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Plan of the talk:

I Solitons and compactons from the geometric point of view
I Solitons, compactons and other patterns within

covection-reaction-diffusion equation:
I results of

I qualitative analysis
I and numerical simulation.
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Korteveg-de Vries (KdV) hierarchy

K(m) = ut + β um ux + uxxx = 0. (1)

Solitary wave solution for m=1 [9]:

u =
3 V

β
sech2

[√
V

4
(x− V t)

]
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Rosenau-Hyman generaization of KdV hierarchy

K(m, n) hierarchy(Rosenau, Hyman, 1993) [10]:

K(m, n) = ut + α (um)x + β (un)xxx = 0, m ≥ 2, n ≥ 2.
(2)

Solitary wave solution, corresponding to α = β = 1 and m = n = 2 [10]:

u =

{
4 V
3 cos2 ξ

4 when |ξ| ≤ 2 π,
0 when |ξ| > 2 π,

ξ = x− V t. (3)
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Solitons and compactons from geometric point of view
[11].
Reduction of KdV equation

In order to describe solitons, we use the TW reduction

u(t, x) = U(ξ), with ξ = x− V t.

Inserting U(ξ) into the KdV equation

ut + β u ux + uxxx = 0

we get, after one integration, Hamiltonian system:

U̇(ξ) = −W (ξ) = −HW , (4)

Ẇ (ξ) =
β

2
U(ξ)

(
U(ξ)− 2 v

β

)
= HU .

H =
1

2

(
W 2 +

β

3
U3 − V U2

)
. (5)
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Level curves of the Hamiltonian H = 1
2

`
W 2 + β

3
U 3 − V U 2

´
= K = const

Solution to KdV, corresponds to the homoclinic trajectory (HCL). Being
bi-asymptotic to a saddle (0, 0), HCL is penetrated in infinite ”time”!
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Reduction of K(m, n) equation

Inserting ansatz u(t, x) = U(ξ) ≡ U(x− V t) into

K(m, n) ≡ ut + α (um)x + β (un)xxx = 0,

we obtain, after one integration and employing the integrating
multiplier ϕ[U ] = Un−1, the Hamiltonian system:{

n β U2(n−1) d U
d ξ = −n β U2(n−1) W = −HW ,

n β U2(n−1) d W
d ξ = Un−1

[
−v U + αUm + n(n− 1) β Un−2W 2

]
= HU .

Every trajectory of the above system can be identified with
some level curve H = const of the Hamiltonian

H =
α

m + n
Um+n − v

n + 1
Un+1 +

β n

2
U2(n−1) W 2.
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Level curves of the Hamiltonian
H = α

m+2
Um+2 − v

3
U 3 + β U 2 W 2 = L = const, corresponding to the

reduced K(m, 2) equation

Solution to K(2, 2) equation corresponding to HCL. Since HCL is
bi-asymptotic to a saddle lying on the singular line n β U 2(n−1) = 0, the
”time” needed to penetrate HCL is finite !
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Conclusions:

Soliton-like TW solution is represented in the phase space
of the factorized system by the trajectory bi-asymptotic to
a saddle.

Compacton-like TW solution is represented by the
trajectory bi-asymptotic to a saddle, lying on a singular
manifold of dynamical system
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Modeling system [1–8] and its factorization

ut + u ux − κ (un ux)x = (u− U1) ϕ(u), U1 > 0. (6)

We are going to analyze the set of TW solutions to (6), having
the following form:

u(t, x) = U(ξ) ≡ U (x− V t) . (7)

Inserting ansatz (7) into the GBE one can obtain, after some
manipulation, the following dynamical system:

∆(U) U̇ = ∆(U) W, (8)
∆(U) Ẇ = −

[
(U − U1) ϕ(U) + κ n Un−1 W 2 + (V − U) W

]
,

where ∆(U) = κUn.
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Further assumptions: concerning function ϕ(U) = 0
I We assume that ∃ U0 ∈ [0, U1) : ϕ(U0) = 0 .
I We assume that function ϕ(U) does not change its sign

within the open interval (U0, U1).
Under these assumption our system has two stationary points
(U0, 0) and (U1, 0) lying on the horizontal axis of the phase
space (U, W ), and no any other stationary point inside the
segment (U0, U1 + L) for some L > 0.
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Our further strategy:

I to state the condition for which the stable limit cycle
appearance in proximity of (U1, 0)

I to state further conditions, assuring that the other
point (U0, 0) is a saddle.

I to check numerically the possibility of homoclinic
bifurcation appearing as the bifurcation parameter V
changes.
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In case when the singular manifold ∆(U) = 0 contains the
saddle (U0, 0) (i.e. ∆(U0) = 0) the homoclinic loop is the
image of either compacton, or soliton.

Local asymptotic analysis [16] of solution in proximity of
the stationary point (U0, 0) enables to distinguish the
compactly-supported solution.
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Creation of a stable limit cycle [14,15]

Analysis of normal form [14,15] built in proximity of the critical
point (U1, 0) enables to formulate the following statement
concerning the limit cycle appearance:

Theorem 1. If ∆(U1) and ϕ(U1) are both positive and
inequality

U1 ϕ̇(U1) + nϕ(U1) > 0. (9)

is fulfilled then in proximity of the critical value of the wave
pack velocity Vcr = U1 a stable limit cycle appears.
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Result of local asymptotic analysis near the saddle point
(0, 0)

Further analysis is performed to in case when ϕ(u) = um:

ut + u ux − κ (un ux)x = (u− U1) um, U1 > 0. (10)

The other stationary point is placed at the origin!

Proposition 1. The homoclinic loop bi-asymptotic to the
saddle point (0, 0) corresponds to compacton -like solution of
equation (10) for any natural n if m < 1.
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Figure: Vicinity of the origin for various combinations of the
parameters m, n
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What sort of TW corresponds to the homoclinic loop in
case when m ≥ 1?

Asymptotic arguments [16] enable to state that the ”tail”
of TW in this case spreads up to −∞ whereas the front
sharply ends, forming some sort of a semi-compacton or in
other words, a shock wave with infinitely long relaxing
”tail”
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Numerical investigation of factorized system

Case 1. κ = 1, m = 1
2
, n = 1, U1 = 3.

Numerical simulations show the appearance of stable limit cycle
when V is slightly less than Vcr = U1 = 3. The radius of the
limit cycle grows as V decreases

Figure: Phase portrait corresponding to V = 2.82
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Figure: Homoclinic bifurcation occurred at V = 2.77786585

Figure: Compactly-supported solution to the initial PDE

Symmetry-09 Solitons, compactons and all that 19 / 33



Case 2. κ = 1, m = 1
2
, n = 2, U1 = 3. Scenario is the

same. Peculiarity: a huge asymmetry between the ingoing
and outgoing separatrices is caused by the growth of
parameter n

Figure: Phase portrait corresponding to V = 2.6982122
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Case 2. κ = 1, m = 1
2 , n = 2, U1 = 3: the homoclinic loop

Figure: Homoclinic bifurcation occuring at V ' 2.453875
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Peculiarity: the face of the compacton has become sharp.

Figure: Compacton corresponding to the above homoclinic loop
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Case 3. κ = 1, m = 1, n = 1, U1 = 3.

Scenario is the same: limit cycle 7→ homoclinic bifurcation.

Figure: Phase portrait corresponding to V = 2.8
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Figure: Homoclinic bifurcation occuring at V ' 2.453875

Figure: Solitary wave corresponding to the homoclinic loop
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Case 4. κ = 1, m = 2, n = 1, U1 = 3.

Figure: Phase portrait corresponding to V = 2.8
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Figure: Homoclinic bifurcation occurred at V = 2.453875

Figure: Solitary wave corresponding to the above homoclinic loop
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Case 5.Further growth of nonlinearity (m = 3, n = 1) leads to
the huge asymmetry of the homoclinic loop

Figure: Homoclinic loop corresponding to m = 3, n = 1, V = 2.53

Symmetry-09 Solitons, compactons and all that 27 / 33



and appearance of wave pattern reminding shock or detonation
wave

Figure: Solitary wave corresponding to m = 3, n = 1, V = 2.53
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Final remarks

1. Existence of compacton-like and soliton-like solutions within the
convection-reaction-diffusion model is possible for wide range of the
parameters’ values.

2. Existence of compacton-like solutions is possible if the diffusion
coefficient is a function of dependent variable u.

3. The shape of solitary wave strongly depends on degree of nonlinearity

4. Presented results are not completely rigorous.

5. To obtain above solutions symmetry-related methods [17,18,19]
can be applied.

6. Yet it is little chances to obtain them for all possible values of the
parameters for the source equation is not completely integrable

7. It would be desired to apply the computer-assisted proofs for these
problems.

8. The problem of prime importance is the investigation of the stability
and asymptotic features [22,23,11] of compactons and solitons
appearing in convection-reaction-diffusion equation.
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