Symmetries and exact solutions of isothermal no-slip drift flux model

Stanislav Opanasenko

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01601 Kyiv, Ukraine
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's (NL) A1C 5S'7, Canada
E-mail: st.opanasenko@gmail.com
We carry out extended group analysis of the isothermal no-slip drift flux model given by the system of differential equations

$$
\rho_{t}^{1}+u \rho_{x}^{1}+u_{x} \rho^{1}=0, \quad \rho_{t}^{2}+u \rho_{x}^{2}+u_{x} \rho^{2}=0, \quad\left(\rho^{1}+\rho^{2}\right)\left(u_{t}+u u_{x}\right)+a^{2}\left(\rho_{x}^{1}+\rho_{x}^{2}\right)=0 .
$$

First of all, it was noted that this system is inconvenient for group analysis. Introducing the new dependent variables $v=\ln \left(\rho^{1}+\rho^{2}\right)$ and $w=\rho^{1} / \rho^{2}$, we obtain the equivalent system \mathcal{S} :

$$
u_{t}+u u_{x}+v_{x}=0, \quad v_{t}+u v_{x}+u_{x}=0, \quad w_{t}+u w_{x}=0 .
$$

Its maximal Lie invariance algebra \mathfrak{g} turns out to be infinite-dimensional,

$$
\mathfrak{g}=\left\langle t \partial_{t}+x \partial_{x}, t \partial_{x}+\partial_{u}, \partial_{t}, \partial_{x}, \partial_{v}, \kappa(w) \partial_{w}\right\rangle,
$$

where κ runs through the set of smooth functions of w.
Using the combined algebraic method we find the complete point symmetry group G of the system \mathcal{S} consisting of the transformations of the form

$$
\tilde{t}=T^{1} t+T^{0}, \quad \tilde{x}=T^{1} x+T^{1} U^{0} t+X^{0}, \quad \tilde{u}=u+U^{0}, \quad \tilde{v}=v+V^{0}, \quad \tilde{w}=W(w),
$$

where $T^{0}, T^{1}, X^{0}, U^{0}$ and V^{0} are arbitrary constants and $W(w)$ runs through the set of smooth functions of w with $T^{1} W_{w} \neq 0$.

Following the standard procedure of Lie reduction, we obtain optimal lists of one- and twodimensional subalgebras of the algebra \mathfrak{g}, using which we construct ansatzes for (u, v, w). Substituting them into the system \mathcal{S} we find families of its invariant and partially invariant solutions.

Since the system \mathcal{S} is semi-coupled, it is possible to consider separately the subsystem \mathcal{S}_{0} of the first two equations. Such a choice is justified by the fact that the system \mathcal{S}_{0} has wider symmetry than its counterpart \mathcal{S}, namely its maximal Lie invariance algebra \mathfrak{g}_{0} is spanned by vector fields

$$
\begin{aligned}
& \mathcal{D}=t \partial_{t}+x \partial_{x}, \quad \mathcal{G}=t \partial_{x}+\partial_{u}, \quad \mathcal{P}\left(\tau^{0}, \xi^{0}\right)=\tau^{0}(u, v) \partial_{t}+\xi^{0}(u, v) \partial_{x}, \\
& \mathcal{P}^{v}=\partial_{v}, \quad \mathcal{J}=(2 t u-x) \partial_{t}+\left(t u^{2}-2 t v-t\right) \partial_{x}-2 v \partial_{u}-2 u \partial_{v},
\end{aligned}
$$

where τ^{0}, ξ^{0} run through the solution set of the system $u \tau_{u}^{0}-\tau_{v}^{0}=\xi_{u}^{0}$ and $u \tau_{v}^{0}-\tau_{u}^{0}=\xi_{v}^{0}$. Besides, the structure of \mathfrak{g}_{0} makes an allusion that the system \mathcal{S}_{0} is linearized via the two-dimensional hodograph transformation, with $(p, q)=(t, x),(y, z)=(u, v)$ being the new dependent and independent variables, respectively. This leads to the potential system

$$
q_{z}-y p_{z}+p_{y}=0, \quad-q_{y}-p_{z}+y p_{y}=0
$$

of the telegraph equation $p_{y y}=p_{z z}+p_{z}$. After the change $\tilde{p}=e^{-z / 2} p$ we obtain the famous Klein-Gordon equation $\tilde{p}_{y y}=\tilde{p}_{z z}-\tilde{p} / 4$. As the latter equation is well studied, we can use a lot of its known solutions and recover q afterwards. Rewriting the third equation of the system \mathcal{S} in the new variables, we find solutions of the initial system \mathcal{S} in parameterized form. Two examples are provided to underscore advantages of the above approach.

This work is joint with Professors Roman Popovych and Alexander Bihlo.

