
ARITHMETIC-HARMONIC MEAN INEQUALITY FOR

SYMMETRIZATIONS OF CONVEX SETS
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The arithmetic-geometric-harmonic mean inequality states in the two-argument case

(1) min{a, b} ≤
(
a−1 + b−1

2

)−1

≤
√
ab ≤ a+ b

2
≤ max{a, b}

for any a, b > 0, with equality in any of the inequalities if and only if a = b (see [HLP, Sch]).

For any X ⊂ Rn let conv(X) denote the convex hull , i.e., the smallest convex set con-

taining X. A segment is the convex hull of {x, y} ⊂ Rn, which we abbreviate by [x, y]. For

any X,Y ⊂ Rn, ρ ∈ R let X + Y = {x + y : x ∈ X, y ∈ Y } be the Minkowski sum of X

and Y , and ρX = {ρx : x ∈ X} the ρ-dilatation of X. We abbreviate (−1)X by −X. The

family of all convex bodies (full-dimensional compact convex sets) is denoted by Kn and for

any C ∈ Kn we write C◦ = {a ∈ Rn : aTx ≤ 1, x ∈ C} for the polar of C.

One may identify means of numbers by means of segments via associating a, b > 0

with [−a, a] and [−b, b]. Thus, e.g., the arithmetic mean of a and b is identified with

[−1
2 (a+ b) , 1

2 (a+ b)] = 1
2 ([−a, a] + [−b, b]). In general, the arithmetic mean of K,C ∈ Kn

is defined by 1
2(K +C), the minimum by K ∩C, and the maximum by conv(K ∪C). Since

polarity can be regarded as the higher-dimensional counterpart of the inversion operation

x→ 1/x (cf. [MR]), the harmonic mean of K and C is defined by
(

1
2(K◦ + C◦)

)◦
.

Firey’s extension of the harmonic-arithmetic mean inequality ([Fi]) states

Proposition 0.1. Let C,K ∈ Kn with 0 in their interior. Then

(2) K ∩ C ⊂
(
K◦ + C◦

2

)◦
⊂ K + C

2
⊂ conv(K ∪ C),

with equality between any of the means if and only if K = C.

We analyze sharpness of the set-containment inequalities w.r.t. optimal containment:

For C,K ∈ Kn we say K is optimally contained in C (K ⊂opt C), if K ⊂ C and K 6⊂ ρC+ t

for any ρ ∈ [0, 1) and t ∈ Rn.

Theorem 0.2. Let C,K ∈ Kn with 0 ∈ int(K ∩ C). Then

K ∩ C ⊂opt conv(K ∪ C) ⇐⇒
(

1

2
(K◦ + C◦)

)◦
⊂opt 1

2
(K + C).

If C = −C + t for some t ∈ Rn, we say C is symmetric, and if C = −C, we say C is

0-symmetric. The family of 0-symmetric convex bodies is denoted by Kn
0 .

Date: December 15, 2021.

1



2 R. BRANDENBERG, K. VON DICHTER, AND B. GONZÁLEZ MERINO

We focus on optimal containments of means of C and −C for a convex body C, which

are all symmetrizations of C. Symmetrizations are frequently used in convex geometry,

e.g., as extreme cases of a variety of geometric inequalities. Consider, e.g., the Bohnenblust

inequality [Bo], which bounds the ratio of the circumradius and the diameter of convex

bodies in arbitrary normed spaces. The equality case in this inequality is reached in normed

spaces with S ∩ (−S) or 1
2(S − S) as their unit balls [BK], where S denotes an n-simplex

with center of gravity in 0. These means also appear in characterizations of spaces for which

C is complete or reduced [BGJM, Prop. 3.5 – 3.10].

The most common choice of an asymmetry measure and a corresponding center are the

Minkowski asymmetry of C ∈ Kn, which is defined by

s(C) := inf{ρ > 0 : C − c ⊂ ρ(C − c), c ∈ Rn},

and the (not necessarily unique) Minkowski center of C, which is any c ∈ Rn fulfilling

C − c ⊂ s(C)(c − C) [Gr, BG]. If the Minkowski center is 0, we say C is Minkowski

centered . Note that s(C) ∈ [1, n], with s(C) = 1 if and only if C is symmetric, and

s(C) = n if and only if C is an n-dimensional simplex [Gr]. Moreover, the Minkowski

asymmetry s : Kn → [1, n] is continuous w.r.t. the Hausdorff metric (see [Gr], [Sch] for

some basic properties) and invariant under non-singular affine transformations. We believe

that the Minkowski asymmetry is most suitable for studying optimal containments and

consequently focus on Minkowski centered convex sets.

The classical norm relations ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 with x ∈ Rn can be naturally reversed

by the inequalities ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞, which both transfer to left-to-right optimal

containments between the corresponding unit ball of these `p-spaces. Similarly, we consider

the norms induced by the means of K and C. Doing so, (2) can be read as follows:

(3) ‖x‖conv(K∪C) ≤ ‖x‖K+C
2
≤ ‖x‖(K◦+C◦

2 )
◦ ≤ ‖x‖K∩C .

In order to reverse this chain of inequalities, we need to provide a chain of (optimal) inclu-

sions, which is reverse to (2). While this is not possible for general convex bodies, since the

scaling factors of the reverse inclusions cannot be bounded, but assuming the Minkowski

centeredness of the considered body, this problem can be fixed for the symmetrizations.

Theorem 0.3. Let C ∈ Kn be Minkowski centered. Then

(i) conv(C ∪ (−C)) ⊂opt s(C)(C ∩ (−C)),

(ii) conv(C ∪ (−C)) ⊂opt 2s(C)
s(C)+1

C−C
2 ,

(iii)
(
C◦−C◦

2

)◦ ⊂opt 2s(C)
s(C)+1(C ∩ (−C)),

(iv) C−C
2 ⊂opt s(C)+1

2 (C ∩ (−C)), and

(v) conv(C ∪ (−C)) ⊂opt s(C)+1
2

(
C◦−C◦

2

)◦
.

(vi) C−C
2 ⊂ s(C)+1

2

(
C◦−C◦

2

)◦
, and for all s ∈ [n] there exists a Minkowski centered C ∈ Kn

with s(C) = s, such that the containment is optimal.

We proceed with a stability result. First we introduce several parameters.
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ψ := ψ(n, s) :=
(n− s+ 1)(s+ 1)

1− n(n− s)(n+ s(n+ 1))
− n,

µ := µ(n, s) =
n+ 1

s+ 1

(
1− s(n+ 1)(n− s)

1− n(n− s)

)
,

γ1 := γ1(n) :=
1

2
(n− 1 +

√
(n− 2)n+ 5),

γ2 := γ2(n) :=
n4 + n3 + 2n2 +

√
n8 + 6n7 + 17n6 + 28n5 + 28n4 + 12n3 − 4n2 − 12n− 4

2(n3 + 2n2 + 3n+ 1)
,

γ3 := γ3(n) :=
n4 + 3n3 + 2n2 + 1 +

√
n8 + 6n7 + 13n6 + 8n5 − 14n4 − 22n3 + 8n+ 1

2(n3 + 2n2 + 2n)
.

One can check that n− 1
n < γ2 < γ3 < n and that both ψ and µ become one in case n = s.

Moreover, we will see that ψ n
n+1 > 1 for all s > γ2, while µψ n(n+2)

(n+1)2
< 1 for all s > γ3.

Theorem 0.4. Let n be even and C ∈ Kn be Minkowski centered with s(C) = s. Then

(i) C ∩ (−C) ⊂ ψ n

n+ 1
conv(C ∪ (−C)), if s ≥ γ2(n), and

(ii)

(
C◦ + (−C)◦

2

)◦
⊂ µψ n(n+ 2)

(n+ 1)2

C − C
2

, if s ≥ γ3(n).

We determine the smallest number γ(n) ∈ [n − 1, n] such that for every Minkowski

centered C ∈ Kn with s(C) ≥ γ(n) the harmonic mean of C and −C is not optimally

contained in their arithmetic mean and call it the asymmetry threshold of means

Theorem 0.5. Let n be even. Then

n− 1 < γ1 ≤ γ(n) ≤ γ2 < n.

The asymmetry threshold provides us with a lower bound for the values of s such that

(2) cannot be left-to-right optimal. In the following we want to go one step further and

determine the possible values for the contraction factors α(s), β(s) for which the minimum

is optimally contained in the according contraction of the maximum and for which the har-

monic mean is optimally contained in the contraction of the arithmetic mean, respectively.

Theorem 0.6. Let C ∈ Kn be Minkowski centered with s(C) = s.

a) Let α(s) ∈ R such that C ∩ (−C) ⊂opt α(s) conv(C ∪ (−C)) and α1(s), α2(s) be the

optimal lower and upper bounds on α(s), respectively. Then

(i) α1(s) ≥ 2
s+1 with equality at least for s ≤ 2.

(ii) α2(s) = 1 for s ≤ γ1, α2(s) ≤ ψ n
n+1 , for s > γ2 and α2(s) ≥ s

s2−1
for s ≤ 2.

b) Let β(s) ∈ R such that
(

1
2(C◦ − C◦))

)◦ ⊂opt β(s) 1
2(C−C) and β1(s), β2(s) be the optimal

lower and upper bounds on β(s), respectively. Then

(i) β1(s) ≥ 4s
(s+1)2

with equality at least for s ≤ 2.

(ii) β2(s) = 1 for s ≤ γ1, β2(s) ≤ µψ n(n+2)
(n+1)2

for s > γ3 and β2(s) ≥ max
{

s
s2−1

, 4s
(s+1)2

}
for s ≤ 2.
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[BG] R. Brandenberg, B. González Merino, Minkowski concentricity and complete simplices,

J. Math. Anal. Appl., 454 (2017), no. 2, 981–994.
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