On Universality of Bulk Local Regime of the Deformed Laguerre Ensemble

Tatyana Shcherbina
Institute for Low Temperature Physics,
Kharkov, Ukraine.

June 24, 2009
Examples:

Gaussian unitary ensemble (GUE):

\[M = n^{-1/2}W, \] \hspace{1cm} (1)

where \(W \) is a Hermitian \(n \times n \) matrix whose entries \(\Re W_{jk} \) and \(\Im W_{jk} \) are independent identically distributed Gaussian random variables with expectation 0 and dispersion 1/2.

Hermitian matrix model:

\[P(dM) = \frac{1}{Z_n} \exp\{-n\text{Tr} V(M)\}dM, \] \hspace{1cm} (2)

where \(V \) is some function and \(Z_n \) is a normalizing constant. If we take \(V(x) = x^2/2 \) we obtain GUE.
Deformed Laguerre ensemble:

\[H_n = \frac{1}{n} A_{m,n}^* A_{m,n} + H_n^{(0)}, \]

(3)

where \(H_n^{(0)} \) is a Hermitian \(n \times n \) matrix (random or not random) with eigenvalues \(\{h^{(n)}_j\}_{j=1}^n \) and \(A_{m,n} \) is a \(m \times n \) matrix, whose entries \(\Re a_{\alpha j} \) and \(\Im a_{\alpha j} \) are independent Gaussian random variables such that

\[\mathbb{E}\{a_{\alpha j}\} = \mathbb{E}\{a_{\alpha j}^2\} = 0, \quad \mathbb{E}\{|a_{\alpha j}|^2\} = 1, \quad \alpha = \overline{1,m}, \quad j = \overline{1,n}, \]

(4)

moreover \(m/n \to c > 1 \) (as \(m, n \to \infty \)).

Denote by \(\lambda_1^{(n)}, \ldots, \lambda_n^{(n)} \) the eigenvalues of the random matrix. Define the normalized eigenvalue counting measure of the matrix as

\[N_n(\triangle) = \frac{\#\{\lambda_j^{(n)} \in \triangle, j = \overline{1,n}\}}{n}, \quad N_n(\mathbb{R}) = 1, \]

(5)

where \(\triangle \) is an arbitrary interval of the real axis.
For many known random matrices the expectation $\overline{N}_n = \mathbf{E}\{N_n\}$ is absolutely continuous and its density ρ_n is called the density of states.

Let

$$N_n^{(0)}(\Delta) = \frac{1}{n} \# \{ h_j^{(n)} \in \Delta, j = 1, n \},$$

be the Normalized Counting Measure of eigenvalues of $H_n^{(0)}$.

The global regime for the ensemble (3) – (4): It was shown in the paper of Marchenko, Pastur [3] that if $N_n^{(0)}$ converges weakly with probability 1 to a non-random measure $N^{(0)}$ as $n \to \infty$, then N_n also converges weakly with probability 1 to a measure N. The measure N is normalized to unity and is absolutely continuous and its density ρ is called the limiting density of states of the ensemble.

It follows from the definition of N_n and the above result that any n-independent interval Δ such that $N(\Delta) > 0$ contains $O(n)$
eigenvalues. Thus, to deal with a finite number of eigenvalues one has to consider spectral intervals, whose length tends to zero as \(n \to \infty \).

This is the local regime of the random matrix theory. In particular, in the local bulk regime we are about intervals of the length \(O(n^{-1}) \).

Define also the **k-point correlation function** \(R_k^{(n)} \) by the equality:

\[
E \left\{ \sum_{j_1 \neq \ldots \neq j_k} \varphi_k(\lambda_{j_1}, \ldots, \lambda_{j_k}) \right\} = \int_{\mathbb{R}} \varphi_k(\lambda_1, \ldots, \lambda_m) R_k^{(n)}(\lambda_1, \ldots, \lambda_k) d\lambda_1, \ldots, d\lambda_k, \quad (6)
\]

where \(\varphi_k : \mathbb{R}^k \to \mathbb{C} \) is bounded, continuous and symmetric in its arguments and the summation is over all \(k \)-tuples of distinct integers \(j_1, \ldots, j_k = \overline{1, n} \). We will call the spectrum the support of \(N \) and
define the bulk of the spectrum as

\[
\text{bulk } N = \{ \lambda \mid \exists (a, b) \subset \text{supp } N : \lambda \in (a, b), \inf_{\mu \in (a,b)} \rho(\mu) > 0 \}. \quad (7)
\]

The bulk local regime for the ensemble (3) – (4):

The universality hypothesis on the bulk of the spectrum says that for \(\lambda_0 \in \text{bulk } N \) we have:

(i) for any fixed \(k \) uniformly in \(x_1, x_2, \ldots, x_k \) varying in any compact set in \(\mathbb{R} \)

\[
\lim_{n \to \infty} \frac{1}{(n\rho_n(\lambda_0))^k} R_k^{(n)} \left(\lambda_0 + \frac{x_1}{\rho_n(\lambda_0)n}, \ldots, \lambda_0 + \frac{x_k}{\rho_n(\lambda_0)n} \right) = \det \{ S(x_i - x_j) \}_{i,j=1}^k, \quad (8)
\]
where
\[S(x_i - x_j) = \frac{\sin \pi(x_i - x_j)}{\pi(x_i - x_j)}; \quad (9) \]

(ii) if
\[E_n(\triangle) = \mathbf{P}\{\lambda_i^{(n)} \notin \triangle, i = 1, n\}, \quad (10) \]
is the gap probability, then
\[
\lim_{n \to \infty} E_n \left(\left[\lambda_0 + \frac{a}{\rho_n(\lambda_0) n}, \lambda_0 + \frac{b}{\rho_n(\lambda_0) n} \right] \right) = \det\{1 - S_{a,b}\}, \quad (11)
\]
where the operator \(S_{a,b} \) is defined on \(L_2[a, b] \) by the formula
\[
S_{a,b}f(x) = \int_a^b S(x - y)f(y)dy,
\]
and \(S \) is defined in (9).
The main result of the paper is following theorem

Theorem 1 Let $c > 1$ and the eigenvalues $\{h_j^{(n)}\}_{j=1}^n$ of $H_n^{(0)}$ in (3) be a collection of random variables independent of A_n. Assume that there exists a non-random measure $N^{(0)}$ of a bounded support such that such that $N_n^{(0)}$ converges weakly with probability 1 to $N^{(0)}$. Then for any $\lambda_0 \in \text{bulk } N$ the universality properties (8) and (11) hold.

Harish-Chandra/Itzykson-Zuber formula:

$$
\int \exp\{\text{Tr}AU^*BU\}d\mu(U) = \frac{\det[\exp\{a_ib_j\}]_{i,j=1}^n}{\triangle(A)\triangle(B)}, \quad (12)
$$

where a_i, b_i are eigenvalues of matrices A and B correspondingly and $\triangle(A)$ is a Van der Monde determinant of eigenvalues of matrix A.
Proposition 1 Let H_n be the random matrix defined in (3) and $R^{(n)}_k$ be the correlation function (6). Then we have

$$R^{(n)}_k(\lambda_1, \ldots, \lambda_k) = \mathbb{E}^{(h)} \{ \det \{ K_n(\lambda_i, \lambda_j) \}_{i,j=1}^k \}, \quad (13)$$

with

$$K_n(\lambda, \mu) =$$

$$\frac{m}{4\pi^2} \oint_L \oint_\omega \frac{\exp \{ n(u - t) \} (t + \lambda)^{m-1}}{(u - t)(u + \mu)^{m+1}} \prod_{j=1}^n \left(\frac{u + h^{(n)}_j}{t + h^{(n)}_j} \right) dt \, du, \quad (14)$$

where the contour L is a closed contour, encircling $\{ -h^{(n)}_j : h^{(n)}_j < \lambda \}$ and ω is any closed contour encircling $-\mu$ and not intersect L.

This proposition reduces (8) to the limiting transition in (14). The limiting transition is done using the steepest descent method.

