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Dolan-Grady condition
Our condition

The Dolan-Grady condition

The condition

◮ In 1982 Dolan and Grady introduced a method for
constructing conserved charges for a Hamiltonian H.
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Dolan-Grady condition
Our condition

The Dolan-Grady condition

The condition

◮ In 1982 Dolan and Grady introduced a method for
constructing conserved charges for a Hamiltonian H.

◮ If H = KB + ΓB̃, and B , B̃ satisfy the condition:

[B , [B , [B , B̃]]] = 16[B , B̃ ]
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Dolan-Grady condition
Our condition

The Dolan-Grady condition

The condition

◮ In 1982 Dolan and Grady introduced a method for
constructing conserved charges for a Hamiltonian H.

◮ If H = KB + ΓB̃, and B , B̃ satisfy the condition:

[B , [B , [B , B̃]]] = 16[B , B̃ ]

What they did with it

then there exists an infinite set of conserved charges Q2n:

Q2n = K (W2n − W̃2n−2) + Γ(W̃2n − W2n−2) Q0 = H

W2n = −
1

8
[B , [B̃,W2n−2]] − W̃2n−2 W0 = 0
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Dolan-Grady condition
Our condition

Our condition

The condition
Given a Hamiltonian H, suppose there exists an Hermitian operator
M satisfying

[[[H,M],M],M] = γ2[H,M]

for some γ 6= 0.
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Dolan-Grady condition
Our condition

Our condition

The condition
Given a Hamiltonian H, suppose there exists an Hermitian operator
M satisfying

[[[H,M],M],M] = γ2[H,M]

for some γ 6= 0.

Some remarks

◮ M does not have to be some part of H, (altough it might be).
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Dolan-Grady condition
Our condition

Our condition

The condition
Given a Hamiltonian H, suppose there exists an Hermitian operator
M satisfying

[[[H,M],M],M] = γ2[H,M]

for some γ 6= 0.

Some remarks

◮ M does not have to be some part of H, (altough it might be).

◮ Given H, M is not unique.
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Dolan-Grady condition
Our condition

Our condition

The condition
Given a Hamiltonian H, suppose there exists an Hermitian operator
M satisfying

[[[H,M],M],M] = γ2[H,M]

for some γ 6= 0.

Some remarks

◮ M does not have to be some part of H, (altough it might be).

◮ Given H, M is not unique.

◮ γ can be chosen equal to one.
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Ladder operators
The hierarchy
Construction theorem

Ladder operators

Given H and M satisfying [[[H,M],M],M] = [H,M], define:

R =
1

2
[[H,M],M] +

1

2
[H,M]
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Ladder operators
The hierarchy
Construction theorem

Ladder operators

Given H and M satisfying [[[H,M],M],M] = [H,M], define:

R =
1

2
[[H,M],M] +

1

2
[H,M]

then

[R ,M] = R

[R†,M] = −R†
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Ladder operators
The hierarchy
Construction theorem

Ladder operators

Given H and M satisfying [[[H,M],M],M] = [H,M], define:

R =
1

2
[[H,M],M] +

1

2
[H,M]

then

[R ,M] = R

[R†,M] = −R†

◮ R and R† act like annihilation and creation operators, M acts
as a counting operator.
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Ladder operators
The hierarchy
Construction theorem

Ladder operators

Given H and M satisfying [[[H,M],M],M] = [H,M], define:

R =
1

2
[[H,M],M] +

1

2
[H,M]

then

[R ,M] = R

[R†,M] = −R†

◮ R and R† act like annihilation and creation operators, M acts
as a counting operator.

◮ We call the algebra generated by R , R† and M the
ladderalgebra L.
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The hierarchy

◮ The Hamiltonian can be written as

H = Href + R + R†
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Ladder operators
The hierarchy
Construction theorem

The hierarchy

◮ The Hamiltonian can be written as

H = Href + R + R†

◮ The eigenvalue equation Hψ = Eψ can be projected on the
eigenspace of M. This gives a hierarchy of equations:

(Href − E )(Pµψ) + R(Pµ+1ψ) + R†(Pµ−1ψ) = 0
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ Given a set {φi} of eigenstates of M
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi}

Tobias Verhulst, Jan Naudts, Ben Anthonis Spectrum analysis using generalized Dolan-Grady



Introduction
The theory

Examples
Ongoing research...

Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi} and with Rφi = ξi−1φi−1 and R†φi = ξiφi+1.
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Ladder operators
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Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi} and with Rφi = ξi−1φi−1 and R†φi = ξiφi+1.

◮ Then there exists hk
i such that ψk =

∑

i h
k
i φi are eigenstates

of H
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Ladder operators
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Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi} and with Rφi = ξi−1φi−1 and R†φi = ξiφi+1.

◮ Then there exists hk
i such that ψk =

∑

i h
k
i φi are eigenstates

of H with eigenvalues E k = λ0 + ξ0
hk

1

hk
0
.
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi} and with Rφi = ξi−1φi−1 and R†φi = ξiφi+1.

◮ Then there exists hk
i such that ψk =

∑

i h
k
i φi are eigenstates

of H with eigenvalues E k = λ0 + ξ0
hk

1

hk
0
.

◮ The coefficients hk
i can be calculated from the hierarchy

∀j : hk
j (λj − E k) + hk

j+1ξj + hk
j−1ξj−1 = 0
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ Given a set {φi} of eigenstates of M with different eigenvalues
{λi} and with Rφi = ξi−1φi−1 and R†φi = ξiφi+1.

◮ Then there exists hk
i such that ψk =

∑

i h
k
i φi are eigenstates

of H with eigenvalues E k = λ0 + ξ0
hk

1

hk
0
.

◮ The coefficients hk
i can be calculated from the hierarchy

∀j : hk
j (λj − E k) + hk

j+1ξj + hk
j−1ξj−1 = 0

◮ We call the states {ψk} a multiplet.
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ The {φi} span a vectorspace on which there is a
N-dimensional simple representation of L (of course, {ψk}
span the same space).
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ The {φi} span a vectorspace on which there is a
N-dimensional simple representation of L (of course, {ψk}
span the same space).

◮ If all simple representations of L are of this form, we call M

ideal.
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ The {φi} span a vectorspace on which there is a
N-dimensional simple representation of L (of course, {ψk}
span the same space).

◮ If all simple representations of L are of this form, we call M

ideal.

◮ If M is ideal, all eigenvectors of H can be constructed by the
above procedure.
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Ladder operators
The hierarchy
Construction theorem

Construction theorem

◮ The {φi} span a vectorspace on which there is a
N-dimensional simple representation of L (of course, {ψk}
span the same space).

◮ If all simple representations of L are of this form, we call M

ideal.

◮ If M is ideal, all eigenvectors of H can be constructed by the
above procedure.

Thus, if M is ideal, the eigenstates (and eigenvalues) can be
constructed and classified into multiplets corresponding to one of
the simple representations of L.
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1D Hubbard model
The Jaynes-Cummings model

The Hubbard model

Consider the Hubbard Hamiltonian

H(α) = −

N
∑

i ,j=1

tij
∑

σ=↑,↓

b
†
i ,σbj ,σ + α

N
∑

k=1

n̂k,↑n̂k,↓
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1D Hubbard model
The Jaynes-Cummings model

The Hubbard model

Consider the Hubbard Hamiltonian

H(α) = −

N
∑

i ,j=1

tij
∑

σ=↑,↓

b
†
i ,σbj ,σ + α

N
∑

k=1

n̂k,↑n̂k,↓

Assume:

1. one dimensional lattice

2. periodic boundary conditions

3. nearest neighbour hopping
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1D Hubbard model
The Jaynes-Cummings model

The eigenvectors and eigenvalues for small latices are known12.
The spectrum for N = 4 at half filling and with S = 0 is:
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1R. Schumann, Ann. Phys. (Leipzig) 11, 49 (2002), cond-mat/0101476v1
2C. Noce, M. Cuoco, Phys. Rev. B 54, 13047 (1996)
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1D Hubbard model
The Jaynes-Cummings model

Counting operator

For this example there exists an ideal counting operator:

M =
∑

i

ni ,↑ni ,↓



1 +
∑

j=−1,1

∑

σ=↑,↓

ni+j ,σni−j ,σ̄F





where F substitutes empty ↔ doubly occupied places.
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1D Hubbard model
The Jaynes-Cummings model

Counting operator

For this example there exists an ideal counting operator:

M =
∑

i

ni ,↑ni ,↓



1 +
∑

j=−1,1

∑

σ=↑,↓

ni+j ,σni−j ,σ̄F





where F substitutes empty ↔ doubly occupied places.

What does it count?
M counts the number of pairs plus or minus the number of pairs
with no empty space nex to it, depending on the symmetry of the
state under F .
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1D Hubbard model
The Jaynes-Cummings model

The multiplets

The eigenvalues can be classified into the following multiplets:

1. three singlets (one with six-fold degeneracy)

2. three doublets (two with two-fold and one with four-fold
degeneracy)

3. four triplets
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1D Hubbard model
The Jaynes-Cummings model

The multiplets
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1D Hubbard model
The Jaynes-Cummings model

The Jaynes-Cummings model

◮ Consider the Hamiltonian

H =
1

2
~ω{b†, b} +

1

2
~ω0σz + ~κ(b†σ− + bσ+)
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1D Hubbard model
The Jaynes-Cummings model

The Jaynes-Cummings model

◮ Consider the Hamiltonian

H =
1

2
~ω{b†, b} +

1

2
~ω0σz + ~κ(b†σ− + bσ+)

◮ As an ideal M we one can use the non-interacting part of H:

M =
1

2
~ω{b†, b} +

1

2
~ω0σz
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1D Hubbard model
The Jaynes-Cummings model

The Jaynes-Cummings model

◮ Consider the Hamiltonian

H =
1

2
~ω{b†, b} +

1

2
~ω0σz + ~κ(b†σ− + bσ+)

◮ As an ideal M we one can use the non-interacting part of H:

M =
1

2
~ω{b†, b} +

1

2
~ω0σz

◮ The spectrum then consits of one singlet and an infinite
number of doublets.
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Ongoing research...

Mathematical questions

◮ What is the set of possible counting operators M, given H?

◮ Given H, under what conditions is there at least one ideal M?
And how can it be found?
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Ongoing research...

Mathematical questions

◮ What is the set of possible counting operators M, given H?

◮ Given H, under what conditions is there at least one ideal M?
And how can it be found?

Practical use

◮ Use this theory to construct eigenstates, for example in the
2D-Hubbard model.

◮ What are the properties of these multiplets?
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That’s all, thank you!
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