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Iнварiанти алгебр Лi (або узагальненi оператори Казiмiра) є однiєю з важливих харак-
теристик алгебр Лi. Вони мають численнi застосування в рiзноманiтних галузях математи-
ки та фiзики (теорiя представлень, iнтегровнiсть гамiльтонових диференцiальних рiвнянь,
квантова механiка тощо). У теорiї узагальнених операторiв Казiмiра суттєвим є частинний
випадок, коли базис утворено лише з операторiв Казiмiра, тобто з полiномiальних iнварiан-
тiв. Такi базиси iснують для нiльпотентних та досконалих алгебр Лi. У стандартному пiдхо-
дi знаходження узагальнених операторiв Казiмiра базується на iнтегруваннi перевизначеної
системи лiнiйних диференцiальних рiвнянь iз частинними похiдними першого порядку i є
дуже громiздкою задачею навiть для алгебр Лi низьких розмiрностей.

У роботах Бойка, Патери та Поповича запропоновано алгебраїчний метод обчислення
узагальнених операторiв Казiмiра алгебр Лi, що суттєво опирається на картанiвський ме-
тод рухомих реперiв у версiї Фелса–Олвера. У рамках розробленого пiдходу вперше по-
будовано базиси узагальнених операторiв Казiмiра серiй розв’язних алгебр Лi довiльної
розмiрностi з фiксованими структурами нiльрадикалiв, зокрема майже абелевих алгебр Лi,
розв’язних алгебр Лi (нiльрадикали яких є ниткоподiбними майже абелевими алгебрами),
нiльпотентних алгебр строго верхньотрикутних матриць та розв’язних алгебр Лi з трикут-
ними нiльрадикалами й дiагональними нiльнезалежними елементами (детальний огляд та
необхiднi позначення дивись в роботах [1–6]).

Слiд зауважити, що структура iнварiантiв та їх знаходження суттєво залежить вiд струк-
тури вiдповiдної алгебри Лi. Класифiкацiя всiх (скiнченновимiрних) алгебр Лi є дуже склад-
ною проблемою, фактично нерозв’язною для довiльних розмiрностей алгебр (детальний
огляд вiдповiдних результатiв наведено в роботi [7]).

Розглянемо алгебру Лi g розмiрностi dim g = 𝑛 < ∞ над комплексним або дiйсним полем
та вiдповiдну зв’язну групу Лi 𝐺. Нехай g* — дуальний простiр для векторного простору g.
Вiдображення Ad* : 𝐺 → GL(g*), визначене для будь-якого 𝑔 ∈ 𝐺 спiввiдношенням

⟨Ad*𝑔𝑥, 𝑢⟩ = ⟨𝑥,Ad𝑔−1𝑢⟩ для всiх 𝑥 ∈ g* та 𝑢 ∈ g,

називають коприєднаним представленням групи Лi 𝐺. Тут Ad: 𝐺 → GL(g) — звичайне
приєднане представлення для 𝐺 на g, де образ Ad𝐺 групи 𝐺 при Ad є групою внутрiшнiх
автоморфiзмiв Int(g) алгебри Лi g. Образ групи 𝐺 при Ad* є пiдгрупою групи GL(g*).
Позначаємо його як Ad*𝐺.

Нормалiзацiйна процедура Фелса–Олвера для групи Ad*𝐺 ґрунтується на такому твер-
дженнi.

Твердження (Бойко, Патера та Попович [1–6]). Нехай ℐ = (ℐ1, . . . , ℐ𝑛) — фундамен-

тальний пiднятий iнварiант групи Ad*𝐺, для пiднятих iнварiантiв ℐ𝑗1 , . . . , ℐ𝑗𝜌 i деяких

сталих 𝑐1, . . . , 𝑐𝜌 система ℐ𝑗1 = 𝑐1, . . . , ℐ𝑗𝜌 = 𝑐𝜌 є розв’язною вiдносно групових парамет-

рiв 𝜃𝑘1 , . . . , 𝜃𝑘𝜌 , а пiдстановка знайдених значень параметрiв у решту пiднятих iнварiан-

тiв призводить до 𝑚 = 𝑛 − 𝜌 виразiв ℐ̂𝑙, 𝑙 = 1, . . . ,𝑚, якi залежать лише вiд 𝑥. Тодi
𝜌 = rankAd*𝐺, 𝑚 = 𝑁g, а ℐ̂1, . . . , ℐ̂𝑚 утворюють базис для Inv(Ad*𝐺).

Запропонований в роботах Бойка, Патери та Поповича алгебраїчний алгоритм знахо-
дження iнварiантiв алгебри Лi g складається з наступних чотирьох крокiв [1–6]:
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1. Побудова генеруючої матрицi 𝐵(𝜃) групи Ad*𝐺. 𝐵(𝜃) — загальна матриця внутрiшнiх
автоморфiзмiв алгебри Лi g у заданому базисi 𝑒1, . . . , 𝑒𝑛, 𝜃 = (𝜃1, . . . , 𝜃𝑟) — повний
набiр параметрiв (координат) групи Int(g), i 𝑟 = dimAd*𝐺 = dim Int(g) = 𝑛− dimZ(g),
де Z(g) — центр алгебри g.

2. Представлення фундаментального пiднятого iнварiанта. Фундаментальний пiдня-
тий iнварiант ℐ = (ℐ1, . . . , ℐ𝑛) групи Ad*𝐺 у вибраних координатах (𝜃, 𝑥̌) в Ad*𝐺 × g*

має явний вигляд ℐ = 𝑥̌ ·𝐵(𝜃), тобто (ℐ1, . . . , ℐ𝑛) = (𝑥1, . . . , 𝑥𝑛) ·𝐵(𝜃1, . . . , 𝜃𝑟).

3. Виключення параметрiв за допомогою процедури нормалiзацiї. Вибираємо максималь-
но можливу кiлькiсть 𝜌 пiднятих iнварiантiв ℐ𝑗1 , . . . , ℐ𝑗𝜌 , сталi 𝑐1, . . . , 𝑐𝜌 та груповi па-
раметри 𝜃𝑘1 , . . . , 𝜃𝑘𝜌 такi, що рiвняння ℐ𝑗1 = 𝑐1, . . . , ℐ𝑗𝜌 = 𝑐𝜌 є розв’язними вiдносно
𝜃𝑘1 , . . . , 𝜃𝑘𝜌 . Пiсля пiдстановки знайдених значень параметрiв 𝜃𝑘1 , . . . , 𝜃𝑘𝜌 до незадiя-
них пiднятих iнварiантiв отримаємо 𝑁g = 𝑛−𝜌 виразiв 𝐹 𝑙(𝑥1, . . . , 𝑥𝑛), якi не залежать
вiд 𝜃.

4. Симетризацiя. 𝐹 𝑙(𝑥1, . . . , 𝑥𝑛) обов’язково утворюють базис множини Inv(Ad*𝐺). Їхнi
симетризацiї Sym𝐹 𝑙(𝑒1, . . . , 𝑒𝑛) визначають базис для множини Inv(g).

Метою даної презентацiї є анонс попереднiх результатiв щодо опису функцiональних
базисiв iнварiантiв для семивимiрних нiльпотентних алгебр Лi, якi прокласифiковано в 1993
роцi у роботi Сiлея [8]. Зауважимо, що необхiдним кроком для суттєвого спрощення всiх
обчислень i компактного представлення базисiв iнварiантiв є необхiднiсть зведення базисiв
алгебр Лi з класифiкацiї Сiлея до 𝐾-канонiчного вигляду (див. вiдповiднi обґрунтування
у роботi [1]).

Як приклад, розглянемо наступну семивимiрну нiльпотентну алгебру Лi з класифiкацiї
Сiлея [8] (яку попередньо зведено до 𝐾-канонiчного вигляду)

[𝑒4, 𝑒6] = 𝑒3, [𝑒5, 𝑒6] = 𝑒4, [𝑒6, 𝑒7] = 𝑒5.

Генеруюча матриця внутрiшнiх автоморфiзмiв має вигляд

𝐵(𝜃) =
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Таким чином, отримуємо наступний функцiональний базис пiднятих iнварiантiв вiдповiдно
до 2-го кроку алгоритму:

ℐ1 = 𝑥1,

ℐ2 = 𝑥2,

ℐ3 = 𝑥3,

ℐ4 = 𝜃3𝑥3 + 𝑥4,

ℐ5 =
1

2
𝜃23𝑥3 + 𝜃3𝑥4 + 𝑥5,

ℐ6 =
(︂
1

2
𝜃23𝜃4 − 𝜃1

)︂
𝑥3 + (𝜃3𝜃4 − 𝜃2)𝑥4 + 𝜃4𝑥5 + 𝑥6,

ℐ7 = −1

6
𝜃33𝑥3 −

1

2
𝜃23𝑥4 − 𝜃3𝑥5 + 𝑥7.
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Оскiльки ⟨𝑒1, 𝑒2, 𝑒3⟩ — центр алгебри, то ℐ1 = 𝑥1, ℐ2 = 𝑥2, ℐ3 = 𝑥3 — першi три шуканi
iнварiанти.

Використавши крос-секцiєю для пiднятого iнварiанта ℐ4 (тобто ℐ4 = 0), отримаємо, що
𝜃3 = −𝑥4

𝑥3
. Виключивши параметр 𝜃3 з спiввiдношень для ℐ5 та ℐ7, пiсля деяких спрощень,

знаходимо ще два iнварiанти:

2𝑥3𝑥5 − 𝑥24, 3𝑥3𝑥4𝑥5 + 3𝑥23𝑥7 − 𝑥34.

Оскiльки процедура симетризацiї знайдених iнварiантiв тривiальна, то остаточно отримує-
мо наступнi п’ять функцiональних iнварiантiв для розглядуваної семивимiрної нiльпотент-
ної алгебрi Лi з класифiкацiї Сiлея:

𝑒1, 𝑒2, 𝑒3, 2𝑒3𝑒5 − 𝑒24, 3𝑒3𝑒4𝑒5 + 3𝑒23𝑒7 − 𝑒34.

Повний опис iнварiантiв семивимiрних нiльпотентних алгебр Лi буде представлено у ма-
гiстерськiй роботi автора.

Автор висловлює подяку Вячеславу Миколайовичу Бойку за постiйну увагу пiд час нав-

чання, постановку задачi, допомогу, поради, обговорення та пiдтримку пiд час виконання

цiєї роботи.
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