak,av) # (0,0) in the fifth
family, and, modulo the G%, -equivalence, Imp > 0, a > 0 in the third family, o > 0 and k > 0
in the fourth family, and o >0 and (k >0 or kK =0 and v > 0 in the fifth family.

(ii) A minimal self-consistent generating (up to the G™(Fg)-equivalence and the linear su-
perposition of solutions) set of admissible transformations for the class F is the union of the
following families of admissible transformations {Ti.}, {Tou}, {730}, {Taox} and {Ts0k }, where
w,k,v € R, k # 0 in the fourth family, (k,v) # (0,0) in the fifth family.

Since the classes F' and Fp are not normalized, to exhaustively solve the group classifica-
tion problems for these classes up to the general point equivalence and up to the equivalences
generated by the corresponding equivalence groups, we use results of [1] and Theorems 1 and 2.

Corollary 3. (i) Complete lists of G%,- and G7,-inequivalent essential Lie-symmetry extensions
in the class F' are ezhausted by the cases and Cases 1, 2, Sa, 4a and 5a of Table 1, respectively.

(ii) Complete lists of G%- and GF -inequivalent essential Lie-symmetry extensions in the
class Fi are exhausted by Cases 0, 4a, 4b, 4c, and 5a-5d and by Cases 0, 4a and 5a of Table 1,
where V(x) is an arbitrary real-valued potential, and 1 € Ryg.

For each of the essential Lie-symmetry extensions within the class F’ that are listed in Table 1,
we compute the corresponding point symmetry pseudogroup.

Theorem 4. The point symmetry pseudogroups of the (1+1)-dimensional linear Schridinger
equations of the form (1) with potentials of Cases 1, 2 and 3a of Table 1 are respectively consti-
tuted by the following point transformations:

V =iax —2%: t=ct+ )\ & =-cx+2kcos(2t+ 1),

~ ~

) = oexp (ksin(2t + v)(—2ix — 2iek cos(2t + v) — ea)) (¥ + A),
V =iaz+ 2% t=ct+ )\, & =cx+2re* + e X,

Y = oexp ((ke* — ve ) (2ix + 2iere® + 2icve " —ca)) (¢ + A),

V=iz: t=ct+ )\, &=cx+2kt+ur, 1/;:Uexp(i/ﬂx—FE’i/ﬁQt—alﬁtQ—61/75)('&4—[\),

where a, A, k and v are arbitrary real constants with o # 0, o is an arbitrary nonzero complex
constant, € = £1, and A = A(t,x) is an arbitrary solution of the corresponding equation.
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Table 1. Group classification of the class F'. u € C,o with Imp > 0, a € Rso.

no. 1% Basis of gy*

0 V(x) M, I, D(1)

1 | ioax—a® | M, I, D(1), P(cos2t) — fasin2t 1, P(sin2t) + favcos2t ]

2 | dax+a2? | M, I, D(1), P(e*) — tae® I, P(e™) + Jae 21

3a ir M, I, D(1), P(1) —tI, P(t) — 3t*I

3b | dax+a | M, I, D(1), P(1) +tM — atl, P(t)+ 3t*M — Jat?]

da px =2 M, I, D(1), D(t), D(t?) — 3tI

4b | =2 — a2 | M, I, D(1), D(cos4t) +sin4t I, D(sin4t) — cos4t [

de | pr=2 422 | M, I, D(1), D(e=*) + e~ 41, D(e*) —e*I

5a 0 M, I, D(1), D(t), D(t*) — 3tI, P(1), P(t)

5b —a? M, I, D(1), D(cos4t) 4+ sindt I, D(sindt) — cos4t I, P(cos2t), P(sin2t)

5¢ x? M, I, D(1), D(e™*) +e 1, D(e*) —e*I, P(e™2), P(e?)

5d T M, I, D(1), D(t) + 3P(t*) + 3t3M, D(t*) + P(t3) + 1t M — 11,
P(1) +tM, P(t) + $t*°M

Corollary 5. The point symmetry pseudogroup Giaz+q of the (1+1)-dimensional linear Schro-
dinger equation of the form (1) with the potential V(x) = ior 4+ x, where oo € Rzg, consists of
the point transformations

t=ct+ ) T=cx+(1—-)t*+2k+eNt+ A+,

Y= oexp (i(et + \)(ex — et + 2kt + v) +ir(z — ) — et(iz + rat + av — iK?)
+3(2i —a)(et + N)? + 3(ie + a)t) (¢ + A),

where ¢ = *1, Kk, X and v are arbitrary real constants, o is an arbitrary nonzero complex
constant, and A = A(t,x) is an arbitrary solution of this equation.

For each of the above potentials, V(x) = iaz + dz? with § € {~1,0,1} and V (x) = iaz + ,
the pseudogroup Gy splits over GiP', G = GY® X Gl‘i,n. Here the subgroup G7* of Gy consists
of the transformations of the corresponding form from the theorem with A = 0 and with the
natural domains, which coincide with the entire space with the coordinates (¢, z,,1*). Thus,
the subgroup G is a five-dimensional Lie group consisting of two components. We call the sub-
group G7° the essential point symmetry group of the equation Fy . Its identity component G373
is singled out by the constraint ¢ = 1. The only independent (up to composing with elements
of GV7,) discrete transformation in G77* is the composition of the the Wigner time reflection and
the space reflection, t = —t, & = —a, ¥ = ¢* for the potentials V = iz +dz2 with § € {—1,0,1}
and a more complicated transformation t = —t, & = —z, ZZJ = exp (2it(x —12) + %at3)w* for the
potential V(z) = iax + x

Theorem 6. (i) The point symmetry pseudogroup Go of the free (1+1)-dimensional linear
Schréodinger equation consists of the point transformations
AMt+Xy . x+Kt+V

P LI S
YYD VA WIS Ui

2)
7 . /)\3$2 — (Ii)\4 — l//\g)(Zx + Kkt + V) A o (
v =0Vt Ml exp <_Z€ 200t + A1) ) (¢ + ),
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where A1, A2, A3, M\, k and v are arbitrary real constants with A\ g — AoA3 := ¢’ = £1, o is an
arbitrary nonzero complex constant, and A = A(t,x) is an arbitrary solution of this equation.

(ii) The point symmetry pseudogroup Gy of the (1+1)-dimensional linear Schrédinger equa-
tion of the form (1) with the potential V(x) = u/x?* is constituted by the point transformations
of the form (2) with k = v =0 if p € R\ {0} and in addition with &' =1 if p € C\ R, where
A = A(t,z) is an arbitrary solution of this equation.

Corollary 7. The point symmetry pseudogroup G_,2 of the (1+1)-dimensional linear Schrédin-
ger equation of the form (1) with the potential V (x) = —x? consists of the point transformations

7 1 . 20 . 20+
= —arctan —, T = ,
ARSI
—i0(2x + ) g, 4o + 9

¥ = o(c + 40%)Y* exp <§(§2+492) _ZZ?:B +ie' (kAg — v)3) I )(7,24—[\),

3)

where ¢ := Ay sin 2t + 2 cos 2t, ¢ := Agsin 2t + 24 cos 2t, ¥ := ksin 2t + 2v cos2t, A1, Ao, A3,
M, K and v are arbitrary real constants with A \y — AaAg := &’ = £1, o is an arbitrary nonzero
complex constant, and A = A(t,x) is an arbitrary solution of this equation.

The point symmetry pseudogroup Gy of the (1+1)-dimensional linear Schridinger equation
of the form (1) with the potential V(z) = p/x? — x? is constituted by the point transformations
of the form (3) with k = v =0 if p € R\ {0} and in addition with &' =1 if p € C\ R, where
A = A(t,z) is an arbitrary solution of this equation.

Corollary 8. The point symmetry pseudogroup G2 of the (1+1)-dimensional linear Schrédin-

ger equation of the form (1) with the potential V() = x? consists of the point transformations
-1 4
P=tmlsl| = 42FV
41 2clo/<|*/? )
. 1/4 (dx+9)* g, 893—}—19) A
= ol|pg exp | —i——— —1——x° 4+ i (K\s — VA + A),
b= oo Vexp (15T <S8 ons - o) ) o )

where 0 := A€t +4hge™ 2, ¢ 1= Aze® 4 4Nge72, ¥ := ke? +4ve™ N\, Xo, A3, M4, Kk and v are
arbitrary real constants with MAy — A3 := & = +1, ¢’ := Esgn(os), o is an arbitrary nonzero
complex constant, and A = A(t,x) is an arbitrary solution of this equation.

The point symmetry pseudogroup Gy of the (1+1)-dimensional linear Schrédinger equation
of the form (1) with the potential V(x) = u/z* + 22 is constituted by the point transformations
of the form (4) with k = v =0 if p € R\ {0} and in addition with & =1 if p € C\ R, where
A = A(t,x) is an arbitrary solution of this equation.

Corollary 9. The point symmetry pseudogroup G, of the (1+1)-dimensional linear Schrédinger
equation of the form (1) with the potential V(x) = x consists of the point transformations

c_Mtdde o w—hsttr (atdd)
st T At N st + g )
~ St g 2 A1t + A2
= o/ A3t + A T (-2 4kt i =
¥ =ovAst+ Adf exp (Z(A3t+)\4) (w=t+nt+v)+ <)\3t+)\4> )
As(z — 122 — (kAg — vA3) (22 — 2t2 + Kt + V)
4(Agt + A\g)

t3 R
X exp <—iz~: —ig'te + i5’3> (¥ + A),

where X1, A2, A3, A1, k and v are arbitrary real constants with \A\g — A3 := ¢’ = +1, 0 is an
arbitrary nonzero complex constant, and A = A(t,x) is an arbitrary solution of this equation.
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In [4], Niederer claimed that the free (141)-dimensional linear Schrédinger equation admits
the single independent “kinematical” discrete point symmetry transformation

- . 42
XK' f=—, i:%, b = [t]7 e~ ep.

Consider the continuous one-parameter subgroup of Gy that is singled out by the constraints
A =Ag=coS€e, \g=—A3=sine, k=v=0,0=1and A =0,
ix?

- sin t cos x ~ sin
Qt(e): tzﬁ I=—— w:|cose—tsine|%exp - c 1,
4(cose — tsine)

. ) . )
cos€e —tsine cose —tsine

where € is an arbitrary constant parameter, which is defined by the corresponding transforma-
tion up to a summand 27k, k € Z. The Jacobian of QT (¢) is positive and negative for all values
of (t,z,1) if ¢ = 0 and € = 7, respectively. For € € (0,7) U (7, 27), the transformation Q" ()
is not defined if ¢ = cot €, and for the other values of (¢, x,1) the sign of its Jacobian coincides
with sgn(cose — tsine). The free (1+1)-dimensional linear Schrédinger equation is invariant
with respect to the involution g := Q¥ (7) only alternating the sign of x and the transforma-
tion K’ := QJF(—%W). The transformations J and X’ seem to be discrete point symmetry transfor-
mations of the free (141)-dimensional linear Schrédinger equation. However, this is not the case
when considering the natural group multiplication in Gy, which is a modified composition [3] of
transformations of the specific form (1). The Jacobian of J is equal to —1 for all values of (¢, x, ¢).
Nevertheless, this involutive transformation belongs to the one-parameter subgroup {Q*(e)}
of Gg, and hence it lies in the identity component of the pseudogroup Gg. A similar situation
occurs for the transformation X', the sign of whose Jacobian is equal to sgnt. Therefore, the
above Niederer’s claim is incorrect since X’ is not a discrete symmetry: it belongs to the same
connected component of the symmetry pseudogroup Gy as the identity transformation.
Summing up, each of the (141)-dimensional linear Schrédinger equations with the potentials
V = u/z* + 6z% where p € R and 6 € {-1,0,1}, including the free case, or V(z) = =
admits a single independent discrete point symmetry, which is the Wigner time reflection
t=—t, &=ux, 1 =1* The (14+1)-dimensional linear Schrodinger equations with the poten-
tials V = pu/x? + 622, where € C\R and 6 € {—1,0, 1}, possess no discrete point symmetries.
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