Equivalence transformations and group classification of (1+2)-dimensional degenerate Fokker–Planck equations

Serhii D. Koval^{†‡}, Alexander Bihlo[†] and Roman O. Popovych^{◊§}

- [†] Department of Mathematics, Kyiv Academic University, 36 Vernads'koho Blvd, 03142 Kyiv, Ukraine
- [‡]Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's (NL) A1C 5S7, Canada
- [◊]Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01024 Kyiv, Ukraine
- § Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

E-mails: skoval@mun.ca, abihlo@mun.ca, rop@imath.kiev.ua

We find the equivalence group $G_{\bar{\mathcal{F}}}^{\sim}$ of the class $\bar{\mathcal{F}}$ of the (1+2)-dimensional degenerate Fokker– Planck equations of the general form

$$u_t = B(t, x, y)u_y + A^2(t, x, y)u_{xx} + A^1(t, x, y)u_x + A^0(t, x, y)u + C(t, x, y),$$

where A^0 , A^1 , A^2 , B and C are arbitrary smooth functions of (t, x, y) with $A^2B_x \neq 0$, and prove that this class is normalized. We use the normalization of the class $\overline{\mathcal{F}}$ and its equivalence group $G_{\overline{\mathcal{F}}}^{\sim}$ in the course of computing the equivalence group of the class \mathcal{F} that consists of the equations

$$u_t + xu_y = |x - \alpha|^\beta u_{xx},$$

parameterized by the arbitrary constants α and β . These equations have a wide range of applications in theoretical biology, especially for describing the evolution of cell populations.

Gauging α to zero by a wide subset of the action groupoid of the group $G^{\sim}_{\mathcal{F}}$, we obtain the class \mathcal{F}' of equations of the form

$$u_t + xu_y = |x|^\beta u_{xx},$$

where β remains to be the only arbitrary element. The class \mathcal{F}' is convenient for solving the group classification problem, and the group classification of the \mathcal{F} reduces to that of the class \mathcal{F}' . By embedding \mathcal{F}' in $\overline{\mathcal{F}}$, we compute the equivalence group $G_{\mathcal{F}'}^{\sim}$ and carry out the group classification \mathcal{F}' up to the $G_{\mathcal{F}'}^{\sim}$ -equivalence.

The equation $\mathcal{F}'_0: u_t + xu_y = u_{xx}$ is singled out among the above equations by its remarkable symmetry properties. Its essential Lie invariance algebra \mathfrak{g}_0 is nonsolvable and is of specific structure that has never been studied within the framework of subalgebra analysis. The optimal systems of one- and two-dimensional subalgebras of \mathfrak{g}_0 are constructed for purpose of carrying out Lie reductions of the equation \mathcal{F}'_0 .